/* $OpenBSD: aucc.c,v 1.1 1997/09/18 13:39:42 niklas Exp $ */ /* $NetBSD: aucc.c,v 1.18 1997/08/24 22:31:23 augustss Exp $ */ #undef AUDIO_DEBUG /* * Copyright (c) 1997 Stephan Thesing * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Stephan Thesing. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "aucc.h" #if NAUCC > 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef LEV6_DEFER #define AUCC_MAXINT 3 #define AUCC_ALLINTF (INTF_AUD0|INTF_AUD1|INTF_AUD2) #else #define AUCC_MAXINT 4 #define AUCC_ALLINTF (INTF_AUD0|INTF_AUD1|INTF_AUD2|INTF_AUD3) #endif /* this unconditionally; we may use AUD3 as slave channel with LEV6_DEFER */ #define AUCC_ALLDMAF (DMAF_AUD0|DMAF_AUD1|DMAF_AUD2|DMAF_AUD3) #ifdef AUDIO_DEBUG /*extern printf __P((const char *,...));*/ int auccdebug = 1; #define DPRINTF(x) if (auccdebug) printf x #else #define DPRINTF(x) #endif #ifdef splaudio #undef splaudio #endif #define splaudio() spl4(); /* clock frequency.. */ extern int eclockfreq; /* hw audio ch */ extern struct audio_channel channel[4]; /* * Software state. */ struct aucc_softc { struct device sc_dev; /* base device */ int sc_open; /* single use device */ aucc_data_t sc_channel[4]; /* per channel freq, ... */ u_int sc_encoding; /* encoding AUDIO_ENCODING_.*/ int sc_channels; /* # of channels used */ int sc_intrcnt; /* interrupt count */ int sc_channelmask; /* which channels are used ? */ }; /* interrupt interfaces */ void aucc_inthdl __P((int)); /* forward declarations */ int init_aucc __P((struct aucc_softc *)); u_int freqtoper __P((u_int)); u_int pertofreq __P((u_int)); /* autoconfiguration driver */ void auccattach __P((struct device *, struct device *, void *)); int auccmatch __P((struct device *, void *, void *)); struct cfattach aucc_ca = { sizeof(struct aucc_softc), auccmatch, auccattach }; struct cfdriver aucc_cd = { NULL, "aucc", DV_DULL, NULL, 0 }; struct audio_device aucc_device = { "Amiga-audio", "x", "aucc" }; struct aucc_softc *aucc = NULL; unsigned char ulaw_to_lin[] = { 0x82, 0x86, 0x8a, 0x8e, 0x92, 0x96, 0x9a, 0x9e, 0xa2, 0xa6, 0xaa, 0xae, 0xb2, 0xb6, 0xba, 0xbe, 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 0xf0, 0xf1, 0xf1, 0xf2, 0xf2, 0xf3, 0xf3, 0xf4, 0xf4, 0xf5, 0xf5, 0xf6, 0xf6, 0xf7, 0xf7, 0xf8, 0xf8, 0xf8, 0xf9, 0xf9, 0xf9, 0xf9, 0xfa, 0xfa, 0xfa, 0xfa, 0xfb, 0xfb, 0xfb, 0xfb, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfd, 0xfd, 0xfd, 0xfd, 0xfd, 0xfd, 0xfd, 0xfd, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x7d, 0x79, 0x75, 0x71, 0x6d, 0x69, 0x65, 0x61, 0x5d, 0x59, 0x55, 0x51, 0x4d, 0x49, 0x45, 0x41, 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0f, 0x0e, 0x0e, 0x0d, 0x0d, 0x0c, 0x0c, 0x0b, 0x0b, 0x0a, 0x0a, 0x09, 0x09, 0x08, 0x08, 0x07, 0x07, 0x07, 0x06, 0x06, 0x06, 0x06, 0x05, 0x05, 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; /* * Define our interface to the higher level audio driver. */ int aucc_open __P((void *, int)); void aucc_close __P((void *)); int aucc_set_out_sr __P((void *, u_long)); int aucc_query_encoding __P((void *, struct audio_encoding *)); int aucc_round_blocksize __P((void *, int)); int aucc_set_out_port __P((void *, int)); int aucc_get_out_port __P((void *)); int aucc_set_in_port __P((void *, int)); int aucc_get_in_port __P((void *)); int aucc_commit_settings __P((void *)); int aucc_start_output __P((void *, void *, int, void (*)(void *), void *)); int aucc_start_input __P((void *, void *, int, void (*)(void *), void *)); int aucc_halt_output __P((void *)); int aucc_halt_input __P((void *)); int aucc_cont_output __P((void *)); int aucc_cont_input __P((void *)); int aucc_getdev __P((void *, struct audio_device *)); int aucc_set_port __P((void *, mixer_ctrl_t *)); int aucc_get_port __P((void *, mixer_ctrl_t *)); int aucc_query_devinfo __P((void *, mixer_devinfo_t *)); void aucc_encode __P((int, int, int, u_char *, u_short **)); int aucc_set_params __P((void *, int, int, struct audio_params *, struct audio_params *)); int aucc_get_props __P((void *)); struct audio_hw_if sa_hw_if = { aucc_open, aucc_close, NULL, aucc_query_encoding, aucc_set_params, aucc_round_blocksize, aucc_set_out_port, aucc_get_out_port, aucc_set_in_port, aucc_get_in_port, aucc_commit_settings, NULL, NULL, aucc_start_output, aucc_start_input, aucc_halt_output, aucc_halt_input, aucc_cont_output, aucc_cont_input, NULL, aucc_getdev, NULL, aucc_set_port, aucc_get_port, aucc_query_devinfo, NULL, NULL, NULL, NULL, aucc_get_props, }; /* autoconfig routines */ int auccmatch(pdp, match, aux) struct device *pdp; void *match; void *aux; { struct cfdata *cfp = match; if (matchname((char *)aux, "aucc") && #ifdef DRACO !is_draco() && #endif (cfp->cf_unit == 0)) return (1); return (0); } /* * Audio chip found. */ void auccattach(parent, self, args) struct device *parent, *self; void *args; { struct aucc_softc *sc = (struct aucc_softc *)self; int i; printf("\n"); if((i = init_aucc(sc)) != 0) { printf("audio: no chipmem\n"); return; } audio_attach_mi(&sa_hw_if, 0, sc, &sc->sc_dev); } int init_aucc(sc) struct aucc_softc *sc; { int i, err=0; /* init values per channel */ for (i = 0; i < 4; i++) { sc->sc_channel[i].nd_freq = 8000; sc->sc_channel[i].nd_per = freqtoper(8000); sc->sc_channel[i].nd_busy = 0; sc->sc_channel[i].nd_dma = alloc_chipmem(AUDIO_BUF_SIZE * 2); if (sc->sc_channel[i].nd_dma == NULL) err = 1; sc->sc_channel[i].nd_dmalength = 0; sc->sc_channel[i].nd_volume = 64; sc->sc_channel[i].nd_intr = NULL; sc->sc_channel[i].nd_intrdata = NULL; sc->sc_channel[i].nd_doublebuf = 0; DPRINTF(("dma buffer for channel %d is %p\n", i, sc->sc_channel[i].nd_dma)); } if (err) { for(i = 0; i < 4; i++) if (sc->sc_channel[i].nd_dma) free_chipmem(sc->sc_channel[i].nd_dma); } sc->sc_channels = 1; sc->sc_channelmask = 0xf; /* clear interrupts and dma: */ custom.intena = AUCC_ALLINTF; custom.dmacon = AUCC_ALLDMAF; sc->sc_encoding = AUDIO_ENCODING_ULAW; return (err); } int aucc_open(addr, flags) void *addr; int flags; { struct aucc_softc *sc = addr; int i; DPRINTF(("sa_open: unit %p\n",sc)); if (sc->sc_open) return (EBUSY); sc->sc_open = 1; for (i = 0; i < AUCC_MAXINT; i++) { sc->sc_channel[i].nd_intr = NULL; sc->sc_channel[i].nd_intrdata = NULL; } aucc = sc; sc->sc_channelmask = 0xf; DPRINTF(("saopen: ok -> sc=0x%p\n",sc)); return (0); } void aucc_close(addr) void *addr; { struct aucc_softc *sc = addr; DPRINTF(("sa_close: sc=0x%p\n", sc)); /* * halt i/o, clear open flag, and done. */ aucc_halt_output(sc); sc->sc_open = 0; DPRINTF(("sa_close: closed.\n")); } int aucc_set_out_sr(addr, sr) void *addr; u_long sr; { struct aucc_softc *sc = addr; u_long per; int i; per = freqtoper(sr); if (per > 0xffff) return (EINVAL); sr = pertofreq(per); for (i = 0; i < 4; i++) { sc->sc_channel[i].nd_freq = sr; sc->sc_channel[i].nd_per = per; } return (0); } int aucc_query_encoding(addr, fp) void *addr; struct audio_encoding *fp; { switch (fp->index) { case 0: strcpy(fp->name, AudioElinear); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = 0; break; case 1: strcpy(fp->name, AudioEmulaw); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 2: strcpy(fp->name, AudioEulinear); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; default: return (EINVAL); /*NOTREACHED*/ } return (0); } int aucc_set_params(addr, setmode, usemode, p, r) void *addr; int setmode, usemode; struct audio_params *p, *r; { struct aucc_softc *sc = addr; #if 0 if (setmode & AUMODE_RECORD) return (ENXIO); #endif #ifdef AUCCDEBUG printf("aucc_set_params(setmode 0x%x, usemode 0x%x, enc %d, bits %d," "chn %d, sr %ld)\n", setmode, usemode, p->encoding, p->precision, p->channels, p->sample_rate); #endif switch (p->encoding) { case AUDIO_ENCODING_ULAW: case AUDIO_ENCODING_SLINEAR: case AUDIO_ENCODING_SLINEAR_BE: case AUDIO_ENCODING_SLINEAR_LE: case AUDIO_ENCODING_ULINEAR_BE: case AUDIO_ENCODING_ULINEAR_LE: break; default: return EINVAL; /* NOTREADCHED */ } if (p->precision != 8) return (EINVAL); if ((p->channels < 1) || (p->channels > 4)) return (EINVAL); sc->sc_channels = p->channels; sc->sc_encoding = p->encoding; return (aucc_set_out_sr(addr, p->sample_rate)); } int aucc_round_blocksize(addr, blk) void *addr; int blk; { /* round up to even size */ return (blk > AUDIO_BUF_SIZE ? AUDIO_BUF_SIZE : blk); } int aucc_set_out_port(addr, port) /* can set channels */ void *addr; int port; { struct aucc_softc *sc = addr; /* port is mask for channels 0..3 */ if ((port < 0) || (port > 15)) return (EINVAL); sc->sc_channelmask = port; return (0); } int aucc_get_out_port(addr) void *addr; { struct aucc_softc *sc = addr; return (sc->sc_channelmask); } int aucc_set_in_port(addr, port) void *addr; int port; { return (EINVAL); /* no input possible */ } int aucc_get_in_port(addr) void *addr; { return (0); } int aucc_commit_settings(addr) void *addr; { struct aucc_softc *sc = addr; int i; DPRINTF(("sa_commit.\n")); for (i = 0; i < 4; i++) { custom.aud[i].vol = sc->sc_channel[i].nd_volume; custom.aud[i].per = sc->sc_channel[i].nd_per; } DPRINTF(("commit done\n")); return (0); } static int masks[4] = {1, 3, 7, 15}; /* masks for n first channels */ static int masks2[4] = {1, 2, 4, 8}; int aucc_start_output(addr, p, cc, intr, arg) void *addr; void *p; int cc; void (*intr) __P((void *)); void *arg; { struct aucc_softc *sc; int mask; int i, j, k; u_short *dmap[4]; u_char *pp; sc = addr; mask = sc->sc_channelmask; dmap[0] = dmap[1] = dmap[2] = dmap[3] = NULL; DPRINTF(("sa_start_output: cc=%d %p (%p)\n", cc, intr, arg)); if (sc->sc_channels > 1) mask &= masks[sc->sc_channels - 1]; /* we use first sc_channels channels */ if (mask == 0) /* active and used channels are disjoint */ return (EINVAL); for (i = 0; i < 4; i++) { /* channels available ? */ if ((masks2[i] & mask) && (sc->sc_channel[i].nd_busy)) return (EBUSY); /* channel is busy */ if (channel[i].isaudio == -1) return (EBUSY); /* system uses them */ } /* enable interrupt on 1st channel */ for (i= j = 0; i < AUCC_MAXINT; i++) { if (masks2[i] & mask) { DPRINTF(("first channel is %d\n", i)); j = i; sc->sc_channel[i].nd_intr = intr; sc->sc_channel[i].nd_intrdata = arg; break; } } DPRINTF(("dmap is %p %p %p %p, mask=0x%x\n", dmap[0], dmap[1], dmap[2], dmap[3], mask)); /* * disable ints, dma for channels, until all parameters set * XXX dont disable DMA! custom.dmacon = mask; */ custom.intreq = mask << INTB_AUD0; custom.intena = mask << INTB_AUD0; /* copy data to dma buffer */ pp = (u_char *)p; if (sc->sc_channels == 1) { dmap[0] = dmap[1] = dmap[2] = dmap[3] = sc->sc_channel[j].nd_dma; } else { for (k = 0; k < 4; k++) { if (masks2[k+j] & mask) dmap[k] = sc->sc_channel[k+j].nd_dma; } } sc->sc_channel[j].nd_doublebuf ^= 1; if (sc->sc_channel[j].nd_doublebuf) { dmap[0] += AUDIO_BUF_SIZE / sizeof (u_short); dmap[1] += AUDIO_BUF_SIZE / sizeof (u_short); dmap[2] += AUDIO_BUF_SIZE / sizeof (u_short); dmap[3] += AUDIO_BUF_SIZE / sizeof (u_short); } aucc_encode(sc->sc_encoding, sc->sc_channels, cc, pp, dmap); /* dma buffers: we use same buffer 4 all channels */ /* write dma location and length */ for (i = k = 0; i < 4; i++) { if (masks2[i] & mask) { DPRINTF(("turning channel %d on\n", i)); /* sc->sc_channel[i].nd_busy = 1;*/ channel[i].isaudio = 1; channel[i].play_count = 1; channel[i].handler = NULL; custom.aud[i].per = sc->sc_channel[i].nd_per; custom.aud[i].vol = sc->sc_channel[i].nd_volume; custom.aud[i].lc = PREP_DMA_MEM(dmap[k++]); custom.aud[i].len = cc / (sc->sc_channels * 2); sc->sc_channel[i].nd_mask = mask; DPRINTF(("per is %d, vol is %d, len is %d\n",\ sc->sc_channel[i].nd_per, sc->sc_channel[i].nd_volume, cc >> 1)); } } channel[j].handler = aucc_inthdl; /* enable ints */ custom.intena = INTF_SETCLR|INTF_INTEN|(masks2[j] << INTB_AUD0); DPRINTF(("enabled ints: 0x%x\n", (masks2[j] << INTB_AUD0))); /* enable dma */ custom.dmacon = DMAF_SETCLR|DMAF_MASTER|mask; DPRINTF(("enabled dma, mask=0x%x\n",mask)); return (0); } /* ARGSUSED */ int aucc_start_input(addr, p, cc, intr, arg) void *addr; void *p; int cc; void (*intr) __P((void *)); void *arg; { return (ENXIO); /* no input */ } int aucc_halt_output(addr) void *addr; { struct aucc_softc *sc = addr; int i; /* XXX only halt, if input is also halted ?? */ /* stop dma, etc */ custom.intena = AUCC_ALLINTF; custom.dmacon = AUCC_ALLDMAF; /* mark every busy unit idle */ for (i = 0; i < 4; i++) { sc->sc_channel[i].nd_busy = sc->sc_channel[i].nd_mask = 0; channel[i].isaudio = 0; channel[i].play_count = 0; } return (0); } int aucc_halt_input(addr) void *addr; { /* no input */ return (ENXIO); } int aucc_cont_output(addr) void *addr; { DPRINTF(("aucc_cont_output: never called, what should it do?!\n")); /* reenable DMA XXX */ return (ENXIO); } int aucc_cont_input(addr) void *addr; { DPRINTF(("aucc_cont_input: never called, what should it do?!\n")); return (0); } int aucc_getdev(addr, retp) void *addr; struct audio_device *retp; { *retp = aucc_device; return (0); } int aucc_set_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct aucc_softc *sc = addr; int i,j; DPRINTF(("aucc_set_port: port=%d", cp->dev)); switch (cp->type) { case AUDIO_MIXER_SET: if (cp->dev != AUCC_CHANNELS) return (EINVAL); i = cp->un.mask; if ((i < 1) || (i > 15)) return (EINVAL); sc->sc_channelmask = i; break; case AUDIO_MIXER_VALUE: i = cp->un.value.num_channels; if ((i < 1) || (i > 4)) return (EINVAL); #ifdef __XXXwhatsthat if (cp->dev != AUCC_VOLUME) return (EINVAL); #endif /* set volume for channel 0..i-1 */ if (i > 1) for (j = 0; j < i; j++) sc->sc_channel[j].nd_volume = cp->un.value.level[j] >> 2; else if (sc->sc_channels > 1) for (j = 0; j < sc->sc_channels; j++) sc->sc_channel[j].nd_volume = cp->un.value.level[0] >> 2; else for (j = 0; j < 4; j++) sc->sc_channel[j].nd_volume = cp->un.value.level[0] >> 2; break; default: return (EINVAL); break; } return (0); } int aucc_get_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct aucc_softc *sc = addr; int i, j; DPRINTF(("aucc_get_port: port=%d", cp->dev)); switch (cp->type) { case AUDIO_MIXER_SET: if (cp->dev != AUCC_CHANNELS) return (EINVAL); cp->un.mask = sc->sc_channelmask; break; case AUDIO_MIXER_VALUE: i = cp->un.value.num_channels; if ((i < 1) || (i > 4)) return (EINVAL); for (j = 0; j < i; j++) cp->un.value.level[j] = (sc->sc_channel[j].nd_volume << 2) + (sc->sc_channel[j].nd_volume >> 4); break; default: return (EINVAL); } return (0); } int aucc_get_props(addr) void *addr; { return 0; } int aucc_query_devinfo(addr, dip) void *addr; register mixer_devinfo_t *dip; { int i; switch (dip->index) { case AUCC_CHANNELS: dip->type = AUDIO_MIXER_SET; dip->mixer_class = AUCC_OUTPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNspeaker); for (i = 0; i < 16; i++) { sprintf(dip->un.s.member[i].label.name, "channelmask%d", i); dip->un.s.member[i].mask = i; } dip->un.s.num_mem = 16; break; case AUCC_VOLUME: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = AUCC_OUTPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNspeaker); dip->un.v.num_channels = 4; strcpy(dip->un.v.units.name, AudioNvolume); break; case AUCC_OUTPUT_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = AUCC_OUTPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioCOutputs); break; default: return (ENXIO); /*NOTREACHED*/ } DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name)); return (0); } /* audio int handler */ void aucc_inthdl(ch) int ch; { int i; int mask = aucc->sc_channel[ch].nd_mask; /* * For all channels in this maskgroup: * disable dma, int * mark idle */ DPRINTF(("inthandler called, channel %d, mask 0x%x\n", ch, mask)); custom.intreq = mask << INTB_AUD0; /* clear request */ /* * XXX: maybe we can leave ints and/or DMA on, if another sample has * to be played? */ custom.intena = mask << INTB_AUD0; /* * XXX custom.dmacon = mask; NO!!! */ for (i = 0; i < 4; i++) { if (masks2[i] && mask) { DPRINTF(("marking channel %d idle\n", i)); aucc->sc_channel[i].nd_busy = 0; aucc->sc_channel[i].nd_mask = 0; channel[i].isaudio = channel[i].play_count = 0; } } /* call handler */ if (aucc->sc_channel[ch].nd_intr) { DPRINTF(("calling %p\n",aucc->sc_channel[ch].nd_intr)); (*(aucc->sc_channel[ch].nd_intr))( aucc->sc_channel[ch].nd_intrdata); } else DPRINTF(("zero int handler\n")); DPRINTF(("ints done\n")); } /* transform frequency to period, adjust bounds */ u_int freqtoper(freq) u_int freq; { u_int per = eclockfreq * 5 / freq; if (per < 124) per = 124; /* must have at least 124 ticks between samples */ return per; } /* transform period to frequency */ u_int pertofreq(per) u_int per; { u_int freq = eclockfreq * 5 / per; return freq; } void aucc_encode(enc, channels, i, p, dmap) int enc, channels, i; u_char *p; u_short **dmap; { char *q, *r, *s, *t; int off; u_char *tab; #ifdef AUCCDEBUG static int debctl = 6; #endif off = 0; tab = NULL; #ifdef AUCCDEBUG if (--debctl >= 0) printf("Enc: enc %d, chan %d, dmap %p %p %p %p\n", enc, channels, dmap[0], dmap[1], dmap[2], dmap[3]); #endif switch (enc) { case AUDIO_ENCODING_ULAW: tab = ulaw_to_lin; break; case AUDIO_ENCODING_ULINEAR_BE: case AUDIO_ENCODING_ULINEAR_LE: off = -128; break; case AUDIO_ENCODING_SLINEAR_BE: case AUDIO_ENCODING_SLINEAR_LE: break; default: return; } q = (char *)dmap[0]; r = (char *)dmap[1]; s = (char *)dmap[2]; t = (char *)dmap[3]; if (tab) while (i) { switch (channels) { case 4: *t++ = tab[*p++]; case 3: *s++ = tab[*p++]; case 2: *r++ = tab[*p++]; case 1: *q++ = tab[*p++]; } i -= channels; } else while (i) { switch (channels) { case 4: *t++ = *p++ + off; case 3: *s++ = *p++ + off; case 2: *r++ = *p++ + off; case 1: *q++ = *p++ + off; } i -= channels; } } #endif /* NAUCC > 0 */