/* $OpenBSD: if_ed.c,v 1.3 1996/04/21 22:15:25 deraadt Exp $ */ /* $NetBSD: if_ed.c,v 1.19 1996/03/21 21:00:21 is Exp $ */ /* * Device driver for National Semiconductor DS8390/WD83C690 based ethernet * adapters. * * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. * * Copyright (C) 1993, David Greenman. This software may be used, modified, * copied, distributed, and sold, in both source and binary form provided that * the above copyright and these terms are retained. Under no circumstances is * the author responsible for the proper functioning of this software, nor does * the author assume any responsibility for damages incurred with its use. * * Currently supports the Hydra Systems ethernet card. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #ifdef NS #include #include #endif #if NBPFILTER > 0 #include #include #endif #include #include #include #include #include #include #include #define HYDRA_MANID 2121 #define HYDRA_PRODID 1 #define ASDG_MANID 1023 #define ASDG_PRODID 254 /* * ed_softc: per line info and status */ struct ed_softc { struct device sc_dev; struct isr sc_isr; struct arpcom sc_arpcom; /* ethernet common */ u_char volatile *nic_addr; /* NIC (DS8390) I/O address */ u_char cr_proto; /* values always set in CR */ caddr_t mem_start; /* NIC memory start address */ caddr_t mem_end; /* NIC memory end address */ u_long mem_size; /* total NIC memory size */ caddr_t mem_ring; /* start of RX ring-buffer (in NIC mem) */ u_char xmit_busy; /* transmitter is busy */ u_char txb_cnt; /* number of transmit buffers */ u_char txb_inuse; /* number of TX buffers currently in-use*/ u_char txb_new; /* pointer to where new buffer will be added */ u_char txb_next_tx; /* pointer to next buffer ready to xmit */ u_short txb_len[8]; /* buffered xmit buffer lengths */ u_char tx_page_start; /* first page of TX buffer area */ u_char rec_page_start; /* first page of RX ring-buffer */ u_char rec_page_stop; /* last page of RX ring-buffer */ u_char next_packet; /* pointer to next unread RX packet */ }; int ed_zbus_match __P((struct device *, void *, void *)); void ed_zbus_attach __P((struct device *, struct device *, void *)); int edintr __P((struct ed_softc *)); int ed_ioctl __P((struct ifnet *, u_long, caddr_t)); void ed_start __P((struct ifnet *)); void ed_watchdog __P((/* short */)); void ed_reset __P((struct ed_softc *)); void ed_init __P((struct ed_softc *)); void ed_stop __P((struct ed_softc *)); void ed_getmcaf __P((struct arpcom *, u_long *)); u_short ed_put __P((struct ed_softc *, struct mbuf *, caddr_t)); #define inline /* XXX for debugging porpoises */ void ed_get_packet __P((/* struct ed_softc *, caddr_t, u_short */)); static inline void ed_rint __P((struct ed_softc *)); static inline void ed_xmit __P((struct ed_softc *)); static inline caddr_t ed_ring_copy __P((/* struct ed_softc *, caddr_t, caddr_t, u_short */)); struct cfattach ed_zbus_ca = { sizeof(struct ed_softc), ed_zbus_match, ed_zbus_attach }; struct cfdriver ed_cd = { NULL, "ed", DV_IFNET }; #define ETHER_MIN_LEN 64 #define ETHER_MAX_LEN 1518 #define ETHER_ADDR_LEN 6 static inline void NIC_PUT(sc, off, val) struct ed_softc *sc; int off; u_char val; { sc->nic_addr[off * 2] = val; #ifdef not_def /* * This was being used to *slow* access to the bus. I don't * believe it is needed but I'll leave it around incase probelms * pop-up */ (void)ciaa.pra; #endif } static inline u_char NIC_GET(sc, off) struct ed_softc *sc; int off; { register u_char val; val = sc->nic_addr[off * 2]; #ifdef not_def /* * This was being used to *slow* access to the bus. I don't * believe it is needed but I'll leave it around incase probelms * pop-up */ (void)ciaa.pra; #endif return (val); } /* * Memory copy, copies word at time. */ static inline void word_copy(a, b, len) caddr_t a, b; int len; { u_short *x = (u_short *)a, *y = (u_short *)b; len >>= 1; while (len--) *y++ = *x++; } int ed_zbus_match(parent, match, aux) struct device *parent; void *match, *aux; { struct zbus_args *zap = aux; if (zap->manid == HYDRA_MANID && zap->prodid == HYDRA_PRODID) return (1); else if (zap->manid == ASDG_MANID && zap->prodid == ASDG_PRODID) return (1); return (0); } void ed_zbus_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct ed_softc *sc = (void *)self; struct zbus_args *zap = aux; struct cfdata *cf = sc->sc_dev.dv_cfdata; struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_char *prom; int i; if (zap->manid == HYDRA_MANID) { sc->mem_start = zap->va; sc->mem_size = 16384; sc->nic_addr = sc->mem_start + HYDRA_NIC_BASE; prom = (u_char *)sc->mem_start + HYDRA_ADDRPROM; } else { sc->mem_start = zap->va + 0x8000; sc->mem_size = 16384; sc->nic_addr = zap->va + ASDG_NIC_BASE; prom = (u_char *)sc->nic_addr + ASDG_ADDRPROM; } sc->cr_proto = ED_CR_RD2; sc->tx_page_start = 0; sc->mem_end = sc->mem_start + sc->mem_size; /* * Use one xmit buffer if < 16k, two buffers otherwise (if not told * otherwise). */ if ((sc->mem_size < 16384) || zap->manid == ASDG_MANID || (cf->cf_flags & ED_FLAGS_NO_MULTI_BUFFERING)) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE; sc->rec_page_stop = sc->tx_page_start + (sc->mem_size >> ED_PAGE_SHIFT); sc->mem_ring = sc->mem_start + ((sc->txb_cnt * ED_TXBUF_SIZE) << ED_PAGE_SHIFT); /* * Interupts must be inactive when reading the prom, as the interupt * line is shared with one of its address lines. */ NIC_PUT(sc, ED_P0_IMR, 0x00); /* disable ints */ NIC_PUT(sc, ED_P0_ISR, 0xff); /* clear ints */ /* * read the ethernet address from the board */ for (i = 0; i < ETHER_ADDR_LEN; i++) sc->sc_arpcom.ac_enaddr[i] = *(prom + 2 * i); /* Set interface to stopped condition (reset). */ ed_stop(sc); /* Initialize ifnet structure. */ ifp->if_unit = sc->sc_dev.dv_unit; ifp->if_name = ed_cd.cd_name; ifp->if_start = ed_start; ifp->if_ioctl = ed_ioctl; ifp->if_watchdog = ed_watchdog; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp); /* Print additional info when attached. */ printf(": address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); #if NBPFILTER > 0 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif sc->sc_isr.isr_intr = edintr; sc->sc_isr.isr_arg = sc; sc->sc_isr.isr_ipl = 2; add_isr(&sc->sc_isr); } /* * Reset interface. */ void ed_reset(sc) struct ed_softc *sc; { int s; s = splnet(); ed_stop(sc); ed_init(sc); splx(s); log(LOG_ERR, "%s: reset\n", sc->sc_dev.dv_xname); } /* * Take interface offline. */ void ed_stop(sc) struct ed_softc *sc; { int n = 5000; /* Stop everything on the interface, and select page 0 registers. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); /* * Wait for interface to enter stopped state, but limit # of checks to * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but * just in case it's an old one. */ while (((NIC_GET(sc, ED_P0_ISR) & ED_ISR_RST) == 0) && --n); } /* * Device timeout/watchdog routine. Entered if the device neglects to generate * an interrupt after a transmit has been started on it. */ void ed_watchdog(unit) short unit; { struct ed_softc *sc = ed_cd.cd_devs[unit]; log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); ++sc->sc_arpcom.ac_if.if_oerrors; ed_reset(sc); } /* * Initialize device. */ void ed_init(sc) struct ed_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; int i, s; u_char command; u_long mcaf[2]; /* * Initialize the NIC in the exact order outlined in the NS manual. * This init procedure is "mandatory"...don't change what or when * things happen. */ s = splnet(); /* Reset transmitter flags. */ sc->xmit_busy = 0; sc->sc_arpcom.ac_if.if_timer = 0; sc->txb_inuse = 0; sc->txb_new = 0; sc->txb_next_tx = 0; /* Set interface for page 0, remote DMA complete, stopped. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); /* * Set FIFO threshold to 8, No auto-init Remote DMA, byte * order=68k, word-wide DMA xfers, * XXX changed to use 2 word threshhold */ NIC_PUT(sc, ED_P0_DCR, ED_DCR_FT0 | ED_DCR_WTS | ED_DCR_LS | ED_DCR_BOS); /* Clear remote byte count registers. */ NIC_PUT(sc, ED_P0_RBCR0, 0); NIC_PUT(sc, ED_P0_RBCR1, 0); /* Tell RCR to do nothing for now. */ NIC_PUT(sc, ED_P0_RCR, ED_RCR_MON); /* Place NIC in internal loopback mode. */ NIC_PUT(sc, ED_P0_TCR, ED_TCR_LB0); /* Initialize receive buffer ring. */ NIC_PUT(sc, ED_P0_BNRY, sc->rec_page_start); NIC_PUT(sc, ED_P0_PSTART, sc->rec_page_start); NIC_PUT(sc, ED_P0_PSTOP, sc->rec_page_stop); /* * Clear all interrupts. A '1' in each bit position clears the * corresponding flag. */ NIC_PUT(sc, ED_P0_ISR, 0xff); /* * Enable the following interrupts: receive/transmit complete, * receive/transmit error, and Receiver OverWrite. * * Counter overflow and Remote DMA complete are *not* enabled. */ NIC_PUT(sc, ED_P0_IMR, ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE); /* Program command register for page 1. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP); /* Copy out our station address. */ for (i = 0; i < ETHER_ADDR_LEN; ++i) NIC_PUT(sc, ED_P1_PAR0 + i, sc->sc_arpcom.ac_enaddr[i]); /* Set multicast filter on chip. */ ed_getmcaf(&sc->sc_arpcom, mcaf); for (i = 0; i < 8; i++) NIC_PUT(sc, ED_P1_MAR0 + i, ((u_char *)mcaf)[i]); /* * Set current page pointer to one page after the boundary pointer, as * recommended in the National manual. */ sc->next_packet = sc->rec_page_start + 1; NIC_PUT(sc, ED_P1_CURR, sc->next_packet); /* Program command register for page 0. */ NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); i = ED_RCR_AB | ED_RCR_AM; if (ifp->if_flags & IFF_PROMISC) { /* * Set promiscuous mode. Multicast filter was set earlier so * that we should receive all multicast packets. */ i |= ED_RCR_PRO | ED_RCR_AR | ED_RCR_SEP; } NIC_PUT(sc, ED_P0_RCR, i); /* Take interface out of loopback. */ NIC_PUT(sc, ED_P0_TCR, 0); /* Fire up the interface. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* Set 'running' flag, and clear output active flag. */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* ...and attempt to start output. */ ed_start(ifp); splx(s); } /* * This routine actually starts the transmission on the interface. */ static inline void ed_xmit(sc) struct ed_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_short len; len = sc->txb_len[sc->txb_next_tx]; /* Set NIC for page 0 register access. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* Set TX buffer start page. */ NIC_PUT(sc, ED_P0_TPSR, sc->tx_page_start + sc->txb_next_tx * ED_TXBUF_SIZE); /* Set TX length. */ NIC_PUT(sc, ED_P0_TBCR0, len); NIC_PUT(sc, ED_P0_TBCR1, len >> 8); /* Set page 0, remote DMA complete, transmit packet, and *start*. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_TXP | ED_CR_STA); sc->xmit_busy = 1; /* Point to next transmit buffer slot and wrap if necessary. */ sc->txb_next_tx++; if (sc->txb_next_tx == sc->txb_cnt) sc->txb_next_tx = 0; /* Set a timer just in case we never hear from the board again. */ ifp->if_timer = 2; } /* * Start output on interface. * We make two assumptions here: * 1) that the current priority is set to splnet _before_ this code * is called *and* is returned to the appropriate priority after * return * 2) that the IFF_OACTIVE flag is checked before this code is called * (i.e. that the output part of the interface is idle) */ void ed_start(ifp) struct ifnet *ifp; { struct ed_softc *sc = ed_cd.cd_devs[ifp->if_unit]; struct mbuf *m0, *m; caddr_t buffer; int len; outloop: /* * First, see if there are buffered packets and an idle transmitter - * should never happen at this point. */ if (sc->txb_inuse && (sc->xmit_busy == 0)) { printf("%s: packets buffered, but transmitter idle\n", sc->sc_dev.dv_xname); ed_xmit(sc); } /* See if there is room to put another packet in the buffer. */ if (sc->txb_inuse == sc->txb_cnt) { /* No room. Indicate this to the outside world and exit. */ ifp->if_flags |= IFF_OACTIVE; return; } IF_DEQUEUE(&sc->sc_arpcom.ac_if.if_snd, m); if (m == 0) { /* * We are using the !OACTIVE flag to indicate to the outside * world that we can accept an additional packet rather than * that the transmitter is _actually_ active. Indeed, the * transmitter may be active, but if we haven't filled all the * buffers with data then we still want to accept more. */ ifp->if_flags &= ~IFF_OACTIVE; return; } /* Copy the mbuf chain into the transmit buffer. */ m0 = m; /* txb_new points to next open buffer slot. */ buffer = sc->mem_start + ((sc->txb_new * ED_TXBUF_SIZE) << ED_PAGE_SHIFT); len = ed_put(sc, m, buffer); sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN); sc->txb_inuse++; /* Point to next buffer slot and wrap if necessary. */ if (++sc->txb_new == sc->txb_cnt) sc->txb_new = 0; if (sc->xmit_busy == 0) ed_xmit(sc); #if NBPFILTER > 0 /* Tap off here if there is a BPF listener. */ if (sc->sc_arpcom.ac_if.if_bpf) bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m0); #endif m_freem(m0); /* Loop back to the top to possibly buffer more packets. */ goto outloop; } /* * Ethernet interface receiver interrupt. */ static inline void ed_rint(sc) struct ed_softc *sc; { u_char boundary, current; u_short len; u_char nlen; struct ed_ring packet_hdr; caddr_t packet_ptr; loop: /* Set NIC to page 1 registers to get 'current' pointer. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA); /* * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e. * it points to where new data has been buffered. The 'CURR' (current) * register points to the logical end of the ring-buffer - i.e. it * points to where additional new data will be added. We loop here * until the logical beginning equals the logical end (or in other * words, until the ring-buffer is empty). */ current = NIC_GET(sc, ED_P1_CURR); if (sc->next_packet == current) return; /* Set NIC to page 0 registers to update boundary register. */ NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); do { /* Get pointer to this buffer's header structure. */ packet_ptr = sc->mem_ring + ((sc->next_packet - sc->rec_page_start) << ED_PAGE_SHIFT); /* * The byte count includes a 4 byte header that was added by * the NIC. */ packet_hdr = *(struct ed_ring *)packet_ptr; packet_hdr.count = ((packet_hdr.count >> 8) & 0xff) | ((packet_hdr.count & 0xff) << 8); len = packet_hdr.count; /* * Try do deal with old, buggy chips that sometimes duplicate * the low byte of the length into the high byte. We do this * by simply ignoring the high byte of the length and always * recalculating it. * * NOTE: sc->next_packet is pointing at the current packet. */ if (packet_hdr.next_packet >= sc->next_packet) nlen = (packet_hdr.next_packet - sc->next_packet); else nlen = ((packet_hdr.next_packet - sc->rec_page_start) + (sc->rec_page_stop - sc->next_packet)); --nlen; if ((len & ED_PAGE_MASK) + sizeof(packet_hdr) > ED_PAGE_SIZE) --nlen; len = (len & ED_PAGE_MASK) | (nlen << ED_PAGE_SHIFT); #ifdef DIAGNOSTIC if (len != packet_hdr.count) { printf("%s: length does not match next packet pointer\n", sc->sc_dev.dv_xname); printf("%s: len %04x nlen %04x start %02x first %02x curr %02x next %02x stop %02x\n", sc->sc_dev.dv_xname, packet_hdr.count, len, sc->rec_page_start, sc->next_packet, current, packet_hdr.next_packet, sc->rec_page_stop); } #endif /* * Be fairly liberal about what we allow as a "reasonable" * length so that a [crufty] packet will make it to BPF (and * can thus be analyzed). Note that all that is really * important is that we have a length that will fit into one * mbuf cluster or less; the upper layer protocols can then * figure out the length from their own length field(s). * * MCLBYTES may be less than a valid packet len. Thus * we use a constant that is large enough. */ if (len <= 2048 && packet_hdr.next_packet >= sc->rec_page_start && packet_hdr.next_packet < sc->rec_page_stop) { /* Go get packet. */ ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring), len - sizeof(struct ed_ring)); ++sc->sc_arpcom.ac_if.if_ipackets; } else { /* Really BAD. The ring pointers are corrupted. */ log(LOG_ERR, "%s: NIC memory corrupt - invalid packet length %d\n", sc->sc_dev.dv_xname, len); ++sc->sc_arpcom.ac_if.if_ierrors; ed_reset(sc); return; } /* Update next packet pointer. */ sc->next_packet = packet_hdr.next_packet; /* * Update NIC boundary pointer - being careful to keep it one * buffer behind (as recommended by NS databook). */ boundary = sc->next_packet - 1; if (boundary < sc->rec_page_start) boundary = sc->rec_page_stop - 1; NIC_PUT(sc, ED_P0_BNRY, boundary); } while (sc->next_packet != current); goto loop; } /* Ethernet interface interrupt processor. */ int edintr(sc) struct ed_softc *sc; { u_char isr; /* Set NIC to page 0 registers. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); isr = NIC_GET(sc, ED_P0_ISR); if (!isr) return (0); /* Loop until there are no more new interrupts. */ for (;;) { /* * Reset all the bits that we are 'acknowledging' by writing a * '1' to each bit position that was set. * (Writing a '1' *clears* the bit.) */ NIC_PUT(sc, ED_P0_ISR, isr); /* * Handle transmitter interrupts. Handle these first because * the receiver will reset the board under some conditions. */ if (isr & (ED_ISR_PTX | ED_ISR_TXE)) { u_char collisions = NIC_GET(sc, ED_P0_NCR) & 0x0f; /* * Check for transmit error. If a TX completed with an * error, we end up throwing the packet away. Really * the only error that is possible is excessive * collisions, and in this case it is best to allow the * automatic mechanisms of TCP to backoff the flow. Of * course, with UDP we're screwed, but this is expected * when a network is heavily loaded. */ (void) NIC_GET(sc, ED_P0_TSR); if (isr & ED_ISR_TXE) { /* * Excessive collisions (16). */ if ((NIC_GET(sc, ED_P0_TSR) & ED_TSR_ABT) && (collisions == 0)) { /* * When collisions total 16, the P0_NCR * will indicate 0, and the TSR_ABT is * set. */ collisions = 16; } /* Update output errors counter. */ ++sc->sc_arpcom.ac_if.if_oerrors; } else { /* * Update total number of successfully * transmitted packets. */ ++sc->sc_arpcom.ac_if.if_opackets; } /* Reset TX busy and output active flags. */ sc->xmit_busy = 0; sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE; /* Clear watchdog timer. */ sc->sc_arpcom.ac_if.if_timer = 0; /* * Add in total number of collisions on last * transmission. */ sc->sc_arpcom.ac_if.if_collisions += collisions; /* * Decrement buffer in-use count if not zero (can only * be zero if a transmitter interrupt occured while not * actually transmitting). * If data is ready to transmit, start it transmitting, * otherwise defer until after handling receiver. */ if (sc->txb_inuse && --sc->txb_inuse) ed_xmit(sc); } /* Handle receiver interrupts. */ if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) { /* * Overwrite warning. In order to make sure that a * lockup of the local DMA hasn't occurred, we reset * and re-init the NIC. The NSC manual suggests only a * partial reset/re-init is necessary - but some chips * seem to want more. The DMA lockup has been seen * only with early rev chips - Methinks this bug was * fixed in later revs. -DG */ if (isr & ED_ISR_OVW) { ++sc->sc_arpcom.ac_if.if_ierrors; #ifdef DIAGNOSTIC log(LOG_WARNING, "%s: warning - receiver ring buffer overrun\n", sc->sc_dev.dv_xname); #endif /* Stop/reset/re-init NIC. */ ed_reset(sc); } else { /* * Receiver Error. One or more of: CRC error, * frame alignment error FIFO overrun, or * missed packet. */ if (isr & ED_ISR_RXE) { ++sc->sc_arpcom.ac_if.if_ierrors; #ifdef ED_DEBUG printf("%s: receive error %x\n", sc->sc_dev.dv_xname, NIC_GET(sc, ED_P0_RSR)); #endif } /* * Go get the packet(s). * XXX - Doing this on an error is dubious * because there shouldn't be any data to get * (we've configured the interface to not * accept packets with errors). */ ed_rint(sc); } } /* * If it looks like the transmitter can take more data, attempt * to start output on the interface. This is done after * handling the receiver to give the receiver priority. */ if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0) ed_start(&sc->sc_arpcom.ac_if); /* * Return NIC CR to standard state: page 0, remote DMA * complete, start (toggling the TXP bit off, even if was just * set in the transmit routine, is *okay* - it is 'edge' * triggered from low to high). */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* * If the Network Talley Counters overflow, read them to reset * them. It appears that old 8390's won't clear the ISR flag * otherwise - resulting in an infinite loop. */ if (isr & ED_ISR_CNT) { (void) NIC_GET(sc, ED_P0_CNTR0); (void) NIC_GET(sc, ED_P0_CNTR1); (void) NIC_GET(sc, ED_P0_CNTR2); } isr = NIC_GET(sc, ED_P0_ISR); if (!isr) return (1); } } /* * Process an ioctl request. This code needs some work - it looks pretty ugly. */ int ed_ioctl(ifp, command, data) register struct ifnet *ifp; u_long command; caddr_t data; { struct ed_softc *sc = ed_cd.cd_devs[ifp->if_unit]; register struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ed_init(sc); arp_ifinit(&sc->sc_arpcom, ifa); break; #endif #ifdef NS /* XXX - This code is probably wrong. */ case AF_NS: { register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *)(sc->sc_arpcom.sc_enaddr); else bcopy(ina->x_host.c_host, sc->sc_arpcom.ac_enaddr, sizeof(sc->sc_arpcom.ac_enaddr)); /* Set new address. */ ed_init(sc); break; } #endif default: ed_init(sc); break; } break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && (ifp->if_flags & IFF_RUNNING) != 0) { /* * If interface is marked down and it is running, then * stop it. */ ed_stop(sc); ifp->if_flags &= ~IFF_RUNNING; } else if ((ifp->if_flags & IFF_UP) != 0 && (ifp->if_flags & IFF_RUNNING) == 0) { /* * If interface is marked up and it is stopped, then * start it. */ ed_init(sc); } else { /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ ed_stop(sc); ed_init(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: /* Update our multicast list. */ error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ ed_stop(sc); /* XXX for ds_setmcaf? */ ed_init(sc); error = 0; } break; default: error = EINVAL; } splx(s); return (error); } /* * Retreive packet from shared memory and send to the next level up via * ether_input(). If there is a BPF listener, give a copy to BPF, too. */ void ed_get_packet(sc, buf, len) struct ed_softc *sc; caddr_t buf; u_short len; { struct ether_header *eh; struct mbuf *m, *ed_ring_to_mbuf(); /* round length to word boundry */ len = (len + 1) & ~1; /* Allocate a header mbuf. */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) return; m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if; m->m_pkthdr.len = len; m->m_len = 0; /* The following silliness is to make NFS happy. */ #define EROUND ((sizeof(struct ether_header) + 3) & ~3) #define EOFF (EROUND - sizeof(struct ether_header)) /* * The following assumes there is room for the ether header in the * header mbuf. */ m->m_data += EOFF; eh = mtod(m, struct ether_header *); word_copy(buf, mtod(m, caddr_t), sizeof(struct ether_header)); buf += sizeof(struct ether_header); m->m_len += sizeof(struct ether_header); len -= sizeof(struct ether_header); /* Pull packet off interface. */ if (ed_ring_to_mbuf(sc, buf, m, len) == 0) { m_freem(m); return; } #if NBPFILTER > 0 /* * Check if there's a BPF listener on this interface. If so, hand off * the raw packet to bpf. */ if (sc->sc_arpcom.ac_if.if_bpf) { bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m); /* * Note that the interface cannot be in promiscuous mode if * there are no BPF listeners. And if we are in promiscuous * mode, we have to check if this packet is really ours. */ if ((sc->sc_arpcom.ac_if.if_flags & IFF_PROMISC) && (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */ bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr, sizeof(eh->ether_dhost)) != 0) { m_freem(m); return; } } #endif /* Fix up data start offset in mbuf to point past ether header. */ m_adj(m, sizeof(struct ether_header)); ether_input(&sc->sc_arpcom.ac_if, eh, m); } /* * Supporting routines. */ /* * Given a source and destination address, copy 'amount' of a packet from the * ring buffer into a linear destination buffer. Takes into account ring-wrap. */ static inline caddr_t ed_ring_copy(sc, src, dst, amount) struct ed_softc *sc; caddr_t src, dst; u_short amount; { u_short tmp_amount; /* Does copy wrap to lower addr in ring buffer? */ if (src + amount > sc->mem_end) { tmp_amount = sc->mem_end - src; /* Copy amount up to end of NIC memory. */ word_copy(src, dst, tmp_amount); amount -= tmp_amount; src = sc->mem_ring; dst += tmp_amount; } word_copy(src, dst, amount); return (src + amount); } /* * Copy data from receive buffer to end of mbuf chain allocate additional mbufs * as needed. Return pointer to last mbuf in chain. * sc = ed info (softc) * src = pointer in ed ring buffer * dst = pointer to last mbuf in mbuf chain to copy to * amount = amount of data to copy */ struct mbuf * ed_ring_to_mbuf(sc, src, dst, total_len) struct ed_softc *sc; caddr_t src; struct mbuf *dst; u_short total_len; { register struct mbuf *m = dst; /* Round the length to a word boundary. */ /* total_len = (total_len + 1) & ~1; */ while (total_len) { register u_short amount = min(total_len, M_TRAILINGSPACE(m)); if (amount == 0) { /* * No more data in this mbuf; alloc another. * * If there is enough data for an mbuf cluster, attempt * to allocate one of those, otherwise, a regular mbuf * will do. * Note that a regular mbuf is always required, even if * we get a cluster - getting a cluster does not * allocate any mbufs, and one is needed to assign the * cluster to. The mbuf that has a cluster extension * can not be used to contain data - only the cluster * can contain data. */ dst = m; MGET(m, M_DONTWAIT, MT_DATA); if (m == 0) return (0); if (total_len >= MINCLSIZE) MCLGET(m, M_DONTWAIT); m->m_len = 0; dst->m_next = m; amount = min(total_len, M_TRAILINGSPACE(m)); } src = ed_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len, amount); m->m_len += amount; total_len -= amount; } return (m); } /* * Compute the multicast address filter from the list of multicast addresses we * need to listen to. */ void ed_getmcaf(ac, af) struct arpcom *ac; u_long *af; { struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; register u_char *cp, c; register u_long crc; register int i, len; struct ether_multistep step; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ if (ifp->if_flags & IFF_PROMISC) { ifp->if_flags |= IFF_ALLMULTI; af[0] = af[1] = 0xffffffff; return; } af[0] = af[1] = 0; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, sizeof(enm->enm_addrlo)) != 0) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ifp->if_flags |= IFF_ALLMULTI; af[0] = af[1] = 0xffffffff; return; } cp = enm->enm_addrlo; crc = 0xffffffff; for (len = sizeof(enm->enm_addrlo); --len >= 0;) { c = *cp++; for (i = 8; --i >= 0;) { if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) { crc <<= 1; crc ^= 0x04c11db6 | 1; } else crc <<= 1; c >>= 1; } } /* Just want the 6 most significant bits. */ crc >>= 26; /* Turn on the corresponding bit in the filter. */ af[crc >> 5] |= 1 << ((crc & 0x1f) ^ 0); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; } /* * Copy packet from mbuf to the board memory * * Currently uses an extra buffer/extra memory copy, * unless the whole packet fits in one mbuf. * */ u_short ed_put(sc, m, buf) struct ed_softc *sc; struct mbuf *m; caddr_t buf; { u_char *data, savebyte[2]; int len, wantbyte; u_short totlen; totlen = wantbyte = 0; for (; m != 0; m = m->m_next) { data = mtod(m, u_char *); len = m->m_len; totlen += len; if (len > 0) { /* Finish the last word. */ if (wantbyte) { savebyte[1] = *data; word_copy(savebyte, buf, 2); buf += 2; data++; len--; wantbyte = 0; } /* Output contiguous words. */ if (len > 1) { word_copy(data, buf, len); buf += len & ~1; data += len & ~1; len &= 1; } /* Save last byte, if necessary. */ if (len == 1) { savebyte[0] = *data; wantbyte = 1; } } } if (wantbyte) { savebyte[1] = 0; word_copy(savebyte, buf, 2); buf += 2; } return (totlen); }