/* $OpenBSD: atomic.h,v 1.21 2021/03/11 11:16:55 jsg Exp $ */ /* $NetBSD: atomic.h,v 1.1 2003/04/26 18:39:37 fvdl Exp $ */ /* * Copyright 2002 (c) Wasabi Systems, Inc. * All rights reserved. * * Written by Frank van der Linden for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef _MACHINE_ATOMIC_H_ #define _MACHINE_ATOMIC_H_ /* * Perform atomic operations on memory. Should be atomic with respect * to interrupts and multiple processors. * * void atomic_setbits_int(volatile u_int *a, u_int mask) { *a |= mask; } * void atomic_clearbits_int(volatile u_int *a, u_int mas) { *a &= ~mask; } */ #if !defined(_LOCORE) #if defined(MULTIPROCESSOR) || !defined(_KERNEL) #define _LOCK "lock" #else #define _LOCK #endif static inline unsigned int _atomic_cas_uint(volatile unsigned int *p, unsigned int e, unsigned int n) { __asm volatile(_LOCK " cmpxchgl %2, %1" : "=a" (n), "=m" (*p) : "r" (n), "a" (e), "m" (*p)); return (n); } #define atomic_cas_uint(_p, _e, _n) _atomic_cas_uint((_p), (_e), (_n)) static inline unsigned long _atomic_cas_ulong(volatile unsigned long *p, unsigned long e, unsigned long n) { __asm volatile(_LOCK " cmpxchgq %2, %1" : "=a" (n), "=m" (*p) : "r" (n), "a" (e), "m" (*p)); return (n); } #define atomic_cas_ulong(_p, _e, _n) _atomic_cas_ulong((_p), (_e), (_n)) static inline void * _atomic_cas_ptr(volatile void *p, void *e, void *n) { __asm volatile(_LOCK " cmpxchgq %2, %1" : "=a" (n), "=m" (*(unsigned long *)p) : "r" (n), "a" (e), "m" (*(unsigned long *)p)); return (n); } #define atomic_cas_ptr(_p, _e, _n) _atomic_cas_ptr((_p), (_e), (_n)) static inline unsigned int _atomic_swap_uint(volatile unsigned int *p, unsigned int n) { __asm volatile("xchgl %0, %1" : "=a" (n), "=m" (*p) : "0" (n), "m" (*p)); return (n); } #define atomic_swap_uint(_p, _n) _atomic_swap_uint((_p), (_n)) #define atomic_swap_32(_p, _n) _atomic_swap_uint((_p), (_n)) static inline unsigned long _atomic_swap_ulong(volatile unsigned long *p, unsigned long n) { __asm volatile("xchgq %0, %1" : "=a" (n), "=m" (*p) : "0" (n), "m" (*p)); return (n); } #define atomic_swap_ulong(_p, _n) _atomic_swap_ulong((_p), (_n)) static inline uint64_t _atomic_swap_64(volatile uint64_t *p, uint64_t n) { __asm volatile("xchgq %0, %1" : "=a" (n), "=m" (*p) : "0" (n), "m" (*p)); return (n); } #define atomic_swap_64(_p, _n) _atomic_swap_64((_p), (_n)) static inline void * _atomic_swap_ptr(volatile void *p, void *n) { __asm volatile("xchgq %0, %1" : "=a" (n), "=m" (*(unsigned long *)p) : "0" (n), "m" (*(unsigned long *)p)); return (n); } #define atomic_swap_ptr(_p, _n) _atomic_swap_ptr((_p), (_n)) static inline void _atomic_inc_int(volatile unsigned int *p) { __asm volatile(_LOCK " incl %0" : "+m" (*p)); } #define atomic_inc_int(_p) _atomic_inc_int(_p) static inline void _atomic_inc_long(volatile unsigned long *p) { __asm volatile(_LOCK " incq %0" : "+m" (*p)); } #define atomic_inc_long(_p) _atomic_inc_long(_p) static inline void _atomic_dec_int(volatile unsigned int *p) { __asm volatile(_LOCK " decl %0" : "+m" (*p)); } #define atomic_dec_int(_p) _atomic_dec_int(_p) static inline void _atomic_dec_long(volatile unsigned long *p) { __asm volatile(_LOCK " decq %0" : "+m" (*p)); } #define atomic_dec_long(_p) _atomic_dec_long(_p) static inline void _atomic_add_int(volatile unsigned int *p, unsigned int v) { __asm volatile(_LOCK " addl %1,%0" : "+m" (*p) : "a" (v)); } #define atomic_add_int(_p, _v) _atomic_add_int(_p, _v) static inline void _atomic_add_long(volatile unsigned long *p, unsigned long v) { __asm volatile(_LOCK " addq %1,%0" : "+m" (*p) : "a" (v)); } #define atomic_add_long(_p, _v) _atomic_add_long(_p, _v) static inline void _atomic_sub_int(volatile unsigned int *p, unsigned int v) { __asm volatile(_LOCK " subl %1,%0" : "+m" (*p) : "a" (v)); } #define atomic_sub_int(_p, _v) _atomic_sub_int(_p, _v) static inline void _atomic_sub_long(volatile unsigned long *p, unsigned long v) { __asm volatile(_LOCK " subq %1,%0" : "+m" (*p) : "a" (v)); } #define atomic_sub_long(_p, _v) _atomic_sub_long(_p, _v) static inline unsigned long _atomic_add_int_nv(volatile unsigned int *p, unsigned int v) { unsigned int rv = v; __asm volatile(_LOCK " xaddl %0,%1" : "+a" (rv), "+m" (*p)); return (rv + v); } #define atomic_add_int_nv(_p, _v) _atomic_add_int_nv(_p, _v) static inline unsigned long _atomic_add_long_nv(volatile unsigned long *p, unsigned long v) { unsigned long rv = v; __asm volatile(_LOCK " xaddq %0,%1" : "+a" (rv), "+m" (*p)); return (rv + v); } #define atomic_add_long_nv(_p, _v) _atomic_add_long_nv(_p, _v) static inline unsigned long _atomic_sub_int_nv(volatile unsigned int *p, unsigned int v) { unsigned int rv = 0 - v; __asm volatile(_LOCK " xaddl %0,%1" : "+a" (rv), "+m" (*p)); return (rv - v); } #define atomic_sub_int_nv(_p, _v) _atomic_sub_int_nv(_p, _v) static inline unsigned long _atomic_sub_long_nv(volatile unsigned long *p, unsigned long v) { unsigned long rv = 0 - v; __asm volatile(_LOCK " xaddq %0,%1" : "+a" (rv), "+m" (*p)); return (rv - v); } #define atomic_sub_long_nv(_p, _v) _atomic_sub_long_nv(_p, _v) /* * The AMD64 architecture is rather strongly ordered. When accessing * normal write-back cacheable memory, only reads may be reordered with * older writes to different locations. There are a few instructions * (clfush, non-temporal move instructions) that obey weaker ordering * rules, but those instructions will only be used in (inline) * assembly code where we can add the necessary fence instructions * ourselves. */ #define __membar(_f) do { __asm __volatile(_f ::: "memory"); } while (0) #if defined(MULTIPROCESSOR) || !defined(_KERNEL) #define membar_enter() __membar("mfence") #define membar_exit() __membar("") #define membar_producer() __membar("") #define membar_consumer() __membar("") #define membar_sync() __membar("mfence") #else #define membar_enter() __membar("") #define membar_exit() __membar("") #define membar_producer() __membar("") #define membar_consumer() __membar("") #define membar_sync() __membar("") #endif #define membar_enter_after_atomic() __membar("") #define membar_exit_before_atomic() __membar("") #ifdef _KERNEL /* virtio needs MP membars even on SP kernels */ #define virtio_membar_producer() __membar("") #define virtio_membar_consumer() __membar("") #define virtio_membar_sync() __membar("mfence") static __inline void x86_atomic_setbits_u32(volatile u_int32_t *ptr, u_int32_t bits) { __asm volatile(_LOCK " orl %1,%0" : "=m" (*ptr) : "ir" (bits)); } static __inline void x86_atomic_clearbits_u32(volatile u_int32_t *ptr, u_int32_t bits) { __asm volatile(_LOCK " andl %1,%0" : "=m" (*ptr) : "ir" (~bits)); } static __inline void x86_atomic_setbits_u64(volatile u_int64_t *ptr, u_int64_t bits) { __asm volatile(_LOCK " orq %1,%0" : "=m" (*ptr) : "er" (bits)); } static __inline void x86_atomic_clearbits_u64(volatile u_int64_t *ptr, u_int64_t bits) { __asm volatile(_LOCK " andq %1,%0" : "=m" (*ptr) : "er" (~bits)); } #define x86_atomic_testset_ul x86_atomic_testset_u64 #define x86_atomic_setbits_ul x86_atomic_setbits_u64 #define x86_atomic_clearbits_ul x86_atomic_clearbits_u64 #define atomic_setbits_int x86_atomic_setbits_u32 #define atomic_clearbits_int x86_atomic_clearbits_u32 #endif /* _KERNEL */ #undef _LOCK #endif /* !defined(_LOCORE) */ #endif /* _MACHINE_ATOMIC_H_ */