/* $OpenBSD: cpufunc.h,v 1.12 2013/03/27 00:06:09 patrick Exp $ */ /* $NetBSD: cpufunc.h,v 1.29 2003/09/06 09:08:35 rearnsha Exp $ */ /* * Copyright (c) 1997 Mark Brinicombe. * Copyright (c) 1997 Causality Limited * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Causality Limited. * 4. The name of Causality Limited may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY CAUSALITY LIMITED ``AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL CAUSALITY LIMITED BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * cpufunc.h * * Prototypes for cpu, mmu and tlb related functions. */ #ifndef _ARM_CPUFUNC_H_ #define _ARM_CPUFUNC_H_ #ifdef _KERNEL #include #include struct cpu_functions { /* CPU functions */ u_int (*cf_id) (void); void (*cf_cpwait) (void); /* MMU functions */ u_int (*cf_control) (u_int bic, u_int eor); void (*cf_domains) (u_int domains); void (*cf_setttb) (u_int ttb); u_int (*cf_dfsr) (void); u_int (*cf_dfar) (void); u_int (*cf_ifsr) (void); u_int (*cf_ifar) (void); /* TLB functions */ void (*cf_tlb_flushID) (void); void (*cf_tlb_flushID_SE) (u_int va); void (*cf_tlb_flushI) (void); void (*cf_tlb_flushI_SE) (u_int va); void (*cf_tlb_flushD) (void); void (*cf_tlb_flushD_SE) (u_int va); /* * Cache operations: * * We define the following primitives: * * icache_sync_all Synchronize I-cache * icache_sync_range Synchronize I-cache range * * dcache_wbinv_all Write-back and Invalidate D-cache * dcache_wbinv_range Write-back and Invalidate D-cache range * dcache_inv_range Invalidate D-cache range * dcache_wb_range Write-back D-cache range * * idcache_wbinv_all Write-back and Invalidate D-cache, * Invalidate I-cache * idcache_wbinv_range Write-back and Invalidate D-cache, * Invalidate I-cache range * * Note that the ARM term for "write-back" is "clean". We use * the term "write-back" since it's a more common way to describe * the operation. * * There are some rules that must be followed: * * I-cache Synch (all or range): * The goal is to synchronize the instruction stream, * so you may beed to write-back dirty D-cache blocks * first. If a range is requested, and you can't * synchronize just a range, you have to hit the whole * thing. * * D-cache Write-Back and Invalidate range: * If you can't WB-Inv a range, you must WB-Inv the * entire D-cache. * * D-cache Invalidate: * If you can't Inv the D-cache, you must Write-Back * and Invalidate. Code that uses this operation * MUST NOT assume that the D-cache will not be written * back to memory. * * D-cache Write-Back: * If you can't Write-back without doing an Inv, * that's fine. Then treat this as a WB-Inv. * Skipping the invalidate is merely an optimization. * * All operations: * Valid virtual addresses must be passed to each * cache operation. */ void (*cf_icache_sync_all) (void); void (*cf_icache_sync_range) (vaddr_t, vsize_t); void (*cf_dcache_wbinv_all) (void); void (*cf_dcache_wbinv_range) (vaddr_t, vsize_t); void (*cf_dcache_inv_range) (vaddr_t, vsize_t); void (*cf_dcache_wb_range) (vaddr_t, vsize_t); void (*cf_idcache_wbinv_all) (void); void (*cf_idcache_wbinv_range) (vaddr_t, vsize_t); void (*cf_sdcache_wbinv_all) (void); void (*cf_sdcache_wbinv_range) (vaddr_t, paddr_t, vsize_t); void (*cf_sdcache_inv_range) (vaddr_t, paddr_t, vsize_t); void (*cf_sdcache_wb_range) (vaddr_t, paddr_t, vsize_t); /* Other functions */ void (*cf_flush_prefetchbuf) (void); void (*cf_drain_writebuf) (void); void (*cf_sleep) (int mode); /* Soft functions */ void (*cf_context_switch) (u_int); void (*cf_setup) (void); }; extern struct cpu_functions cpufuncs; extern u_int cputype; #define cpu_id() cpufuncs.cf_id() #define cpu_cpwait() cpufuncs.cf_cpwait() #define cpu_control(c, e) cpufuncs.cf_control(c, e) #define cpu_domains(d) cpufuncs.cf_domains(d) #define cpu_setttb(t) cpufuncs.cf_setttb(t) #define cpu_dfsr() cpufuncs.cf_dfsr() #define cpu_dfar() cpufuncs.cf_dfar() #define cpu_ifsr() cpufuncs.cf_ifsr() #define cpu_ifar() cpufuncs.cf_ifar() #define cpu_tlb_flushID() cpufuncs.cf_tlb_flushID() #define cpu_tlb_flushID_SE(e) cpufuncs.cf_tlb_flushID_SE(e) #define cpu_tlb_flushI() cpufuncs.cf_tlb_flushI() #define cpu_tlb_flushI_SE(e) cpufuncs.cf_tlb_flushI_SE(e) #define cpu_tlb_flushD() cpufuncs.cf_tlb_flushD() #define cpu_tlb_flushD_SE(e) cpufuncs.cf_tlb_flushD_SE(e) #define cpu_icache_sync_all() cpufuncs.cf_icache_sync_all() #define cpu_icache_sync_range(a, s) cpufuncs.cf_icache_sync_range((a), (s)) #define cpu_dcache_wbinv_all() cpufuncs.cf_dcache_wbinv_all() #define cpu_dcache_wbinv_range(a, s) cpufuncs.cf_dcache_wbinv_range((a), (s)) #define cpu_dcache_inv_range(a, s) cpufuncs.cf_dcache_inv_range((a), (s)) #define cpu_dcache_wb_range(a, s) cpufuncs.cf_dcache_wb_range((a), (s)) #define cpu_idcache_wbinv_all() cpufuncs.cf_idcache_wbinv_all() #define cpu_idcache_wbinv_range(a, s) cpufuncs.cf_idcache_wbinv_range((a), (s)) #define cpu_sdcache_enabled() (cpufuncs.cf_sdcache_wbinv_all != cpufunc_nullop) #define cpu_sdcache_wbinv_all() cpufuncs.cf_sdcache_wbinv_all() #define cpu_sdcache_wbinv_range(va, pa, s) cpufuncs.cf_sdcache_wbinv_range((va), (pa), (s)) #define cpu_sdcache_inv_range(va, pa, s) cpufuncs.cf_sdcache_inv_range((va), (pa), (s)) #define cpu_sdcache_wb_range(va, pa, s) cpufuncs.cf_sdcache_wb_range((va), (pa), (s)) #define cpu_flush_prefetchbuf() cpufuncs.cf_flush_prefetchbuf() #define cpu_drain_writebuf() cpufuncs.cf_drain_writebuf() #define cpu_sleep(m) cpufuncs.cf_sleep(m) #define cpu_context_switch(a) cpufuncs.cf_context_switch(a) #define cpu_setup(a) cpufuncs.cf_setup(a) int set_cpufuncs (void); #define ARCHITECTURE_NOT_PRESENT 1 /* known but not configured */ #define ARCHITECTURE_NOT_SUPPORTED 2 /* not known */ void cpufunc_nullop (void); int early_abort_fixup (void *); int late_abort_fixup (void *); u_int cpufunc_id (void); u_int cpufunc_control (u_int clear, u_int bic); void cpufunc_domains (u_int domains); u_int cpufunc_dfsr (void); u_int cpufunc_dfar (void); u_int cpufunc_ifsr (void); u_int cpufunc_ifar (void); #ifdef CPU_ARM8 void arm8_setttb (u_int ttb); void arm8_tlb_flushID (void); void arm8_tlb_flushID_SE (u_int va); void arm8_cache_flushID (void); void arm8_cache_flushID_E (u_int entry); void arm8_cache_cleanID (void); void arm8_cache_cleanID_E (u_int entry); void arm8_cache_purgeID (void); void arm8_cache_purgeID_E (u_int entry); void arm8_cache_syncI (void); void arm8_cache_cleanID_rng (vaddr_t start, vsize_t end); void arm8_cache_cleanD_rng (vaddr_t start, vsize_t end); void arm8_cache_purgeID_rng (vaddr_t start, vsize_t end); void arm8_cache_purgeD_rng (vaddr_t start, vsize_t end); void arm8_cache_syncI_rng (vaddr_t start, vsize_t end); void arm8_context_switch (u_int); void arm8_setup (void); u_int arm8_clock_config (u_int, u_int); #endif #if defined(CPU_SA1100) || defined(CPU_SA1110) void sa11x0_drain_readbuf (void); void sa11x0_context_switch (u_int); void sa11x0_cpu_sleep (int mode); void sa11x0_setup (void); #endif #if defined(CPU_SA1100) || defined(CPU_SA1110) void sa1_setttb (u_int ttb); void sa1_tlb_flushID_SE (u_int va); void sa1_cache_flushID (void); void sa1_cache_flushI (void); void sa1_cache_flushD (void); void sa1_cache_flushD_SE (u_int entry); void sa1_cache_cleanID (void); void sa1_cache_cleanD (void); void sa1_cache_cleanD_E (u_int entry); void sa1_cache_purgeID (void); void sa1_cache_purgeID_E (u_int entry); void sa1_cache_purgeD (void); void sa1_cache_purgeD_E (u_int entry); void sa1_cache_syncI (void); void sa1_cache_cleanID_rng (vaddr_t start, vsize_t end); void sa1_cache_cleanD_rng (vaddr_t start, vsize_t end); void sa1_cache_purgeID_rng (vaddr_t start, vsize_t end); void sa1_cache_purgeD_rng (vaddr_t start, vsize_t end); void sa1_cache_syncI_rng (vaddr_t start, vsize_t end); #endif #ifdef CPU_ARM9 void arm9_setttb (u_int); void arm9_tlb_flushID_SE (u_int); void arm9_icache_sync_all (void); void arm9_icache_sync_range (vaddr_t, vsize_t); void arm9_dcache_wbinv_all (void); void arm9_dcache_wbinv_range (vaddr_t, vsize_t); void arm9_dcache_inv_range (vaddr_t, vsize_t); void arm9_dcache_wb_range (vaddr_t, vsize_t); void arm9_idcache_wbinv_all (void); void arm9_idcache_wbinv_range (vaddr_t, vsize_t); void arm9_context_switch (u_int); void arm9_setup (void); extern unsigned arm9_dcache_sets_max; extern unsigned arm9_dcache_sets_inc; extern unsigned arm9_dcache_index_max; extern unsigned arm9_dcache_index_inc; #endif #if defined(CPU_ARM9E) || defined(CPU_ARM10) void arm10_tlb_flushID_SE (u_int); void arm10_tlb_flushI_SE (u_int); void arm10_context_switch (u_int); void arm9e_setup (void); void arm10_setup (void); #endif #if defined(CPU_ARM9E) || defined (CPU_ARM10) void armv5_ec_setttb (u_int); void armv5_ec_icache_sync_all (void); void armv5_ec_icache_sync_range (vaddr_t, vsize_t); void armv5_ec_dcache_wbinv_all (void); void armv5_ec_dcache_wbinv_range (vaddr_t, vsize_t); void armv5_ec_dcache_inv_range (vaddr_t, vsize_t); void armv5_ec_dcache_wb_range (vaddr_t, vsize_t); void armv5_ec_idcache_wbinv_all (void); void armv5_ec_idcache_wbinv_range (vaddr_t, vsize_t); #endif #ifdef CPU_ARM11 void arm11_setttb (u_int); void arm11_tlb_flushID_SE (u_int); void arm11_tlb_flushI_SE (u_int); void arm11_context_switch (u_int); void arm11_setup (void); void arm11_tlb_flushID (void); void arm11_tlb_flushI (void); void arm11_tlb_flushD (void); void arm11_tlb_flushD_SE (u_int va); void arm11_drain_writebuf (void); void arm11_cpu_sleep (int mode); #endif #if defined (CPU_ARM10) || defined(CPU_ARM11) void armv5_setttb (u_int); void armv5_icache_sync_all (void); void armv5_icache_sync_range (vaddr_t, vsize_t); void armv5_dcache_wbinv_all (void); void armv5_dcache_wbinv_range (vaddr_t, vsize_t); void armv5_dcache_inv_range (vaddr_t, vsize_t); void armv5_dcache_wb_range (vaddr_t, vsize_t); void armv5_idcache_wbinv_all (void); void armv5_idcache_wbinv_range (vaddr_t, vsize_t); extern unsigned armv5_dcache_sets_max; extern unsigned armv5_dcache_sets_inc; extern unsigned armv5_dcache_index_max; extern unsigned armv5_dcache_index_inc; #endif #ifdef CPU_ARMv7 void armv7_setttb (u_int); void armv7_tlb_flushID_SE (u_int); void armv7_tlb_flushI_SE (u_int); void armv7_context_switch (u_int); void armv7_context_switch (u_int); void armv7_setup (void); void armv7_tlb_flushID (void); void armv7_tlb_flushI (void); void armv7_tlb_flushD (void); void armv7_tlb_flushD_SE (u_int va); void armv7_drain_writebuf (void); void armv7_cpu_sleep (int mode); void armv7_setttb (u_int); void armv7_icache_sync_all (void); void armv7_icache_sync_range (vaddr_t, vsize_t); void armv7_dcache_wbinv_all (void); void armv7_dcache_wbinv_range (vaddr_t, vsize_t); void armv7_dcache_inv_range (vaddr_t, vsize_t); void armv7_dcache_wb_range (vaddr_t, vsize_t); void armv7_idcache_wbinv_all (void); void armv7_idcache_wbinv_range (vaddr_t, vsize_t); extern unsigned armv7_dcache_sets_max; extern unsigned armv7_dcache_sets_inc; extern unsigned armv7_dcache_index_max; extern unsigned armv7_dcache_index_inc; #endif #if defined(CPU_ARM9) || defined(CPU_ARM9E) || defined(CPU_ARM10) || \ defined(CPU_SA1100) || defined(CPU_SA1110) || \ defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \ defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425) void armv4_tlb_flushID (void); void armv4_tlb_flushI (void); void armv4_tlb_flushD (void); void armv4_tlb_flushD_SE (u_int va); void armv4_drain_writebuf (void); #endif #if defined(CPU_IXP12X0) void ixp12x0_drain_readbuf (void); void ixp12x0_context_switch (u_int); void ixp12x0_setup (void); #endif #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \ defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425) || \ (ARM_MMU_XSCALE == 1) void xscale_cpwait (void); void xscale_cpu_sleep (int mode); u_int xscale_control (u_int clear, u_int bic); void xscale_setttb (u_int ttb); void xscale_tlb_flushID_SE (u_int va); void xscale_cache_flushID (void); void xscale_cache_flushI (void); void xscale_cache_flushD (void); void xscale_cache_flushD_SE (u_int entry); void xscale_cache_cleanID (void); void xscale_cache_cleanD (void); void xscale_cache_cleanD_E (u_int entry); void xscale_cache_clean_minidata (void); void xscale_cache_purgeID (void); void xscale_cache_purgeID_E (u_int entry); void xscale_cache_purgeD (void); void xscale_cache_purgeD_E (u_int entry); void xscale_cache_syncI (void); void xscale_cache_cleanID_rng (vaddr_t start, vsize_t end); void xscale_cache_cleanD_rng (vaddr_t start, vsize_t end); void xscale_cache_purgeID_rng (vaddr_t start, vsize_t end); void xscale_cache_purgeD_rng (vaddr_t start, vsize_t end); void xscale_cache_syncI_rng (vaddr_t start, vsize_t end); void xscale_cache_flushD_rng (vaddr_t start, vsize_t end); void xscale_context_switch (u_int); void xscale_setup (void); #endif /* CPU_XSCALE_80200 || CPU_XSCALE_80321 || CPU_XSCALE_PXA2X0 || CPU_XSCALE_IXP425 */ #define tlb_flush cpu_tlb_flushID #define setttb cpu_setttb #define drain_writebuf cpu_drain_writebuf /* * Macros for manipulating CPU interrupts */ /* Functions to manipulate the CPSR. */ static __inline u_int32_t __set_cpsr_c(u_int bic, u_int eor); static __inline u_int32_t __get_cpsr(void); static __inline u_int32_t __set_cpsr_c(u_int bic, u_int eor) { u_int32_t tmp, ret; __asm __volatile( "mrs %0, cpsr\n\t" /* Get the CPSR */ "bic %1, %0, %2\n\t" /* Clear bits */ "eor %1, %1, %3\n\t" /* XOR bits */ "msr cpsr_c, %1" /* Set CPSR control field */ : "=&r" (ret), "=&r" (tmp) : "r" (bic), "r" (eor)); return ret; } static __inline u_int32_t __get_cpsr() { u_int32_t ret; __asm __volatile("mrs %0, cpsr" : "=&r" (ret)); return ret; } #define disable_interrupts(mask) \ (__set_cpsr_c((mask) & (I32_bit | F32_bit), \ (mask) & (I32_bit | F32_bit))) #define enable_interrupts(mask) \ (__set_cpsr_c((mask) & (I32_bit | F32_bit), 0)) #define restore_interrupts(old_cpsr) \ (__set_cpsr_c((I32_bit | F32_bit), (old_cpsr) & (I32_bit | F32_bit))) /* * Functions to manipulate cpu r13 * (in arm/arm/setstack.S) */ void set_stackptr (u_int mode, u_int address); u_int get_stackptr (u_int mode); /* * Miscellany */ int get_pc_str_offset (void); /* * CPU functions from locore.S */ void cpu_reset (void) __attribute__((__noreturn__)); /* * Cache info variables. */ /* PRIMARY CACHE VARIABLES */ extern int arm_picache_size; extern int arm_picache_line_size; extern int arm_picache_ways; extern int arm_pdcache_size; /* and unified */ extern int arm_pdcache_line_size; extern int arm_pdcache_ways; extern int arm_pcache_type; extern int arm_pcache_unified; extern int arm_dcache_align; extern int arm_dcache_align_mask; #endif /* _KERNEL */ #endif /* _ARM_CPUFUNC_H_ */ /* End of cpufunc.h */