/* $OpenBSD: efi_machdep.c,v 1.6 2023/01/14 12:11:11 kettenis Exp $ */ /* * Copyright (c) 2017 Mark Kettenis * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * We need a large address space to allow identity mapping of physical * memory on some machines. */ #define EFI_SPACE_BITS 48 extern uint32_t mmap_size; extern uint32_t mmap_desc_size; extern uint32_t mmap_desc_ver; extern EFI_MEMORY_DESCRIPTOR *mmap; uint64_t efi_acpi_table; uint64_t efi_smbios_table; int efi_match(struct device *, void *, void *); void efi_attach(struct device *, struct device *, void *); const struct cfattach efi_ca = { sizeof(struct efi_softc), efi_match, efi_attach }; void efi_map_runtime(struct efi_softc *); int efi_gettime(struct todr_chip_handle *, struct timeval *); int efi_settime(struct todr_chip_handle *, struct timeval *); label_t efi_jmpbuf; int efi_match(struct device *parent, void *match, void *aux) { struct fdt_attach_args *faa = aux; return (strcmp(faa->fa_name, "efi") == 0); } void efi_attach(struct device *parent, struct device *self, void *aux) { struct efi_softc *sc = (struct efi_softc *)self; struct fdt_attach_args *faa = aux; uint64_t system_table; bus_space_handle_t ioh; EFI_SYSTEM_TABLE *st; EFI_TIME time; EFI_STATUS status; uint16_t major, minor; int node, i; node = OF_finddevice("/chosen"); KASSERT(node != -1); system_table = OF_getpropint64(node, "openbsd,uefi-system-table", 0); KASSERT(system_table); if (bus_space_map(faa->fa_iot, system_table, sizeof(EFI_SYSTEM_TABLE), BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_CACHEABLE, &ioh)) { printf(": can't map system table\n"); return; } st = bus_space_vaddr(faa->fa_iot, ioh); sc->sc_rs = st->RuntimeServices; major = st->Hdr.Revision >> 16; minor = st->Hdr.Revision & 0xffff; printf(": UEFI %d.%d", major, minor / 10); if (minor % 10) printf(".%d", minor % 10); printf("\n"); /* Early implementations can be buggy. */ if (major < 2 || (major == 2 && minor < 10)) return; efi_map_runtime(sc); /* * Activate our pmap such that we can access the * FirmwareVendor and ConfigurationTable fields. */ efi_enter(sc); if (st->FirmwareVendor) { printf("%s: ", sc->sc_dev.dv_xname); for (i = 0; st->FirmwareVendor[i]; i++) printf("%c", st->FirmwareVendor[i]); printf(" rev 0x%x\n", st->FirmwareRevision); } for (i = 0; i < st->NumberOfTableEntries; i++) { EFI_CONFIGURATION_TABLE *ct = &st->ConfigurationTable[i]; static EFI_GUID acpi_guid = EFI_ACPI_20_TABLE_GUID; static EFI_GUID smbios_guid = SMBIOS_TABLE_GUID; static EFI_GUID smbios3_guid = SMBIOS3_TABLE_GUID; if (efi_guidcmp(&acpi_guid, &ct->VendorGuid) == 0) efi_acpi_table = (uint64_t)ct->VendorTable; if (efi_guidcmp(&smbios_guid, &ct->VendorGuid) == 0) efi_smbios_table = (uint64_t)ct->VendorTable; if (efi_guidcmp(&smbios3_guid, &ct->VendorGuid) == 0) efi_smbios_table = (uint64_t)ct->VendorTable; } efi_leave(sc); if (efi_smbios_table != 0) { struct fdt_reg reg = { .addr = efi_smbios_table }; struct fdt_attach_args fa; fa.fa_name = "smbios"; fa.fa_iot = faa->fa_iot; fa.fa_reg = ® fa.fa_nreg = 1; config_found(self, &fa, NULL); } if (efi_enter_check(sc)) return; status = sc->sc_rs->GetTime(&time, NULL); efi_leave(sc); if (status != EFI_SUCCESS) return; /* * EDK II implementations provide an implementation of * GetTime() that returns a fixed compiled-in time on hardware * without a (supported) RTC. So only use this interface as a * last resort. */ sc->sc_todr.cookie = sc; sc->sc_todr.todr_gettime = efi_gettime; sc->sc_todr.todr_settime = efi_settime; sc->sc_todr.todr_quality = -1000; todr_attach(&sc->sc_todr); } void efi_map_runtime(struct efi_softc *sc) { EFI_MEMORY_DESCRIPTOR *desc; int i; /* * We don't really want some random executable non-OpenBSD * code lying around in kernel space. So create a separate * pmap and only activate it when we call runtime services. */ sc->sc_pm = pmap_create(); sc->sc_pm->pm_privileged = 1; sc->sc_pm->have_4_level_pt = 1; desc = mmap; for (i = 0; i < mmap_size / mmap_desc_size; i++) { if (desc->Attribute & EFI_MEMORY_RUNTIME) { vaddr_t va = desc->VirtualStart; paddr_t pa = desc->PhysicalStart; int npages = desc->NumberOfPages; vm_prot_t prot = PROT_READ | PROT_WRITE; #ifdef EFI_DEBUG printf("type 0x%x pa 0x%llx va 0x%llx pages 0x%llx attr 0x%llx\n", desc->Type, desc->PhysicalStart, desc->VirtualStart, desc->NumberOfPages, desc->Attribute); #endif /* * If the virtual address is still zero, use * an identity mapping. */ if (va == 0) va = pa; /* * Normal memory is expected to be "write * back" cacheable. Everything else is mapped * as device memory. */ if ((desc->Attribute & EFI_MEMORY_WB) == 0) pa |= PMAP_DEVICE; /* * Only make pages marked as runtime service code * executable. This violates the standard but it * seems we can get away with it. */ if (desc->Type == EfiRuntimeServicesCode) prot |= PROT_EXEC; if (desc->Attribute & EFI_MEMORY_RP) prot &= ~PROT_READ; if (desc->Attribute & EFI_MEMORY_XP) prot &= ~PROT_EXEC; if (desc->Attribute & EFI_MEMORY_RO) prot &= ~PROT_WRITE; while (npages--) { pmap_enter(sc->sc_pm, va, pa, prot, prot | PMAP_WIRED); va += PAGE_SIZE; pa += PAGE_SIZE; } } desc = NextMemoryDescriptor(desc, mmap_desc_size); } } void efi_fault(void) { longjmp(&efi_jmpbuf); } void efi_enter(struct efi_softc *sc) { struct pmap *pm = sc->sc_pm; uint64_t tcr; sc->sc_psw = intr_disable(); WRITE_SPECIALREG(ttbr0_el1, pmap_kernel()->pm_pt0pa); __asm volatile("isb"); tcr = READ_SPECIALREG(tcr_el1); tcr &= ~TCR_T0SZ(0x3f); tcr |= TCR_T0SZ(64 - EFI_SPACE_BITS); WRITE_SPECIALREG(tcr_el1, tcr); cpu_setttb(pm->pm_asid, pm->pm_pt0pa); fpu_kernel_enter(); curcpu()->ci_curpcb->pcb_onfault = (void *)efi_fault; } void efi_leave(struct efi_softc *sc) { struct pmap *pm = curcpu()->ci_curpm; uint64_t tcr; curcpu()->ci_curpcb->pcb_onfault = NULL; fpu_kernel_exit(); WRITE_SPECIALREG(ttbr0_el1, pmap_kernel()->pm_pt0pa); __asm volatile("isb"); tcr = READ_SPECIALREG(tcr_el1); tcr &= ~TCR_T0SZ(0x3f); tcr |= TCR_T0SZ(64 - USER_SPACE_BITS); WRITE_SPECIALREG(tcr_el1, tcr); cpu_setttb(pm->pm_asid, pm->pm_pt0pa); intr_restore(sc->sc_psw); } int efi_gettime(struct todr_chip_handle *handle, struct timeval *tv) { struct efi_softc *sc = handle->cookie; struct clock_ymdhms dt; EFI_TIME time; EFI_STATUS status; if (efi_enter_check(sc)) return EFAULT; status = sc->sc_rs->GetTime(&time, NULL); efi_leave(sc); if (status != EFI_SUCCESS) return EIO; dt.dt_year = time.Year; dt.dt_mon = time.Month; dt.dt_day = time.Day; dt.dt_hour = time.Hour; dt.dt_min = time.Minute; dt.dt_sec = time.Second; if (dt.dt_sec > 59 || dt.dt_min > 59 || dt.dt_hour > 23 || dt.dt_day > 31 || dt.dt_day == 0 || dt.dt_mon > 12 || dt.dt_mon == 0 || dt.dt_year < POSIX_BASE_YEAR) return EINVAL; tv->tv_sec = clock_ymdhms_to_secs(&dt); tv->tv_usec = 0; return 0; } int efi_settime(struct todr_chip_handle *handle, struct timeval *tv) { struct efi_softc *sc = handle->cookie; struct clock_ymdhms dt; EFI_TIME time; EFI_STATUS status; clock_secs_to_ymdhms(tv->tv_sec, &dt); time.Year = dt.dt_year; time.Month = dt.dt_mon; time.Day = dt.dt_day; time.Hour = dt.dt_hour; time.Minute = dt.dt_min; time.Second = dt.dt_sec; time.Nanosecond = 0; time.TimeZone = 0; time.Daylight = 0; if (efi_enter_check(sc)) return EFAULT; status = sc->sc_rs->SetTime(&time); efi_leave(sc); if (status != EFI_SUCCESS) return EIO; return 0; }