/* $OpenBSD: pxa2x0_clock.c,v 1.3 2005/12/22 23:23:51 drahn Exp $ */ /* * Copyright (c) 2005 Dale Rahn * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include int pxaost_match(struct device *, void *, void *); void pxaost_attach(struct device *, struct device *, void *); int doclockintr(void *); int clockintr(void *); int statintr(void *); void rtcinit(void); struct pxaost_softc { struct device sc_dev; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; u_int32_t sc_clock_count; u_int32_t sc_statclock_count; u_int32_t sc_statclock_step; u_int32_t sc_clock_step; u_int32_t sc_clock_step_err_cnt; u_int32_t sc_clock_step_error; }; static struct pxaost_softc *pxaost_sc = NULL; #define CLK4_TIMER_FREQUENCY 32768 /* 32.768KHz */ #define CLK0_TIMER_FREQUENCY 3250000 /* 3.2500MHz */ #ifndef STATHZ #define STATHZ 64 #endif struct cfattach pxaost_ca = { sizeof (struct pxaost_softc), pxaost_match, pxaost_attach }; struct cfdriver pxaost_cd = { NULL, "pxaost", DV_DULL }; int pxaost_match(parent, match, aux) struct device *parent; void *match; void *aux; { return (1); } void pxaost_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct pxaost_softc *sc = (struct pxaost_softc*)self; struct sa11x0_attach_args *sa = aux; printf("\n"); sc->sc_iot = sa->sa_iot; pxaost_sc = sc; if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh)) panic("%s: Cannot map registers", self->dv_xname); /* disable all channel and clear interrupt status */ bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, SAOST_IR, 0); bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, SAOST_SR, 0x3f); bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OMCR4, 0xc1); bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OMCR5, 0x41); bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSMR4, pxaost_sc->sc_clock_count); bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSMR5, pxaost_sc->sc_statclock_count); /* Zero the counter value */ bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSCR4, 0); } int clockintr(arg) void *arg; { struct clockframe *frame = arg; u_int32_t oscr, match; u_int32_t match_error; bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, SAOST_SR, 0x10); match = pxaost_sc->sc_clock_count; do { match += pxaost_sc->sc_clock_step; pxaost_sc->sc_clock_step_error += pxaost_sc->sc_clock_step_err_cnt; if (pxaost_sc->sc_clock_count > hz) { match_error = pxaost_sc->sc_clock_step_error / hz; pxaost_sc->sc_clock_step_error -= (match_error * hz); match += match_error; } pxaost_sc->sc_clock_count = match; hardclock(frame); oscr = bus_space_read_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSCR4); } while ((signed)(oscr - match) > 0); /* prevent missed interrupts */ if (oscr - match < 5) match += 5; bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSMR4, match); return(1); } int statintr(arg) void *arg; { struct clockframe *frame = arg; u_int32_t oscr, match; bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, SAOST_SR, 0x20); /* schedule next clock intr */ match = pxaost_sc->sc_statclock_count; do { match += pxaost_sc->sc_statclock_step; pxaost_sc->sc_statclock_count = match; statclock(frame); oscr = bus_space_read_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSCR4); } while ((signed)(oscr - match) > 0); /* prevent missed interrupts */ if (oscr - match < 5) match += 5; bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSMR5, match); return(1); } void setstatclockrate(int newstathz) { u_int32_t count; pxaost_sc->sc_statclock_step = CLK4_TIMER_FREQUENCY / newstathz; count = bus_space_read_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSCR4); count += pxaost_sc->sc_statclock_step; pxaost_sc->sc_statclock_count = count; bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSMR5, count); } int doclockintr(void *arg) { u_int32_t status; int result = 0; status = bus_space_read_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, SAOST_SR); if (status & 0x10) result |= clockintr(arg); if (status & 0x20) result |= statintr(arg); return (result); } void cpu_initclocks() { u_int32_t clk; stathz = STATHZ; profhz = stathz; pxaost_sc->sc_statclock_step = CLK4_TIMER_FREQUENCY / stathz; pxaost_sc->sc_clock_step = CLK4_TIMER_FREQUENCY / hz; pxaost_sc->sc_clock_step_err_cnt = CLK4_TIMER_FREQUENCY % hz; pxaost_sc->sc_clock_step_error = 0; printf("clock: hz=%d stathz=%d\n", hz, stathz); /* Use the channels 0 and 1 for hardclock and statclock, respectively */ pxaost_sc->sc_clock_count = pxaost_sc->sc_clock_step; pxaost_sc->sc_statclock_count = CLK4_TIMER_FREQUENCY / stathz; pxa2x0_intr_establish(7, IPL_CLOCK, doclockintr, 0, "clock"); clk = bus_space_read_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSCR4); bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, SAOST_SR, 0x3f); bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, SAOST_IR, 0x30); bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSMR4, clk + pxaost_sc->sc_clock_count); bus_space_write_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSMR5, clk + pxaost_sc->sc_statclock_count); } void microtime(tvp) register struct timeval *tvp; { int s, deltacnt; u_int32_t counter, expected; if (pxaost_sc == NULL) { tvp->tv_sec = 0; tvp->tv_usec = 0; return; } s = splhigh(); counter = bus_space_read_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSCR4); expected = pxaost_sc->sc_clock_count; *tvp = time; splx(s); /* number of CLK4_TIMER_FREQUENCY ticks past time */ deltacnt = counter - expected + pxaost_sc->sc_clock_step; tvp->tv_usec += deltacnt * 1000000ULL / CLK4_TIMER_FREQUENCY; while (tvp->tv_usec >= 1000000) { tvp->tv_sec++; tvp->tv_usec -= 1000000; } } void delay(usecs) u_int usecs; { u_int32_t clock, oclock, delta, delaycnt; volatile int j; int csec, usec; if (usecs > (0x80000000 / (CLK4_TIMER_FREQUENCY))) { csec = usecs / 10000; usec = usecs % 10000; delaycnt = (CLK4_TIMER_FREQUENCY / 100) * csec + (CLK4_TIMER_FREQUENCY / 100) * usec / 10000; } else { delaycnt = CLK4_TIMER_FREQUENCY * usecs / 1000000; } if (delaycnt <= 1) for (j = 100; j > 0; j--) ; if (!pxaost_sc) { /* clock isn't initialized yet */ for (; usecs > 0; usecs--) for (j = 100; j > 0; j--) ; return; } oclock = bus_space_read_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSCR4); while (1) { for (j = 100; j > 0; j--) ; clock = bus_space_read_4(pxaost_sc->sc_iot, pxaost_sc->sc_ioh, OST_OSCR4); delta = clock - oclock; if (delta > delaycnt) break; } }