/* $OpenBSD: footbridge_com.c,v 1.1 2004/02/01 05:09:49 drahn Exp $ */ /* $NetBSD: footbridge_com.c,v 1.13 2003/03/23 14:12:25 chris Exp $ */ /*- * Copyright (c) 1997 Mark Brinicombe * Copyright (c) 1997 Causality Limited * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * COM driver, using the footbridge UART */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fcom.h" extern u_int dc21285_fclk; #ifdef DDB /* * Define the keycode recognised as a request to call the debugger * A value of 0 disables the feature when DDB is built in */ #define DDB_KEYCODE '@' #ifndef DDB_KEYCODE #define DDB_KEYCODE 0 #endif /* DDB_KEYCODE */ #endif /* DDB */ struct fcom_softc { struct device sc_dev; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; void *sc_ih; struct timeout sc_softintr_ch; int sc_rx_irq; int sc_tx_irq; int sc_hwflags; #define HW_FLAG_CONSOLE 0x01 int sc_swflags; int sc_l_ubrlcr; int sc_m_ubrlcr; int sc_h_ubrlcr; char *sc_rxbuffer[2]; char *sc_rxbuf; int sc_rxpos; int sc_rxcur; struct tty *sc_tty; }; #define RX_BUFFER_SIZE 0x100 static int fcom_probe __P((struct device *, void*, void *)); static void fcom_attach __P((struct device *, struct device *, void *)); static void fcom_softintr __P((void *)); static int fcom_rxintr __P((void *)); /*static int fcom_txintr __P((void *));*/ /*struct consdev;*/ /*void fcomcnprobe __P((struct consdev *)); void fcomcninit __P((struct consdev *));*/ int fcomcngetc __P((dev_t)); void fcomcnputc __P((dev_t, int)); void fcomcnpollc __P((dev_t, int)); struct cfattach fcom_ca = { sizeof (struct fcom_softc), fcom_probe, fcom_attach }; struct cfdriver fcom_cd = { NULL, "fcom", DV_DULL }; #if 0 CFATTACH_DECL(fcom, sizeof(struct fcom_softc), fcom_probe, fcom_attach, NULL, NULL); #endif extern struct cfdriver fcom_cd; dev_type_open(fcomopen); dev_type_close(fcomclose); dev_type_read(fcomread); dev_type_write(fcomwrite); dev_type_ioctl(fcomioctl); dev_type_tty(fcomtty); dev_type_poll(fcompoll); #if 0 const struct cdevsw fcom_cdevsw = { fcomopen, fcomclose, fcomread, fcomwrite, fcomioctl, nostop, fcomtty, fcompoll, nommap, ttykqfilter, D_TTY }; #endif void fcominit __P((bus_space_tag_t, bus_space_handle_t, int, int)); void fcominitcons __P((bus_space_tag_t, bus_space_handle_t)); bus_space_tag_t fcomconstag; bus_space_handle_t fcomconsioh; extern int comcnmode; extern int comcnspeed; #define COMUNIT(x) (minor(x)) #ifndef CONUNIT #define CONUNIT 0 #endif /* * The console is set up at init time, well in advance of the reset of the * system and thus we have a private bus space tag for the console. * * The tag is provided by fcom_io.c and fcom_io_asm.S */ extern struct bus_space fcomcons_bs_tag; /* * int fcom_probe(struct device *parent, struct cfdata *cf, void *aux) * * Make sure we are trying to attach a com device and then * probe for one. */ static int fcom_probe(parent, cf, aux) struct device *parent; void *cf; void *aux; { union footbridge_attach_args *fba = aux; if (strcmp(fba->fba_name, "fcom") == 0) return(1); return(0); } /* * void fcom_attach(struct device *parent, struct device *self, void *aux) * * attach the com device */ static void fcom_attach(parent, self, aux) struct device *parent, *self; void *aux; { union footbridge_attach_args *fba = aux; struct fcom_softc *sc = (struct fcom_softc *)self; /* Set up the softc */ sc->sc_iot = fba->fba_fca.fca_iot; sc->sc_ioh = fba->fba_fca.fca_ioh; timeout_set(&sc->sc_softintr_ch, fcom_softintr, sc); sc->sc_rx_irq = fba->fba_fca.fca_rx_irq; sc->sc_tx_irq = fba->fba_fca.fca_tx_irq; sc->sc_hwflags = 0; sc->sc_swflags = 0; /* If we have a console tag then make a note of it */ if (fcomconstag) sc->sc_hwflags |= HW_FLAG_CONSOLE; if (sc->sc_hwflags & HW_FLAG_CONSOLE) { int major; /* locate the major number */ for (major = 0; major < nchrdev; ++major) if (cdevsw[major].d_open == fcomopen) break; cn_tab->cn_dev = makedev(major, sc->sc_dev.dv_unit); printf(": console"); } printf("\n"); sc->sc_ih = footbridge_intr_claim(sc->sc_rx_irq, IPL_SERIAL, "serial rx", fcom_rxintr, sc); if (sc->sc_ih == NULL) panic("%s: Cannot install rx interrupt handler", sc->sc_dev.dv_xname); } static void fcomstart __P((struct tty *)); static int fcomparam __P((struct tty *, struct termios *)); int fcomopen(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { struct fcom_softc *sc; int unit = minor(dev); struct tty *tp; if (unit >= fcom_cd.cd_ndevs) return ENXIO; sc = fcom_cd.cd_devs[unit]; if (!sc) return ENXIO; if (!(tp = sc->sc_tty)) sc->sc_tty = tp = ttymalloc(); if (!sc->sc_rxbuffer[0]) { sc->sc_rxbuffer[0] = malloc(RX_BUFFER_SIZE, M_DEVBUF, M_WAITOK); sc->sc_rxbuffer[1] = malloc(RX_BUFFER_SIZE, M_DEVBUF, M_WAITOK); sc->sc_rxpos = 0; sc->sc_rxcur = 0; sc->sc_rxbuf = sc->sc_rxbuffer[sc->sc_rxcur]; if (!sc->sc_rxbuf) panic("%s: Cannot allocate rx buffer memory", sc->sc_dev.dv_xname); } tp->t_oproc = fcomstart; tp->t_param = fcomparam; tp->t_dev = dev; if (!ISSET(tp->t_state, TS_ISOPEN)) { SET(tp->t_state, TS_WOPEN); ttychars(tp); tp->t_cflag = TTYDEF_CFLAG; tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_lflag = TTYDEF_LFLAG; /* * Initialize the termios status to the defaults. Add in the * sticky bits from TIOCSFLAGS. */ tp->t_ispeed = 0; if (ISSET(sc->sc_hwflags, HW_FLAG_CONSOLE)) tp->t_ospeed = comcnspeed; else tp->t_ospeed = TTYDEF_SPEED; fcomparam(tp, &tp->t_termios); ttsetwater(tp); } else if (ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0) return EBUSY; tp->t_state |= TS_CARR_ON; return (*linesw[tp->t_line].l_open)(dev, tp); } int fcomclose(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { struct fcom_softc *sc = fcom_cd.cd_devs[minor(dev)]; struct tty *tp = sc->sc_tty; /* XXX This is for cons.c. */ if (!ISSET(tp->t_state, TS_ISOPEN)) return (0); (*linesw[tp->t_line].l_close)(tp, flag); ttyclose(tp); #ifdef DIAGNOSTIC if (sc->sc_rxbuffer[0] == NULL) panic("fcomclose: rx buffers not allocated"); #endif /* DIAGNOSTIC */ free(sc->sc_rxbuffer[0], M_DEVBUF); free(sc->sc_rxbuffer[1], M_DEVBUF); sc->sc_rxbuffer[0] = NULL; sc->sc_rxbuffer[1] = NULL; return 0; } int fcomread(dev, uio, flag) dev_t dev; struct uio *uio; int flag; { struct fcom_softc *sc = fcom_cd.cd_devs[minor(dev)]; struct tty *tp = sc->sc_tty; return (*linesw[tp->t_line].l_read)(tp, uio, flag); } int fcomwrite(dev, uio, flag) dev_t dev; struct uio *uio; int flag; { struct fcom_softc *sc = fcom_cd.cd_devs[minor(dev)]; struct tty *tp = sc->sc_tty; return (*linesw[tp->t_line].l_write)(tp, uio, flag); } #if 0 int fcompoll(dev, events, p) dev_t dev; int events; struct proc *p; { struct fcom_softc *sc = fcom_cd.cd_devs[minor(dev)]; struct tty *tp = sc->sc_tty; return (*linesw[tp->t_line].l_poll)(tp, events, p)); } #endif int fcomioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; caddr_t data; int flag; struct proc *p; { struct fcom_softc *sc = fcom_cd.cd_devs[minor(dev)]; struct tty *tp = sc->sc_tty; int error; error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p); if (error >= 0) return error; error = ttioctl(tp, cmd, data, flag, p); if (error >= 0) return error; switch (cmd) { case TIOCGFLAGS: *(int *)data = sc->sc_swflags; break; case TIOCSFLAGS: error = suser(p, 0); if (error) return (error); sc->sc_swflags = *(int *)data; break; } return 0; } struct tty * fcomtty(dev) dev_t dev; { struct fcom_softc *sc = fcom_cd.cd_devs[minor(dev)]; return sc->sc_tty; } int fcomstop(struct tty *tp, int flag) { return 0; } static void fcomstart(tp) struct tty *tp; { struct clist *cl; int s, len; u_char buf[64]; int loop; struct fcom_softc *sc = fcom_cd.cd_devs[minor(tp->t_dev)]; bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int timo; s = spltty(); if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) { (void)splx(s); return; } tp->t_state |= TS_BUSY; (void)splx(s); /* s = splserial();*/ /* wait for any pending transmission to finish */ timo = 100000; while ((bus_space_read_4(iot, ioh, UART_FLAGS) & UART_TX_BUSY) && --timo) ; s = splserial(); if (bus_space_read_4(iot, ioh, UART_FLAGS) & UART_TX_BUSY) { tp->t_state |= TS_TIMEOUT; timeout_add(&tp->t_rstrt_to, 1); (void)splx(s); return; } (void)splx(s); cl = &tp->t_outq; len = q_to_b(cl, buf, 64); for (loop = 0; loop < len; ++loop) { /* s = splserial();*/ bus_space_write_4(iot, ioh, UART_DATA, buf[loop]); /* wait for this transmission to complete */ timo = 100000; while ((bus_space_read_4(iot, ioh, UART_FLAGS) & UART_TX_BUSY) && --timo) ; /* (void)splx(s);*/ } s = spltty(); tp->t_state &= ~TS_BUSY; if (cl->c_cc) { tp->t_state |= TS_TIMEOUT; timeout_add(&tp->t_rstrt_to, 1); } if (cl->c_cc <= tp->t_lowat) { if (tp->t_state & TS_ASLEEP) { tp->t_state &= ~TS_ASLEEP; wakeup(cl); } selwakeup(&tp->t_wsel); } (void)splx(s); } static int fcomparam(tp, t) struct tty *tp; struct termios *t; { struct fcom_softc *sc = fcom_cd.cd_devs[minor(tp->t_dev)]; bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int baudrate; int h_ubrlcr; int m_ubrlcr; int l_ubrlcr; int s; /* check requested parameters */ if (t->c_ospeed < 0) return (EINVAL); if (t->c_ispeed && t->c_ispeed != t->c_ospeed) return (EINVAL); switch (t->c_ospeed) { case B1200: case B2400: case B4800: case B9600: case B19200: case B38400: baudrate = UART_BRD(dc21285_fclk, t->c_ospeed); break; default: baudrate = UART_BRD(dc21285_fclk, 9600); break; } l_ubrlcr = baudrate & 0xff; m_ubrlcr = (baudrate >> 8) & 0xf; h_ubrlcr = 0; switch (ISSET(t->c_cflag, CSIZE)) { case CS5: h_ubrlcr |= UART_DATA_BITS_5; break; case CS6: h_ubrlcr |= UART_DATA_BITS_6; break; case CS7: h_ubrlcr |= UART_DATA_BITS_7; break; case CS8: h_ubrlcr |= UART_DATA_BITS_8; break; } if (ISSET(t->c_cflag, PARENB)) { h_ubrlcr |= UART_PARITY_ENABLE; if (ISSET(t->c_cflag, PARODD)) h_ubrlcr |= UART_ODD_PARITY; else h_ubrlcr |= UART_EVEN_PARITY; } if (ISSET(t->c_cflag, CSTOPB)) h_ubrlcr |= UART_STOP_BITS_2; bus_space_write_4(iot, ioh, UART_L_UBRLCR, l_ubrlcr); bus_space_write_4(iot, ioh, UART_M_UBRLCR, m_ubrlcr); bus_space_write_4(iot, ioh, UART_H_UBRLCR, h_ubrlcr); s = splserial(); sc->sc_l_ubrlcr = l_ubrlcr; sc->sc_m_ubrlcr = m_ubrlcr; sc->sc_h_ubrlcr = h_ubrlcr; /* * For the console, always force CLOCAL and !HUPCL, so that the port * is always active. */ if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) || ISSET(sc->sc_hwflags, HW_FLAG_CONSOLE)) { SET(t->c_cflag, CLOCAL); CLR(t->c_cflag, HUPCL); } /* and copy to tty */ tp->t_ispeed = 0; tp->t_ospeed = t->c_ospeed; tp->t_cflag = t->c_cflag; bus_space_write_4(iot, ioh, UART_L_UBRLCR, l_ubrlcr); bus_space_write_4(iot, ioh, UART_M_UBRLCR, m_ubrlcr); bus_space_write_4(iot, ioh, UART_H_UBRLCR, h_ubrlcr); (void)splx(s); return (0); } static int softint_scheduled = 0; static void fcom_softintr(arg) void *arg; { struct fcom_softc *sc = arg; struct tty *tp = sc->sc_tty; int s; int loop; int len; char *ptr; s = spltty(); ptr = sc->sc_rxbuf; len = sc->sc_rxpos; sc->sc_rxcur ^= 1; sc->sc_rxbuf = sc->sc_rxbuffer[sc->sc_rxcur]; sc->sc_rxpos = 0; (void)splx(s); for (loop = 0; loop < len; ++loop) (*linesw[tp->t_line].l_rint)(ptr[loop], tp); softint_scheduled = 0; } #if 0 static int fcom_txintr(arg) void *arg; { /* struct fcom_softc *sc = arg;*/ printf("fcom_txintr()\n"); return(0); } #endif static int fcom_rxintr(arg) void *arg; { struct fcom_softc *sc = arg; bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; struct tty *tp = sc->sc_tty; int status; int byte; do { status = bus_space_read_4(iot, ioh, UART_FLAGS); if ((status & UART_RX_FULL)) break; byte = bus_space_read_4(iot, ioh, UART_DATA); status = bus_space_read_4(iot, ioh, UART_RX_STAT); #if defined(DDB) && DDB_KEYCODE > 0 /* * Temporary hack so that I can force the kernel into * the debugger via the serial port */ if (byte == DDB_KEYCODE) Debugger(); #endif if (tp && (tp->t_state & TS_ISOPEN)) if (sc->sc_rxpos < RX_BUFFER_SIZE) { sc->sc_rxbuf[sc->sc_rxpos++] = byte; if (!softint_scheduled) { softint_scheduled = 1; timeout_add(&sc->sc_softintr_ch, 1); } } } while (1); return(0); } #if 0 void fcom_iflush(sc) struct fcom_softc *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; /* flush any pending I/O */ while (!ISSET(bus_space_read_4(iot, ioh, UART_FLAGS), UART_RX_FULL)) (void) bus_space_read_4(iot, ioh, UART_DATA); } #endif /* * Following are all routines needed for COM to act as console */ #if 0 void fcomcnprobe(cp) struct consdev *cp; { int major; /* Serial console is always present so no probe */ /* locate the major number */ major = cdevsw_lookup_major(&fcom_cdevsw); /* initialize required fields */ cp->cn_dev = makedev(major, CONUNIT); cp->cn_pri = CN_REMOTE; /* Force a serial port console */ } void fcomcninit(cp) struct consdev *cp; { fcomconstag = &fcomcons_bs_tag; if (bus_space_map(fcomconstag, DC21285_ARMCSR_BASE, DC21285_ARMCSR_SIZE, 0, &fcomconsioh)) panic("fcomcninit: mapping failed"); fcominitcons(fcomconstag, fcomconsioh); } #endif struct consdev fcomcons = { NULL, NULL, fcomcngetc, fcomcnputc, fcomcnpollc, NULL, NODEV, CN_NORMAL }; int fcomcnattach(iobase, rate, cflag) u_int iobase; int rate; tcflag_t cflag; { #if 0 static struct consdev fcomcons = { NULL, NULL, fcomcngetc, fcomcnputc, fcomcnpollc, NULL, NULL, NULL, NODEV, CN_NORMAL }; #endif fcomconstag = &fcomcons_bs_tag; if (bus_space_map(fcomconstag, iobase, DC21285_ARMCSR_SIZE, 0, &fcomconsioh)) panic("fcomcninit: mapping failed"); fcominit(fcomconstag, fcomconsioh, rate, cflag); cn_tab = &fcomcons; /* comcnspeed = rate; comcnmode = cflag;*/ return (0); } int fcomcndetach(void) { bus_space_unmap(fcomconstag, fcomconsioh, DC21285_ARMCSR_SIZE); cn_tab = NULL; return (0); } /* * Initialize UART to known state. */ void fcominit(iot, ioh, rate, mode) bus_space_tag_t iot; bus_space_handle_t ioh; int rate; int mode; { int baudrate; int h_ubrlcr; int m_ubrlcr; int l_ubrlcr; switch (rate) { case B1200: case B2400: case B4800: case B9600: case B19200: case B38400: baudrate = UART_BRD(dc21285_fclk, rate); break; default: baudrate = UART_BRD(dc21285_fclk, 9600); break; } h_ubrlcr = 0; switch (mode & CSIZE) { case CS5: h_ubrlcr |= UART_DATA_BITS_5; break; case CS6: h_ubrlcr |= UART_DATA_BITS_6; break; case CS7: h_ubrlcr |= UART_DATA_BITS_7; break; case CS8: h_ubrlcr |= UART_DATA_BITS_8; break; } if (mode & PARENB) h_ubrlcr |= UART_PARITY_ENABLE; if (mode & PARODD) h_ubrlcr |= UART_ODD_PARITY; else h_ubrlcr |= UART_EVEN_PARITY; if (mode & CSTOPB) h_ubrlcr |= UART_STOP_BITS_2; m_ubrlcr = (baudrate >> 8) & 0xf; l_ubrlcr = baudrate & 0xff; bus_space_write_4(iot, ioh, UART_L_UBRLCR, l_ubrlcr); bus_space_write_4(iot, ioh, UART_M_UBRLCR, m_ubrlcr); bus_space_write_4(iot, ioh, UART_H_UBRLCR, h_ubrlcr); } #if 0 /* * Set UART for console use. Do normal init, then enable interrupts. */ void fcominitcons(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { int s = splserial(); fcominit(iot, ioh, comcnspeed, comcnmode); delay(10000); (void)splx(s); } #endif int fcomcngetc(dev) dev_t dev; { int s = splserial(); bus_space_tag_t iot = fcomconstag; bus_space_handle_t ioh = fcomconsioh; u_char stat, c; while ((bus_space_read_4(iot, ioh, UART_FLAGS) & UART_RX_FULL) != 0) ; c = bus_space_read_4(iot, ioh, UART_DATA); stat = bus_space_read_4(iot, ioh, UART_RX_STAT); (void)splx(s); #if defined(DDB) && DDB_KEYCODE > 0 /* * Temporary hack so that I can force the kernel into * the debugger via the serial port */ if (c == DDB_KEYCODE) Debugger(); #endif return (c); } /* * Console kernel output character routine. */ void fcomcnputc(dev, c) dev_t dev; int c; { int s = splserial(); bus_space_tag_t iot = fcomconstag; bus_space_handle_t ioh = fcomconsioh; int timo; /* wait for any pending transmission to finish */ timo = 50000; while ((bus_space_read_4(iot, ioh, UART_FLAGS) & UART_TX_BUSY) && --timo) ; bus_space_write_4(iot, ioh, UART_DATA, c); /* wait for this transmission to complete */ timo = 1500000; while ((bus_space_read_4(iot, ioh, UART_FLAGS) & UART_TX_BUSY) && --timo) ; /* Clear interrupt status here */ (void)splx(s); } void fcomcnpollc(dev, on) dev_t dev; int on; { }