/* $OpenBSD: amptimer.c,v 1.5 2015/12/12 19:57:00 mmcc Exp $ */ /* * Copyright (c) 2011 Dale Rahn * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include /* offset from periphbase */ #define GTIMER_ADDR 0x200 #define GTIMER_SIZE 0x100 /* registers */ #define GTIMER_CNT_LOW 0x00 #define GTIMER_CNT_HIGH 0x04 #define GTIMER_CTRL 0x08 #define GTIMER_CTRL_AA (1 << 3) #define GTIMER_CTRL_IRQ (1 << 2) #define GTIMER_CTRL_COMP (1 << 1) #define GTIMER_CTRL_TIMER (1 << 0) #define GTIMER_STATUS 0x0c #define GTIMER_STATUS_EVENT (1 << 0) #define GTIMER_CMP_LOW 0x10 #define GTIMER_CMP_HIGH 0x14 #define GTIMER_AUTOINC 0x18 /* offset from periphbase */ #define PTIMER_ADDR 0x600 #define PTIMER_SIZE 0x100 /* registers */ #define PTIMER_LOAD 0x0 #define PTIMER_CNT 0x4 #define PTIMER_CTRL 0x8 #define PTIMER_CTRL_ENABLE (1<<0) #define PTIMER_CTRL_AUTORELOAD (1<<1) #define PTIMER_CTRL_IRQEN (1<<2) #define PTIMER_STATUS 0xC #define PTIMER_STATUS_EVENT (1<<0) #define TIMER_FREQUENCY 396 * 1000 * 1000 /* ARM core clock */ int32_t amptimer_frequency = TIMER_FREQUENCY; u_int amptimer_get_timecount(struct timecounter *); static struct timecounter amptimer_timecounter = { amptimer_get_timecount, NULL, 0x7fffffff, 0, "amptimer", 0, NULL }; #define MAX_ARM_CPUS 8 struct amptimer_pcpu_softc { uint64_t pc_nexttickevent; uint64_t pc_nextstatevent; u_int32_t pc_ticks_err_sum; }; struct amptimer_softc { struct device sc_dev; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; bus_space_handle_t sc_pioh; struct amptimer_pcpu_softc sc_pstat[MAX_ARM_CPUS]; u_int32_t sc_ticks_err_cnt; u_int32_t sc_ticks_per_second; u_int32_t sc_ticks_per_intr; u_int32_t sc_statvar; u_int32_t sc_statmin; #ifdef AMPTIMER_DEBUG struct evcount sc_clk_count; struct evcount sc_stat_count; #endif }; int amptimer_match(struct device *, void *, void *); void amptimer_attach(struct device *, struct device *, void *); uint64_t amptimer_readcnt64(struct amptimer_softc *sc); int amptimer_intr(void *); void amptimer_cpu_initclocks(void); void amptimer_delay(u_int); void amptimer_setstatclockrate(int stathz); void amptimer_set_clockrate(int32_t new_frequency); void amptimer_startclock(void); /* hack - XXXX * gptimer connects directly to ampintc, not thru the generic * interface because it uses an 'internal' interrupt * not a peripheral interrupt. */ void *ampintc_intr_establish(int, int, int (*)(void *), void *, char *); struct cfattach amptimer_ca = { sizeof (struct amptimer_softc), amptimer_match, amptimer_attach }; struct cfdriver amptimer_cd = { NULL, "amptimer", DV_DULL }; uint64_t amptimer_readcnt64(struct amptimer_softc *sc) { uint32_t high0, high1, low; bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; do { high0 = bus_space_read_4(iot, ioh, GTIMER_CNT_HIGH); low = bus_space_read_4(iot, ioh, GTIMER_CNT_LOW); high1 = bus_space_read_4(iot, ioh, GTIMER_CNT_HIGH); } while (high0 != high1); return ((((uint64_t)high1) << 32) | low); } int amptimer_match(struct device *parent, void *cfdata, void *aux) { if ((cpufunc_id() & CPU_ID_CORTEX_A9_MASK) == CPU_ID_CORTEX_A9) return (1); return 0; } void amptimer_attach(struct device *parent, struct device *self, void *args) { struct amptimer_softc *sc = (struct amptimer_softc *)self; struct cortex_attach_args *ia = args; bus_space_handle_t ioh, pioh; sc->sc_iot = ia->ca_iot; if (bus_space_map(sc->sc_iot, ia->ca_periphbase + GTIMER_ADDR, GTIMER_SIZE, 0, &ioh)) panic("amptimer_attach: bus_space_map global timer failed!"); if (bus_space_map(sc->sc_iot, ia->ca_periphbase + PTIMER_ADDR, PTIMER_SIZE, 0, &pioh)) panic("amptimer_attach: bus_space_map priv timer failed!"); sc->sc_ticks_per_second = amptimer_frequency; printf(": tick rate %d KHz\n", sc->sc_ticks_per_second /1000); sc->sc_ioh = ioh; sc->sc_pioh = pioh; /* disable global timer */ bus_space_write_4(sc->sc_iot, ioh, GTIMER_CTRL, 0); /* XXX ??? reset counters to 0 - gives us uptime in the counter */ bus_space_write_4(sc->sc_iot, ioh, GTIMER_CNT_LOW, 0); bus_space_write_4(sc->sc_iot, ioh, GTIMER_CNT_HIGH, 0); /* enable global timer */ bus_space_write_4(sc->sc_iot, ioh, GTIMER_CTRL, GTIMER_CTRL_TIMER); #if defined(USE_GTIMER_CMP) /* clear event */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_STATUS, 1); #else bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_CTRL, 0); bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_STATUS, PTIMER_STATUS_EVENT); #endif #ifdef AMPTIMER_DEBUG evcount_attach(&sc->sc_clk_count, "clock", NULL); evcount_attach(&sc->sc_stat_count, "stat", NULL); #endif /* * private timer and interrupts not enabled until * timer configures */ arm_clock_register(amptimer_cpu_initclocks, amptimer_delay, amptimer_setstatclockrate, amptimer_startclock); amptimer_timecounter.tc_frequency = sc->sc_ticks_per_second; amptimer_timecounter.tc_priv = sc; tc_init(&timer_timecounter); } u_int amptimer_get_timecount(struct timecounter *tc) { struct amptimer_softc *sc = amptimer_timecounter.tc_priv; return bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CNT_LOW); } int amptimer_intr(void *frame) { struct amptimer_softc *sc = amptimer_cd.cd_devs[0]; struct amptimer_pcpu_softc *pc = &sc->sc_pstat[CPU_INFO_UNIT(curcpu())]; uint64_t now; uint64_t nextevent; uint32_t r, reg; #if defined(USE_GTIMER_CMP) int skip = 1; #else int64_t delay; #endif int rc = 0; /* * DSR - I know that the tick timer is 64 bits, but the following * code deals with rollover, so there is no point in dealing * with the 64 bit math, just let the 32 bit rollover * do the right thing */ now = amptimer_readcnt64(sc); while (pc->pc_nexttickevent <= now) { pc->pc_nexttickevent += sc->sc_ticks_per_intr; pc->pc_ticks_err_sum += sc->sc_ticks_err_cnt; /* looping a few times is faster than divide */ while (pc->pc_ticks_err_sum > hz) { pc->pc_nexttickevent += 1; pc->pc_ticks_err_sum -= hz; } #ifdef AMPTIMER_DEBUG sc->sc_clk_count.ec_count++; #endif rc = 1; hardclock(frame); } while (pc->pc_nextstatevent <= now) { do { r = random() & (sc->sc_statvar -1); } while (r == 0); /* random == 0 not allowed */ pc->pc_nextstatevent += sc->sc_statmin + r; /* XXX - correct nextstatevent? */ #ifdef AMPTIMER_DEBUG sc->sc_stat_count.ec_count++; #endif rc = 1; statclock(frame); } if (pc->pc_nexttickevent < pc->pc_nextstatevent) nextevent = pc->pc_nexttickevent; else nextevent = pc->pc_nextstatevent; #if defined(USE_GTIMER_CMP) again: reg = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL); reg &= ~GTIMER_CTRL_COMP; bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL, reg); bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CMP_LOW, nextevent & 0xffffffff); bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CMP_HIGH, nextevent >> 32); reg |= GTIMER_CTRL_COMP; bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL, reg); now = amptimer_readcnt64(sc); if (now >= nextevent) { nextevent = now + skip; skip += 1; goto again; } #else /* clear old status */ bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_STATUS, PTIMER_STATUS_EVENT); delay = nextevent - now; if (delay < 0) delay = 1; reg = bus_space_read_4(sc->sc_iot, sc->sc_pioh, PTIMER_CTRL); if ((reg & (PTIMER_CTRL_ENABLE | PTIMER_CTRL_IRQEN)) != (PTIMER_CTRL_ENABLE | PTIMER_CTRL_IRQEN)) bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_CTRL, (PTIMER_CTRL_ENABLE | PTIMER_CTRL_IRQEN)); bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_LOAD, delay); #endif return (rc); } void amptimer_set_clockrate(int32_t new_frequency) { struct amptimer_softc *sc = amptimer_cd.cd_devs[0]; amptimer_frequency = new_frequency; if (sc == NULL) return; sc->sc_ticks_per_second = amptimer_frequency; amptimer_timecounter.tc_frequency = sc->sc_ticks_per_second; printf("amptimer0: adjusting clock: new tick rate %d KHz\n", sc->sc_ticks_per_second /1000); } void amptimer_cpu_initclocks() { struct amptimer_softc *sc = amptimer_cd.cd_devs[0]; struct amptimer_pcpu_softc *pc = &sc->sc_pstat[CPU_INFO_UNIT(curcpu())]; uint64_t next; #if defined(USE_GTIMER_CMP) uint32_t reg; #endif stathz = hz; profhz = hz * 10; if (sc->sc_ticks_per_second != amptimer_frequency) { amptimer_set_clockrate(amptimer_frequency); } amptimer_setstatclockrate(stathz); sc->sc_ticks_per_intr = sc->sc_ticks_per_second / hz; sc->sc_ticks_err_cnt = sc->sc_ticks_per_second % hz; pc->pc_ticks_err_sum = 0; /* establish interrupts */ /* XXX - irq */ #if defined(USE_GTIMER_CMP) ampintc_intr_establish(27, IPL_CLOCK, amptimer_intr, NULL, "tick"); #else ampintc_intr_establish(29, IPL_CLOCK, amptimer_intr, NULL, "tick"); #endif next = amptimer_readcnt64(sc) + sc->sc_ticks_per_intr; pc->pc_nexttickevent = pc->pc_nextstatevent = next; #if defined(USE_GTIMER_CMP) reg = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL); reg &= ~GTIMER_CTRL_COMP; bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL, reg); bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CMP_LOW, next & 0xffffffff); bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CMP_HIGH, next >> 32); reg |= GTIMER_CTRL_COMP | GTIMER_CTRL_IRQ; bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL, reg); #else bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_CTRL, (PTIMER_CTRL_ENABLE | PTIMER_CTRL_IRQEN)); bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_LOAD, sc->sc_ticks_per_intr); #endif } void amptimer_delay(u_int usecs) { struct amptimer_softc *sc = amptimer_cd.cd_devs[0]; u_int32_t clock, oclock, delta, delaycnt; volatile int j; int csec, usec; if (usecs > (0x80000000 / (sc->sc_ticks_per_second))) { csec = usecs / 10000; usec = usecs % 10000; delaycnt = (sc->sc_ticks_per_second / 100) * csec + (sc->sc_ticks_per_second / 100) * usec / 10000; } else { delaycnt = sc->sc_ticks_per_second * usecs / 1000000; } if (delaycnt <= 1) for (j = 100; j > 0; j--) ; oclock = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CNT_LOW); while (1) { for (j = 100; j > 0; j--) ; clock = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CNT_LOW); delta = clock - oclock; if (delta > delaycnt) break; } } void amptimer_setstatclockrate(int newhz) { struct amptimer_softc *sc = amptimer_cd.cd_devs[0]; int minint, statint; int s; s = splclock(); statint = sc->sc_ticks_per_second / newhz; /* calculate largest 2^n which is smaller that just over half statint */ sc->sc_statvar = 0x40000000; /* really big power of two */ minint = statint / 2 + 100; while (sc->sc_statvar > minint) sc->sc_statvar >>= 1; sc->sc_statmin = statint - (sc->sc_statvar >> 1); splx(s); /* * XXX this allows the next stat timer to occur then it switches * to the new frequency. Rather than switching instantly. */ } void amptimer_startclock(void) { struct amptimer_softc *sc = amptimer_cd.cd_devs[0]; struct amptimer_pcpu_softc *pc = &sc->sc_pstat[CPU_INFO_UNIT(curcpu())]; uint64_t nextevent; nextevent = amptimer_readcnt64(sc) + sc->sc_ticks_per_intr; pc->pc_nexttickevent = pc->pc_nextstatevent = nextevent; bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_LOAD, sc->sc_ticks_per_intr); }