/* $OpenBSD: pmap.h,v 1.5 2004/08/06 22:39:12 deraadt Exp $ */ /* $NetBSD: pmap.h,v 1.1 2003/04/26 18:39:46 fvdl Exp $ */ /* * * Copyright (c) 1997 Charles D. Cranor and Washington University. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgment: * This product includes software developed by Charles D. Cranor and * Washington University. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2001 Wasabi Systems, Inc. * All rights reserved. * * Written by Frank van der Linden for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * pmap.h: see pmap.c for the history of this pmap module. */ #ifndef _AMD64_PMAP_H_ #define _AMD64_PMAP_H_ #ifndef _LOCORE #include #include #include #include #endif /* * The x86_64 pmap module closely resembles the i386 one. It uses * the same recursive entry scheme, and the same alternate area * trick for accessing non-current pmaps. See the i386 pmap.h * for a description. The obvious difference is that 3 extra * levels of page table need to be dealt with. The level 1 page * table pages are at: * * l1: 0x00007f8000000000 - 0x00007fffffffffff (39 bits, needs PML4 entry) * * The alternate space is at: * * l1: 0xffffff8000000000 - 0xffffffffffffffff (39 bits, needs PML4 entry) * * The rest is kept as physical pages in 3 UVM objects, and is * temporarily mapped for virtual access when needed. * * Note that address space is signed, so the layout for 48 bits is: * * +---------------------------------+ 0xffffffffffffffff * | | * | alt.L1 table (PTE pages) | * | | * +---------------------------------+ 0xffffff8000000000 * ~ ~ * | | * | Kernel Space | * | | * | | * +---------------------------------+ 0xffff800000000000 = 0x0000008000000000 * | | * | alt.L1 table (PTE pages) | * | | * +---------------------------------+ 0x00007f8000000000 * ~ ~ * | | * | User Space | * | | * | | * +---------------------------------+ 0x0000000000000000 * * In other words, there is a 'VA hole' at 0x0000008000000000 - * 0xffff800000000000 which will trap, just as on, for example, * sparcv9. * * The unused space can be used if needed, but it adds a little more * complexity to the calculations. */ /* * The first generation of Hammer processors can use 48 bits of * virtual memory, and 40 bits of physical memory. This will be * more for later generations. These defines can be changed to * variable names containing the # of bits, extracted from an * extended cpuid instruction (variables are harder to use during * bootstrap, though) */ #define VIRT_BITS 48 #define PHYS_BITS 40 /* * Mask to get rid of the sign-extended part of addresses. */ #define VA_SIGN_MASK 0xffff000000000000 #define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK) /* * XXXfvdl this one's not right. */ #define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK) #define L4_SLOT_PTE 255 #define L4_SLOT_KERN 256 #define L4_SLOT_KERNBASE 511 #define L4_SLOT_APTE 510 #define L4_SLOT_DIRECT 509 #define PDIR_SLOT_KERN L4_SLOT_KERN #define PDIR_SLOT_PTE L4_SLOT_PTE #define PDIR_SLOT_APTE L4_SLOT_APTE #define PDIR_SLOT_DIRECT L4_SLOT_DIRECT /* * the following defines give the virtual addresses of various MMU * data structures: * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP * */ #define PTE_BASE ((pt_entry_t *) (L4_SLOT_PTE * NBPD_L4)) #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((L4_SLOT_APTE * NBPD_L4)))) #define PMAP_DIRECT_BASE (VA_SIGN_NEG((L4_SLOT_DIRECT * NBPD_L4))) #define PMAP_DIRECT_END (VA_SIGN_NEG(((L4_SLOT_DIRECT + 1) * NBPD_L4))) #define L1_BASE PTE_BASE #define AL1_BASE APTE_BASE #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L4_SLOT_PTE * NBPD_L3)) #define L3_BASE ((pd_entry_t *)((char *)L2_BASE + L4_SLOT_PTE * NBPD_L2)) #define L4_BASE ((pd_entry_t *)((char *)L3_BASE + L4_SLOT_PTE * NBPD_L1)) #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L4_SLOT_PTE * NBPD_L3)) #define AL3_BASE ((pd_entry_t *)((char *)AL2_BASE + L4_SLOT_PTE * NBPD_L2)) #define AL4_BASE ((pd_entry_t *)((char *)AL3_BASE + L4_SLOT_PTE * NBPD_L1)) #define PDP_PDE (L4_BASE + PDIR_SLOT_PTE) #define APDP_PDE (L4_BASE + PDIR_SLOT_APTE) #define PDP_BASE L4_BASE #define APDP_BASE AL4_BASE #define NKL4_MAX_ENTRIES (unsigned long)1 #define NKL3_MAX_ENTRIES (unsigned long)(NKL4_MAX_ENTRIES * 512) #define NKL2_MAX_ENTRIES (unsigned long)(NKL3_MAX_ENTRIES * 512) #define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * 512) #define NKL4_KIMG_ENTRIES 1 #define NKL3_KIMG_ENTRIES 1 #define NKL2_KIMG_ENTRIES 8 /* * Since kva space is below the kernel in its entirety, we start off * with zero entries on each level. */ #define NKL4_START_ENTRIES 0 #define NKL3_START_ENTRIES 0 #define NKL2_START_ENTRIES 0 #define NKL1_START_ENTRIES 0 /* XXX */ #define NTOPLEVEL_PDES (PAGE_SIZE / (sizeof (pd_entry_t))) #define KERNSPACE (NKL4_ENTRIES * NBPD_L4) #define NPDPG (PAGE_SIZE / sizeof (pd_entry_t)) #define ptei(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT) /* * pl*_pi: index in the ptp page for a pde mapping a VA. * (pl*_i below is the index in the virtual array of all pdes per level) */ #define pl1_pi(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT) #define pl2_pi(VA) (((VA_SIGN_POS(VA)) & L2_MASK) >> L2_SHIFT) #define pl3_pi(VA) (((VA_SIGN_POS(VA)) & L3_MASK) >> L3_SHIFT) #define pl4_pi(VA) (((VA_SIGN_POS(VA)) & L4_MASK) >> L4_SHIFT) /* * pl*_i: generate index into pde/pte arrays in virtual space */ #define pl1_i(VA) (((VA_SIGN_POS(VA)) & L1_FRAME) >> L1_SHIFT) #define pl2_i(VA) (((VA_SIGN_POS(VA)) & L2_FRAME) >> L2_SHIFT) #define pl3_i(VA) (((VA_SIGN_POS(VA)) & L3_FRAME) >> L3_SHIFT) #define pl4_i(VA) (((VA_SIGN_POS(VA)) & L4_FRAME) >> L4_SHIFT) #define pl_i(va, lvl) \ (((VA_SIGN_POS(va)) & ptp_masks[(lvl)-1]) >> ptp_shifts[(lvl)-1]) #define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME, L3_FRAME, L4_FRAME } #define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT, L3_SHIFT, L4_SHIFT } #define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES, \ NKL3_START_ENTRIES, NKL4_START_ENTRIES } #define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES, \ NKL3_MAX_ENTRIES, NKL4_MAX_ENTRIES } #define NBPD_INITIALIZER { NBPD_L1, NBPD_L2, NBPD_L3, NBPD_L4 } #define PDES_INITIALIZER { L2_BASE, L3_BASE, L4_BASE } #define APDES_INITIALIZER { AL2_BASE, AL3_BASE, AL4_BASE } /* * PTP macros: * a PTP's index is the PD index of the PDE that points to it * a PTP's offset is the byte-offset in the PTE space that this PTP is at * a PTP's VA is the first VA mapped by that PTP * * note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries) * NBPD == number of bytes a PTP can map (4MB) */ #define ptp_va2o(va, lvl) (pl_i(va, (lvl)+1) * PAGE_SIZE) #define PTP_LEVELS 4 /* * PG_AVAIL usage: we make use of the ignored bits of the PTE */ #define PG_W PG_AVAIL1 /* "wired" mapping */ #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */ /* PG_AVAIL3 not used */ /* * Number of PTE's per cache line. 8 byte pte, 64-byte cache line * Used to avoid false sharing of cache lines. */ #define NPTECL 8 #if defined(_KERNEL) && !defined(_LOCORE) /* * pmap data structures: see pmap.c for details of locking. */ struct pmap; typedef struct pmap *pmap_t; /* * we maintain a list of all non-kernel pmaps */ LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */ /* * the pmap structure * * note that the pm_obj contains the simple_lock, the reference count, * page list, and number of PTPs within the pmap. * * pm_lock is the same as the spinlock for vm object 0. Changes to * the other objects may only be made if that lock has been taken * (the other object locks are only used when uvm_pagealloc is called) */ struct pmap { struct uvm_object pm_obj[PTP_LEVELS-1]; /* objects for lvl >= 1) */ #define pm_lock pm_obj[0].vmobjlock #define pm_obj_l1 pm_obj[0] #define pm_obj_l2 pm_obj[1] #define pm_obj_l3 pm_obj[2] LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */ pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */ paddr_t pm_pdirpa; /* PA of PD (read-only after create) */ struct vm_page *pm_ptphint[PTP_LEVELS-1]; /* pointer to a PTP in our pmap */ struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */ int pm_flags; /* see below */ union descriptor *pm_ldt; /* user-set LDT */ int pm_ldt_len; /* number of LDT entries */ int pm_ldt_sel; /* LDT selector */ u_int32_t pm_cpus; /* mask of CPUs using pmap */ }; /* pm_flags */ #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */ /* * for each managed physical page we maintain a list of 's * which it is mapped at. the list is headed by a pv_head structure. * there is one pv_head per managed phys page (allocated at boot time). * the pv_head structure points to a list of pv_entry structures (each * describes one mapping). */ struct pv_entry; struct pv_head { struct simplelock pvh_lock; /* locks every pv on this list */ struct pv_entry *pvh_list; /* head of list (locked by pvh_lock) */ }; struct pv_entry { /* locked by its list's pvh_lock */ struct pv_entry *pv_next; /* next entry */ struct pmap *pv_pmap; /* the pmap */ vaddr_t pv_va; /* the virtual address */ struct vm_page *pv_ptp; /* the vm_page of the PTP */ }; /* * pv_entrys are dynamically allocated in chunks from a single page. * we keep track of how many pv_entrys are in use for each page and * we can free pv_entry pages if needed. there is one lock for the * entire allocation system. */ struct pv_page_info { TAILQ_ENTRY(pv_page) pvpi_list; struct pv_entry *pvpi_pvfree; int pvpi_nfree; }; /* * number of pv_entry's in a pv_page * (note: won't work on systems where NPBG isn't a constant) */ #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \ sizeof(struct pv_entry)) /* * a pv_page: where pv_entrys are allocated from */ struct pv_page { struct pv_page_info pvinfo; struct pv_entry pvents[PVE_PER_PVPAGE]; }; /* * pmap_remove_record: a record of VAs that have been unmapped, used to * flush TLB. if we have more than PMAP_RR_MAX then we stop recording. */ #define PMAP_RR_MAX 16 /* max of 16 pages (64K) */ struct pmap_remove_record { int prr_npages; vaddr_t prr_vas[PMAP_RR_MAX]; }; /* * global kernel variables */ /* PTDpaddr: is the physical address of the kernel's PDP */ extern u_long PTDpaddr; extern struct pmap kernel_pmap_store; /* kernel pmap */ extern int pmap_pg_g; /* do we support PG_G? */ extern paddr_t ptp_masks[]; extern int ptp_shifts[]; extern long nkptp[], nbpd[], nkptpmax[]; extern pd_entry_t *pdes[]; /* * macros */ #define pmap_kernel() (&kernel_pmap_store) #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) #define pmap_update(pmap) /* nothing (yet) */ #define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M) #define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U) #define pmap_copy(DP,SP,D,L,S) #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M) #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U) #define pmap_move(DP,SP,D,L,S) #define pmap_phys_address(ppn) ptob(ppn) #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */ #define pmap_proc_iflush(p,va,len) /* nothing */ #define pmap_unuse_final(p) /* nothing */ /* * prototypes */ void pmap_bootstrap(vaddr_t, paddr_t); boolean_t pmap_clear_attrs(struct vm_page *, unsigned); static void pmap_page_protect(struct vm_page *, vm_prot_t); void pmap_page_remove (struct vm_page *); static void pmap_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t); void pmap_remove(struct pmap *, vaddr_t, vaddr_t); boolean_t pmap_test_attrs(struct vm_page *, unsigned); static void pmap_update_pg(vaddr_t); static void pmap_update_2pg(vaddr_t,vaddr_t); void pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t); vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */ void pmap_tlb_shootdown(pmap_t, vaddr_t, pt_entry_t, int32_t *); void pmap_tlb_shootnow(int32_t); void pmap_do_tlb_shootdown(struct cpu_info *); void pmap_prealloc_lowmem_ptps(void); #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */ /* * Do idle page zero'ing uncached to avoid polluting the cache. */ boolean_t pmap_pageidlezero(struct vm_page *); #define PMAP_PAGEIDLEZERO(pg) pmap_pageidlezero((pg)) /* * inline functions */ static __inline void pmap_remove_all(struct pmap *pmap) { /* Nothing. */ } /* * pmap_update_pg: flush one page from the TLB (or flush the whole thing * if hardware doesn't support one-page flushing) */ __inline static void pmap_update_pg(va) vaddr_t va; { invlpg(va); } /* * pmap_update_2pg: flush two pages from the TLB */ __inline static void pmap_update_2pg(va, vb) vaddr_t va, vb; { invlpg(va); invlpg(vb); } /* * pmap_page_protect: change the protection of all recorded mappings * of a managed page * * => this function is a frontend for pmap_page_remove/pmap_clear_attrs * => we only have to worry about making the page more protected. * unprotecting a page is done on-demand at fault time. */ __inline static void pmap_page_protect(struct vm_page *pg, vm_prot_t prot) { if ((prot & VM_PROT_WRITE) == 0) { if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) { (void) pmap_clear_attrs(pg, PG_RW); } else { pmap_page_remove(pg); } } } /* * pmap_protect: change the protection of pages in a pmap * * => this function is a frontend for pmap_remove/pmap_write_protect * => we only have to worry about making the page more protected. * unprotecting a page is done on-demand at fault time. */ __inline static void pmap_protect(pmap, sva, eva, prot) struct pmap *pmap; vaddr_t sva, eva; vm_prot_t prot; { if ((prot & VM_PROT_WRITE) == 0) { if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) { pmap_write_protect(pmap, sva, eva, prot); } else { pmap_remove(pmap, sva, eva); } } } /* * various address inlines * * vtopte: return a pointer to the PTE mapping a VA, works only for * user and PT addresses * * kvtopte: return a pointer to the PTE mapping a kernel VA */ #include static __inline pt_entry_t * vtopte(vaddr_t va) { KASSERT(va < (L4_SLOT_KERN * NBPD_L4)); return (PTE_BASE + pl1_i(va)); } static __inline pt_entry_t * kvtopte(vaddr_t va) { KASSERT(va >= (L4_SLOT_KERN * NBPD_L4)); #ifdef LARGEPAGES { pd_entry_t *pde; pde = L1_BASE + pl2_i(va); if (*pde & PG_PS) return ((pt_entry_t *)pde); } #endif return (PTE_BASE + pl1_i(va)); } #define pmap_pte_set(p, n) x86_atomic_testset_u64(p, n) #define pmap_pte_clearbits(p, b) x86_atomic_clearbits_u64(p, b) #define pmap_pte_setbits(p, b) x86_atomic_setbits_u64(p, b) #define pmap_cpu_has_pg_n() (1) #define pmap_cpu_has_invlpg (1) paddr_t vtophys(vaddr_t); vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t); #if 0 /* XXXfvdl was USER_LDT, need to check if that can be supported */ void pmap_ldt_cleanup(struct proc *); #define PMAP_FORK #endif /* USER_LDT */ /* * Hooks for the pool allocator. */ /* #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va)) */ #define pmap_map_direct(pg) \ ((vaddr_t)PMAP_DIRECT_BASE + VM_PAGE_TO_PHYS(pg)) #define pmap_unmap_direct(va) \ PHYS_TO_VM_PAGE(va - PMAP_DIRECT_BASE) #define __HAVE_PMAP_DIRECT #endif /* _KERNEL && !_LOCORE */ #endif /* _AMD64_PMAP_H_ */