/* $OpenBSD: hd.c,v 1.16 2002/05/30 11:03:52 art Exp $ */ /* $NetBSD: rd.c,v 1.33 1997/07/10 18:14:08 kleink Exp $ */ /* * Copyright (c) 1996, 1997 Jason R. Thorpe. All rights reserved. * Copyright (c) 1988 University of Utah. * Copyright (c) 1982, 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: rd.c 1.44 92/12/26$ * * @(#)rd.c 8.2 (Berkeley) 5/19/94 */ /* * CS80/SS80 disk driver */ #include #include #include #include #include #include #include #include #include #include #include #include /* for BBSIZE and SBSIZE */ #include #include #include #ifdef USELEDS #include #endif int hderrthresh = HDRETRY-1; /* when to start reporting errors */ #ifdef DEBUG /* error message tables */ char *err_reject[] = { 0, 0, "channel parity error", /* 0x2000 */ 0, 0, "illegal opcode", /* 0x0400 */ "module addressing", /* 0x0200 */ "address bounds", /* 0x0100 */ "parameter bounds", /* 0x0080 */ "illegal parameter", /* 0x0040 */ "message sequence", /* 0x0020 */ 0, "message length", /* 0x0008 */ 0, 0, 0 }; char *err_fault[] = { 0, "cross unit", /* 0x4000 */ 0, "controller fault", /* 0x1000 */ 0, 0, "unit fault", /* 0x0200 */ 0, "diagnostic result", /* 0x0080 */ 0, "operator release request", /* 0x0020 */ "diagnostic release request", /* 0x0010 */ "internal maintenance release request", /* 0x0008 */ 0, "power fail", /* 0x0002 */ "retransmit" /* 0x0001 */ }; char *err_access[] = { "illegal parallel operation", /* 0x8000 */ "uninitialized media", /* 0x4000 */ "no spares available", /* 0x2000 */ "not ready", /* 0x1000 */ "write protect", /* 0x0800 */ "no data found", /* 0x0400 */ 0, 0, "unrecoverable data overflow", /* 0x0080 */ "unrecoverable data", /* 0x0040 */ 0, "end of file", /* 0x0010 */ "end of volume", /* 0x0008 */ 0, 0, 0 }; char *err_info[] = { "operator release request", /* 0x8000 */ "diagnostic release request", /* 0x4000 */ "internal maintenance release request", /* 0x2000 */ "media wear", /* 0x1000 */ "latency induced", /* 0x0800 */ 0, 0, "auto sparing invoked", /* 0x0100 */ 0, "recoverable data overflow", /* 0x0040 */ "marginal data", /* 0x0020 */ "recoverable data", /* 0x0010 */ 0, "maintenance track overflow", /* 0x0004 */ 0, 0 }; int hddebug = 0x80; #define HDB_FOLLOW 0x01 #define HDB_STATUS 0x02 #define HDB_IDENT 0x04 #define HDB_IO 0x08 #define HDB_ASYNC 0x10 #define HDB_ERROR 0x80 #endif /* * Misc. HW description, indexed by sc_type. * Nothing really critical here, could do without it. */ struct hdidentinfo hdidentinfo[] = { { HD7946AID, 0, "7945A", NHD7945ABPT, NHD7945ATRK, 968, 108416 }, { HD9134DID, 1, "9134D", NHD9134DBPT, NHD9134DTRK, 303, 29088 }, { HD9134LID, 1, "9122S", NHD9122SBPT, NHD9122STRK, 77, 1232 }, { HD7912PID, 0, "7912P", NHD7912PBPT, NHD7912PTRK, 572, 128128 }, { HD7914PID, 0, "7914P", NHD7914PBPT, NHD7914PTRK, 1152, 258048 }, { HD7958AID, 0, "7958A", NHD7958ABPT, NHD7958ATRK, 1013, 255276 }, { HD7957AID, 0, "7957A", NHD7957ABPT, NHD7957ATRK, 1036, 159544 }, { HD7933HID, 0, "7933H", NHD7933HBPT, NHD7933HTRK, 1321, 789958 }, { HD9134LID, 1, "9134L", NHD9134LBPT, NHD9134LTRK, 973, 77840 }, { HD7936HID, 0, "7936H", NHD7936HBPT, NHD7936HTRK, 698, 600978 }, { HD7937HID, 0, "7937H", NHD7937HBPT, NHD7937HTRK, 698, 1116102 }, { HD7914CTID, 0, "7914CT", NHD7914PBPT, NHD7914PTRK, 1152, 258048 }, { HD7946AID, 0, "7946A", NHD7945ABPT, NHD7945ATRK, 968, 108416 }, { HD9134LID, 1, "9122D", NHD9122SBPT, NHD9122STRK, 77, 1232 }, { HD7957BID, 0, "7957B", NHD7957BBPT, NHD7957BTRK, 1269, 159894 }, { HD7958BID, 0, "7958B", NHD7958BBPT, NHD7958BTRK, 786, 297108 }, { HD7959BID, 0, "7959B", NHD7959BBPT, NHD7959BTRK, 1572, 594216 }, { HD2200AID, 0, "2200A", NHD2200ABPT, NHD2200ATRK, 1449, 654948 }, { HD2203AID, 0, "2203A", NHD2203ABPT, NHD2203ATRK, 1449, 1309896 } }; int numhdidentinfo = sizeof(hdidentinfo) / sizeof(hdidentinfo[0]); bdev_decl(hd); cdev_decl(hd); int hdident(struct device *, struct hd_softc *, struct hpibbus_attach_args *); void hdreset(struct hd_softc *); void hdustart(struct hd_softc *); int hdgetinfo(dev_t, struct hd_softc *, struct disklabel *, int); void hdrestart(void *); struct buf *hdfinish(struct hd_softc *, struct buf *); void hdstart(void *); void hdinterupt(void *); void hdgo(void *); int hdstatus(struct hd_softc *); int hderror(int); #ifdef DEBUG void hdprinterr(char *, short, char **); #endif int hdmatch(struct device *, void *, void *); void hdattach(struct device *, struct device *, void *); struct cfattach hd_ca = { sizeof(struct hd_softc), hdmatch, hdattach }; struct cfdriver hd_cd = { NULL, "hd", DV_DISK }; int hdmatch(parent, match, aux) struct device *parent; void *match, *aux; { struct cfdata *cf = match; struct hpibbus_attach_args *ha = aux; /* * Set punit if operator specified one in the kernel * configuration file. */ if (cf->hpibbuscf_punit != HPIBBUS_PUNIT_UNK && cf->hpibbuscf_punit < HPIB_NPUNITS) ha->ha_punit = cf->hpibbuscf_punit; if (hdident(parent, NULL, ha) == 0) { /* * XXX Some aging HP-IB drives are slow to * XXX respond; give them a chance to catch * XXX up and probe them again. */ delay(10000); ha->ha_id = hpibid(parent->dv_unit, ha->ha_slave); return (hdident(parent, NULL, ha)); } return (1); } void hdattach(parent, self, aux) struct device *parent, *self; void *aux; { struct hd_softc *sc = (struct hd_softc *)self; struct hpibbus_attach_args *ha = aux; if (hdident(parent, sc, ha) == 0) { printf("\n%s: didn't respond to describe command!\n", sc->sc_dev.dv_xname); return; } /* * Initialize and attach the disk structure. */ bzero(&sc->sc_dkdev, sizeof(sc->sc_dkdev)); sc->sc_dkdev.dk_name = sc->sc_dev.dv_xname; disk_attach(&sc->sc_dkdev); sc->sc_slave = ha->ha_slave; sc->sc_punit = ha->ha_punit; /* Initialize the hpib job queue entry */ sc->sc_hq.hq_softc = sc; sc->sc_hq.hq_slave = sc->sc_slave; sc->sc_hq.hq_start = hdstart; sc->sc_hq.hq_go = hdgo; sc->sc_hq.hq_intr = hdinterupt; sc->sc_flags = HDF_ALIVE; #ifdef DEBUG /* always report errors */ if (hddebug & HDB_ERROR) hderrthresh = 0; #endif /* Initialize timeout structure */ timeout_set(&sc->sc_timeout, hdrestart, sc); dk_establish(&sc->sc_dkdev, &sc->sc_dev); /* XXX */ } int hdident(parent, sc, ha) struct device *parent; struct hd_softc *sc; struct hpibbus_attach_args *ha; { struct hd_describe *desc = sc != NULL ? &sc->sc_hddesc : NULL; u_char stat, cmd[3]; char name[7]; int i, id, n, ctlr, slave; ctlr = parent->dv_unit; slave = ha->ha_slave; /* Verify that we have a CS80 device. */ if ((ha->ha_id & 0x200) == 0) return (0); /* Is it one of the disks we support? */ for (id = 0; id < numhdidentinfo; id++) if (ha->ha_id == hdidentinfo[id].ri_hwid) break; if (id == numhdidentinfo || ha->ha_punit > hdidentinfo[id].ri_maxunum) return (0); /* * If we're just probing for the device, that's all the * work we need to do. */ if (sc == NULL) return (1); /* * Reset device and collect description */ hdreset(sc); cmd[0] = C_SUNIT(ha->ha_punit); cmd[1] = C_SVOL(0); cmd[2] = C_DESC; hpibsend(ctlr, slave, C_CMD, cmd, sizeof(cmd)); hpibrecv(ctlr, slave, C_EXEC, desc, 37); hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat)); bzero(name, sizeof(name)); if (stat == 0) { n = desc->d_name; for (i = 5; i >= 0; i--) { name[i] = (n & 0xf) + '0'; n >>= 4; } } #ifdef DEBUG if (hddebug & HDB_IDENT) { printf("\n%s: name: %x ('%s')\n", sc->sc_dev.dv_xname, desc->d_name, name); printf(" iuw %x, maxxfr %d, ctype %d\n", desc->d_iuw, desc->d_cmaxxfr, desc->d_ctype); printf(" utype %d, bps %d, blkbuf %d, burst %d, blktime %d\n", desc->d_utype, desc->d_sectsize, desc->d_blkbuf, desc->d_burstsize, desc->d_blocktime); printf(" avxfr %d, ort %d, atp %d, maxint %d, fv %x, rv %x\n", desc->d_uavexfr, desc->d_retry, desc->d_access, desc->d_maxint, desc->d_fvbyte, desc->d_rvbyte); printf(" maxcyl/head/sect %d/%d/%d, maxvsect %d, inter %d\n", desc->d_maxcyl, desc->d_maxhead, desc->d_maxsect, desc->d_maxvsectl, desc->d_interleave); printf("%s", sc->sc_dev.dv_xname); } #endif /* * Take care of a couple of anomolies: * 1. 7945A and 7946A both return same HW id * 2. 9122S and 9134D both return same HW id * 3. 9122D and 9134L both return same HW id */ switch (ha->ha_id) { case HD7946AID: if (bcmp(name, "079450", 6) == 0) id = HD7945A; else id = HD7946A; break; case HD9134LID: if (bcmp(name, "091340", 6) == 0) id = HD9134L; else id = HD9122D; break; case HD9134DID: if (bcmp(name, "091220", 6) == 0) id = HD9122S; else id = HD9134D; break; } sc->sc_type = id; /* * XXX We use DEV_BSIZE instead of the sector size value pulled * XXX off the driver because all of this code assumes 512 byte * XXX blocks. ICK! */ printf(": %s\n", hdidentinfo[id].ri_desc); printf("%s: %d cylinders, %d heads, %d blocks, %d bytes/block\n", sc->sc_dev.dv_xname, hdidentinfo[id].ri_ncyl, hdidentinfo[id].ri_ntpc, hdidentinfo[id].ri_nblocks, DEV_BSIZE); return (1); } void hdreset(rs) struct hd_softc *rs; { int ctlr = rs->sc_dev.dv_parent->dv_unit; int slave = rs->sc_slave; u_char stat; rs->sc_clear.c_unit = C_SUNIT(rs->sc_punit); rs->sc_clear.c_cmd = C_CLEAR; hpibsend(ctlr, slave, C_TCMD, &rs->sc_clear, sizeof(rs->sc_clear)); hpibswait(ctlr, slave); hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat)); rs->sc_src.c_unit = C_SUNIT(HDCTLR); rs->sc_src.c_nop = C_NOP; rs->sc_src.c_cmd = C_SREL; rs->sc_src.c_param = C_REL; hpibsend(ctlr, slave, C_CMD, &rs->sc_src, sizeof(rs->sc_src)); hpibswait(ctlr, slave); hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat)); rs->sc_ssmc.c_unit = C_SUNIT(rs->sc_punit); rs->sc_ssmc.c_cmd = C_SSM; rs->sc_ssmc.c_refm = REF_MASK; rs->sc_ssmc.c_fefm = FEF_MASK; rs->sc_ssmc.c_aefm = AEF_MASK; rs->sc_ssmc.c_iefm = IEF_MASK; hpibsend(ctlr, slave, C_CMD, &rs->sc_ssmc, sizeof(rs->sc_ssmc)); hpibswait(ctlr, slave); hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat)); #ifdef DEBUG rs->sc_stats.hdresets++; #endif } /* * Read or constuct a disklabel */ int hdgetinfo(dev, rs, lp, spoofonly) dev_t dev; struct hd_softc *rs; struct disklabel *lp; int spoofonly; { char *errstring; /* * Create a default disk label based on geometry. * This will get overridden if there is a real label on the disk. */ bzero((caddr_t)lp, sizeof *lp); lp->d_type = DTYPE_HPIB; strncpy(lp->d_typename, hdidentinfo[rs->sc_type].ri_desc, sizeof(lp->d_typename) - 1); strcpy(lp->d_packname, "fictitious"); lp->d_secsize = DEV_BSIZE; lp->d_rpm = 3600; lp->d_interleave = 1; if (rs->sc_type > -1) { lp->d_nsectors = hdidentinfo[rs->sc_type].ri_nbpt; lp->d_ntracks = hdidentinfo[rs->sc_type].ri_ntpc; lp->d_ncylinders = hdidentinfo[rs->sc_type].ri_ncyl; lp->d_secperunit = hdidentinfo[rs->sc_type].ri_nblocks; } else { lp->d_nsectors = 32; lp->d_ntracks = 20; lp->d_ncylinders = 1; } lp->d_secpercyl = lp->d_nsectors * lp->d_ntracks; /* XXX - these values for BBSIZE and SBSIZE assume ffs */ lp->d_bbsize = BBSIZE; lp->d_sbsize = SBSIZE; lp->d_partitions[RAW_PART].p_offset = 0; lp->d_partitions[RAW_PART].p_size = lp->d_secperunit * (lp->d_secsize / DEV_BSIZE); lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; lp->d_npartitions = RAW_PART + 1; lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(lp); /* * Now try to read the disklabel */ errstring = readdisklabel(hdlabdev(dev), hdstrategy, lp, NULL, spoofonly); if (errstring) { printf("%s: WARNING: %s, defining `c' partition as entire disk\n", rs->sc_dev.dv_xname, errstring); /* XXX reset partition info as readdisklabel screws with it */ lp->d_partitions[0].p_size = 0; lp->d_partitions[RAW_PART].p_offset = 0; lp->d_partitions[RAW_PART].p_size = lp->d_secperunit * (lp->d_secsize / DEV_BSIZE); lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; lp->d_npartitions = RAW_PART + 1; lp->d_checksum = dkcksum(lp); } return(0); } int hdopen(dev, flags, mode, p) dev_t dev; int flags, mode; struct proc *p; { int unit = hdunit(dev); struct hd_softc *rs; int error, mask, part; if (unit >= hd_cd.cd_ndevs || (rs = hd_cd.cd_devs[unit]) == NULL || (rs->sc_flags & HDF_ALIVE) == 0) return (ENXIO); /* * Wait for any pending opens/closes to complete */ while (rs->sc_flags & (HDF_OPENING|HDF_CLOSING)) sleep((caddr_t)rs, PRIBIO); /* * On first open, get label and partition info. * We may block reading the label, so be careful * to stop any other opens. */ if (rs->sc_dkdev.dk_openmask == 0) { rs->sc_flags |= HDF_OPENING; error = hdgetinfo(dev, rs, rs->sc_dkdev.dk_label, 0); rs->sc_flags &= ~HDF_OPENING; wakeup((caddr_t)rs); if (error) return(error); } part = hdpart(dev); mask = 1 << part; /* Check that the partition exists. */ if (part != RAW_PART && (part > rs->sc_dkdev.dk_label->d_npartitions || rs->sc_dkdev.dk_label->d_partitions[part].p_fstype == FS_UNUSED)) return (ENXIO); /* Ensure only one open at a time. */ switch (mode) { case S_IFCHR: rs->sc_dkdev.dk_copenmask |= mask; break; case S_IFBLK: rs->sc_dkdev.dk_bopenmask |= mask; break; } rs->sc_dkdev.dk_openmask = rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask; return(0); } int hdclose(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { int unit = hdunit(dev); struct hd_softc *rs = hd_cd.cd_devs[unit]; struct disk *dk = &rs->sc_dkdev; int mask, s; mask = 1 << hdpart(dev); if (mode == S_IFCHR) dk->dk_copenmask &= ~mask; else dk->dk_bopenmask &= ~mask; dk->dk_openmask = dk->dk_copenmask | dk->dk_bopenmask; /* * On last close, we wait for all activity to cease since * the label/parition info will become invalid. Since we * might sleep, we must block any opens while we are here. * Note we don't have to about other closes since we know * we are the last one. */ if (dk->dk_openmask == 0) { rs->sc_flags |= HDF_CLOSING; s = splbio(); while (rs->sc_tab.b_active) { rs->sc_flags |= HDF_WANTED; sleep((caddr_t)&rs->sc_tab, PRIBIO); } splx(s); rs->sc_flags &= ~(HDF_CLOSING); wakeup((caddr_t)rs); } return(0); } void hdstrategy(bp) struct buf *bp; { int unit = hdunit(bp->b_dev); struct hd_softc *rs = hd_cd.cd_devs[unit]; struct buf *dp = &rs->sc_tab; struct partition *pinfo; daddr_t bn; int sz, s; int offset; #ifdef DEBUG if (hddebug & HDB_FOLLOW) printf("hdstrategy(%x): dev %x, bn %x, bcount %lx, %c\n", bp, bp->b_dev, bp->b_blkno, bp->b_bcount, (bp->b_flags & B_READ) ? 'R' : 'W'); #endif bn = bp->b_blkno; sz = howmany(bp->b_bcount, DEV_BSIZE); pinfo = &rs->sc_dkdev.dk_label->d_partitions[hdpart(bp->b_dev)]; /* Don't perform partition translation on RAW_PART. */ offset = (hdpart(bp->b_dev) == RAW_PART) ? 0 : pinfo->p_offset; if (hdpart(bp->b_dev) != RAW_PART) { /* * XXX This block of code belongs in * XXX bounds_check_with_label() */ if (bn < 0 || bn + sz > pinfo->p_size) { sz = pinfo->p_size - bn; if (sz == 0) { bp->b_resid = bp->b_bcount; goto done; } if (sz < 0) { bp->b_error = EINVAL; goto bad; } bp->b_bcount = dbtob(sz); } /* * Check for write to write protected label */ if (bn + offset <= LABELSECTOR && #if LABELSECTOR != 0 bn + offset + sz > LABELSECTOR && #endif !(bp->b_flags & B_READ) && !(rs->sc_flags & HDF_WLABEL)) { bp->b_error = EROFS; goto bad; } } bp->b_cylin = bn + offset; s = splbio(); disksort(dp, bp); if (dp->b_active == 0) { dp->b_active = 1; hdustart(rs); } splx(s); return; bad: bp->b_flags |= B_ERROR; done: s = splbio(); biodone(bp); splx(s); } /* * Called via timeout(9) when handling maintenance releases */ void hdrestart(arg) void *arg; { int s = splbio(); hdustart((struct hd_softc *)arg); splx(s); } void hdustart(rs) struct hd_softc *rs; { struct buf *bp; bp = rs->sc_tab.b_actf; rs->sc_addr = bp->b_un.b_addr; rs->sc_resid = bp->b_bcount; if (hpibreq(rs->sc_dev.dv_parent, &rs->sc_hq)) hdstart(rs); } struct buf * hdfinish(rs, bp) struct hd_softc *rs; struct buf *bp; { struct buf *dp = &rs->sc_tab; dp->b_errcnt = 0; dp->b_actf = bp->b_actf; bp->b_resid = 0; biodone(bp); hpibfree(rs->sc_dev.dv_parent, &rs->sc_hq); if (dp->b_actf) return (dp->b_actf); dp->b_active = 0; if (rs->sc_flags & HDF_WANTED) { rs->sc_flags &= ~HDF_WANTED; wakeup((caddr_t)dp); } return (NULL); } void hdstart(arg) void *arg; { struct hd_softc *rs = arg; struct buf *bp = rs->sc_tab.b_actf; int part, ctlr, slave; ctlr = rs->sc_dev.dv_parent->dv_unit; slave = rs->sc_slave; again: #ifdef DEBUG if (hddebug & HDB_FOLLOW) printf("hdstart(%s): bp %p, %c\n", rs->sc_dev.dv_xname, bp, (bp->b_flags & B_READ) ? 'R' : 'W'); #endif part = hdpart(bp->b_dev); rs->sc_flags |= HDF_SEEK; rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit); rs->sc_ioc.c_volume = C_SVOL(0); rs->sc_ioc.c_saddr = C_SADDR; rs->sc_ioc.c_hiaddr = 0; rs->sc_ioc.c_addr = HDBTOS(bp->b_cylin); rs->sc_ioc.c_nop2 = C_NOP; rs->sc_ioc.c_slen = C_SLEN; rs->sc_ioc.c_len = rs->sc_resid; rs->sc_ioc.c_cmd = bp->b_flags & B_READ ? C_READ : C_WRITE; #ifdef DEBUG if (hddebug & HDB_IO) printf("hdstart: hpibsend(%x, %x, %x, %p, %x)\n", ctlr, slave, C_CMD, &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2); #endif if (hpibsend(ctlr, slave, C_CMD, &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2) == sizeof(rs->sc_ioc)-2) { /* Instrumentation. */ disk_busy(&rs->sc_dkdev); rs->sc_dkdev.dk_seek++; #ifdef DEBUG if (hddebug & HDB_IO) printf("hdstart: hpibawait(%x)\n", ctlr); #endif hpibawait(ctlr); return; } /* * Experience has shown that the hpibwait in this hpibsend will * occasionally timeout. It appears to occur mostly on old 7914 * drives with full maintenance tracks. We should probably * integrate this with the backoff code in hderror. */ #ifdef DEBUG if (hddebug & HDB_ERROR) printf("%s: hdstart: cmd %x adr %lx blk %d len %d ecnt %ld\n", rs->sc_dev.dv_xname, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr, bp->b_blkno, rs->sc_resid, rs->sc_tab.b_errcnt); rs->sc_stats.hdretries++; #endif rs->sc_flags &= ~HDF_SEEK; hdreset(rs); if (rs->sc_tab.b_errcnt++ < HDRETRY) goto again; printf("%s: hdstart err: err: cmd 0x%x sect %ld blk %d len %d\n", rs->sc_dev.dv_xname, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr, bp->b_blkno, rs->sc_resid); bp->b_flags |= B_ERROR; bp->b_error = EIO; bp = hdfinish(rs, bp); if (bp) { rs->sc_addr = bp->b_un.b_addr; rs->sc_resid = bp->b_bcount; if (hpibreq(rs->sc_dev.dv_parent, &rs->sc_hq)) goto again; } } void hdgo(arg) void *arg; { struct hd_softc *rs = arg; struct buf *bp = rs->sc_tab.b_actf; int rw, ctlr, slave; ctlr = rs->sc_dev.dv_parent->dv_unit; slave = rs->sc_slave; rw = bp->b_flags & B_READ; /* Instrumentation. */ disk_busy(&rs->sc_dkdev); #ifdef USELEDS ledcontrol(0, 0, LED_DISK); #endif hpibgo(ctlr, slave, C_EXEC, rs->sc_addr, rs->sc_resid, rw, rw != 0); } /* ARGSUSED */ void hdinterupt(arg) void *arg; { struct hd_softc *rs = arg; int unit = rs->sc_dev.dv_unit; struct buf *bp = rs->sc_tab.b_actf; u_char stat = 13; /* in case hpibrecv fails */ int rv, restart, ctlr, slave; ctlr = rs->sc_dev.dv_parent->dv_unit; slave = rs->sc_slave; #ifdef DEBUG if (hddebug & HDB_FOLLOW) printf("hdinterupt(%d): bp %p, %c, flags %x\n", unit, bp, (bp->b_flags & B_READ) ? 'R' : 'W', rs->sc_flags); if (bp == NULL) { printf("%s: bp == NULL\n", rs->sc_dev.dv_xname); return; } #endif disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid)); if (rs->sc_flags & HDF_SEEK) { rs->sc_flags &= ~HDF_SEEK; if (hpibustart(ctlr)) hdgo(rs); return; } if ((rs->sc_flags & HDF_SWAIT) == 0) { #ifdef DEBUG rs->sc_stats.hdpolltries++; #endif if (hpibpptest(ctlr, slave) == 0) { #ifdef DEBUG rs->sc_stats.hdpollwaits++; #endif /* Instrumentation. */ disk_busy(&rs->sc_dkdev); rs->sc_flags |= HDF_SWAIT; hpibawait(ctlr); return; } } else rs->sc_flags &= ~HDF_SWAIT; rv = hpibrecv(ctlr, slave, C_QSTAT, &stat, 1); if (rv != 1 || stat) { #ifdef DEBUG if (hddebug & HDB_ERROR) printf("hdinterupt: recv failed or bad stat %d\n", stat); #endif restart = hderror(unit); #ifdef DEBUG rs->sc_stats.hdretries++; #endif if (rs->sc_tab.b_errcnt++ < HDRETRY) { if (restart) hdstart(rs); return; } bp->b_flags |= B_ERROR; bp->b_error = EIO; } if (hdfinish(rs, bp)) hdustart(rs); } int hdstatus(rs) struct hd_softc *rs; { int c, s; u_char stat; int rv; c = rs->sc_dev.dv_parent->dv_unit; s = rs->sc_slave; rs->sc_rsc.c_unit = C_SUNIT(rs->sc_punit); rs->sc_rsc.c_sram = C_SRAM; rs->sc_rsc.c_ram = C_RAM; rs->sc_rsc.c_cmd = C_STATUS; bzero((caddr_t)&rs->sc_stat, sizeof(rs->sc_stat)); rv = hpibsend(c, s, C_CMD, &rs->sc_rsc, sizeof(rs->sc_rsc)); if (rv != sizeof(rs->sc_rsc)) { #ifdef DEBUG if (hddebug & HDB_STATUS) printf("hdstatus: send C_CMD failed %d != %d\n", rv, sizeof(rs->sc_rsc)); #endif return(1); } rv = hpibrecv(c, s, C_EXEC, &rs->sc_stat, sizeof(rs->sc_stat)); if (rv != sizeof(rs->sc_stat)) { #ifdef DEBUG if (hddebug & HDB_STATUS) printf("hdstatus: send C_EXEC failed %d != %d\n", rv, sizeof(rs->sc_stat)); #endif return(1); } rv = hpibrecv(c, s, C_QSTAT, &stat, 1); if (rv != 1 || stat) { #ifdef DEBUG if (hddebug & HDB_STATUS) printf("hdstatus: recv failed %d or bad stat %d\n", rv, stat); #endif return(1); } return(0); } /* * Deal with errors. * Returns 1 if request should be restarted, * 0 if we should just quietly give up. */ int hderror(unit) int unit; { struct hd_softc *rs = hd_cd.cd_devs[unit]; struct hd_stat *sp; struct buf *bp; daddr_t hwbn, pbn; if (hdstatus(rs)) { #ifdef DEBUG printf("%s: couldn't get status\n", rs->sc_dev.dv_xname); #endif hdreset(rs); return(1); } sp = &rs->sc_stat; if (sp->c_fef & FEF_REXMT) return(1); if (sp->c_fef & FEF_PF) { hdreset(rs); return(1); } /* * Unit requests release for internal maintenance. * We just delay awhile and try again later. Use expontially * increasing backoff ala ethernet drivers since we don't really * know how long the maintenance will take. With HDWAITC and * HDRETRY as defined, the range is 1 to 32 seconds. */ if (sp->c_fef & FEF_IMR) { extern int hz; int hdtimo = HDWAITC << rs->sc_tab.b_errcnt; #ifdef DEBUG printf("%s: internal maintenance, %d second timeout\n", rs->sc_dev.dv_xname, hdtimo); rs->sc_stats.hdtimeouts++; #endif hpibfree(rs->sc_dev.dv_parent, &rs->sc_hq); timeout_add(&rs->sc_timeout, hdtimo * hz); return(0); } /* * Only report error if we have reached the error reporting * threshhold. By default, this will only report after the * retry limit has been exceeded. */ if (rs->sc_tab.b_errcnt < hderrthresh) return(1); /* * First conjure up the block number at which the error occurred. * Note that not all errors report a block number, in that case * we just use b_blkno. */ bp = rs->sc_tab.b_actf; pbn = rs->sc_dkdev.dk_label->d_partitions[hdpart(bp->b_dev)].p_offset; if ((sp->c_fef & FEF_CU) || (sp->c_fef & FEF_DR) || (sp->c_ief & IEF_RRMASK)) { hwbn = HDBTOS(pbn + bp->b_blkno); pbn = bp->b_blkno; } else { hwbn = sp->c_blk; pbn = HDSTOB(hwbn) - pbn; } /* * Now output a generic message suitable for badsect. * Note that we don't use harderr cuz it just prints * out b_blkno which is just the beginning block number * of the transfer, not necessary where the error occurred. */ printf("%s%c: hard error sn%d\n", rs->sc_dev.dv_xname, 'a'+hdpart(bp->b_dev), pbn); /* * Now report the status as returned by the hardware with * attempt at interpretation (unless debugging). */ printf("%s %s error:", rs->sc_dev.dv_xname, (bp->b_flags & B_READ) ? "read" : "write"); #ifdef DEBUG if (hddebug & HDB_ERROR) { /* status info */ printf("\n volume: %d, unit: %d\n", (sp->c_vu>>4)&0xF, sp->c_vu&0xF); hdprinterr("reject", sp->c_ref, err_reject); hdprinterr("fault", sp->c_fef, err_fault); hdprinterr("access", sp->c_aef, err_access); hdprinterr("info", sp->c_ief, err_info); printf(" block: %d, P1-P10: ", hwbn); printf("0x%x", *(u_int *)&sp->c_raw[0]); printf("0x%x", *(u_int *)&sp->c_raw[4]); printf("0x%x\n", *(u_short *)&sp->c_raw[8]); /* command */ printf(" ioc: "); printf("0x%x", *(u_int *)&rs->sc_ioc.c_pad); printf("0x%x", *(u_short *)&rs->sc_ioc.c_hiaddr); printf("0x%x", *(u_int *)&rs->sc_ioc.c_addr); printf("0x%x", *(u_short *)&rs->sc_ioc.c_nop2); printf("0x%x", *(u_int *)&rs->sc_ioc.c_len); printf("0x%x\n", *(u_short *)&rs->sc_ioc.c_cmd); return (1); } #endif printf(" v%d u%d, R0x%x F0x%x A0x%x I0x%x\n", (sp->c_vu>>4)&0xF, sp->c_vu&0xF, sp->c_ref, sp->c_fef, sp->c_aef, sp->c_ief); printf("P1-P10: "); printf("0x%x", *(u_int *)&sp->c_raw[0]); printf("0x%x", *(u_int *)&sp->c_raw[4]); printf("0x%x\n", *(u_short *)&sp->c_raw[8]); return (1); } int hdread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (physio(hdstrategy, NULL, dev, B_READ, minphys, uio)); } int hdwrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (physio(hdstrategy, NULL, dev, B_WRITE, minphys, uio)); } int hdioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; caddr_t data; int flag; struct proc *p; { int unit = hdunit(dev); struct hd_softc *sc = hd_cd.cd_devs[unit]; struct disklabel *lp = sc->sc_dkdev.dk_label; int error, flags; switch (cmd) { case DIOCGPDINFO: error = hdgetinfo(dev, sc, (struct disklabel *)data, 1); return (error); case DIOCGDINFO: *(struct disklabel *)data = *lp; return (0); case DIOCGPART: ((struct partinfo *)data)->disklab = lp; ((struct partinfo *)data)->part = &lp->d_partitions[hdpart(dev)]; return (0); case DIOCWLABEL: if ((flag & FWRITE) == 0) return (EBADF); if (*(int *)data) sc->sc_flags |= HDF_WLABEL; else sc->sc_flags &= ~HDF_WLABEL; return (0); case DIOCSDINFO: if ((flag & FWRITE) == 0) return (EBADF); return (setdisklabel(lp, (struct disklabel *)data, (sc->sc_flags & HDF_WLABEL) ? 0 : sc->sc_dkdev.dk_openmask, (struct cpu_disklabel *)0)); case DIOCWDINFO: if ((flag & FWRITE) == 0) return (EBADF); error = setdisklabel(lp, (struct disklabel *)data, (sc->sc_flags & HDF_WLABEL) ? 0 : sc->sc_dkdev.dk_openmask, (struct cpu_disklabel *)0); if (error) return (error); flags = sc->sc_flags; sc->sc_flags = HDF_ALIVE | HDF_WLABEL; error = writedisklabel(hdlabdev(dev), hdstrategy, lp, (struct cpu_disklabel *)0); sc->sc_flags = flags; return (error); } return(EINVAL); } int hdsize(dev) dev_t dev; { int unit = hdunit(dev); struct hd_softc *rs; int psize, didopen = 0; if (unit >= hd_cd.cd_ndevs || (rs = hd_cd.cd_devs[unit]) == NULL || (rs->sc_flags & HDF_ALIVE) == 0) return (-1); /* * We get called very early on (via swapconf) * without the device being open so we may need * to handle it here. */ if (rs->sc_dkdev.dk_openmask == 0) { if (hdopen(dev, FREAD|FWRITE, S_IFBLK, NULL)) return(-1); didopen = 1; } psize = rs->sc_dkdev.dk_label->d_partitions[hdpart(dev)].p_size * (rs->sc_dkdev.dk_label->d_secsize / DEV_BSIZE); if (didopen) (void) hdclose(dev, FREAD|FWRITE, S_IFBLK, NULL); return (psize); } #ifdef DEBUG void hdprinterr(str, err, tab) char *str; short err; char **tab; { int i; int printed; if (err == 0) return; printf(" %s error %d field:", str, err); printed = 0; for (i = 0; i < 16; i++) if (err & (0x8000 >> i)) printf("%s%s", printed++ ? " + " : " ", tab[i]); printf("\n"); } #endif static int hddoingadump; /* simple mutex */ /* * Non-interrupt driven, non-dma dump routine. */ int hddump(dev, blkno, va, size) dev_t dev; daddr_t blkno; caddr_t va; size_t size; { int sectorsize; /* size of a disk sector */ int nsects; /* number of sectors in partition */ int sectoff; /* sector offset of partition */ int totwrt; /* total number of sectors left to write */ int nwrt; /* current number of sectors to write */ int unit, part; int ctlr, slave; struct hd_softc *rs; struct disklabel *lp; char stat; /* Check for recursive dump; if so, punt. */ if (hddoingadump) return (EFAULT); hddoingadump = 1; /* Decompose unit and partition. */ unit = hdunit(dev); part = hdpart(dev); /* Make sure dump device is ok. */ if (unit >= hd_cd.cd_ndevs || (rs = hd_cd.cd_devs[unit]) == NULL || (rs->sc_flags & HDF_ALIVE) == 0) return (ENXIO); ctlr = rs->sc_dev.dv_parent->dv_unit; slave = rs->sc_slave; /* * Convert to disk sectors. Request must be a multiple of size. */ lp = rs->sc_dkdev.dk_label; sectorsize = lp->d_secsize; if ((size % sectorsize) != 0) return (EFAULT); totwrt = size / sectorsize; blkno = dbtob(blkno) / sectorsize; /* blkno in DEV_BSIZE units */ nsects = lp->d_partitions[part].p_size; sectoff = lp->d_partitions[part].p_offset; /* Check transfer bounds against partition size. */ if ((blkno < 0) || (blkno + totwrt) > nsects) return (EINVAL); /* Offset block number to start of partition. */ blkno += sectoff; while (totwrt > 0) { nwrt = totwrt; /* XXX */ #ifndef HD_DUMP_NOT_TRUSTED /* * Fill out and send HPIB command. */ rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit); rs->sc_ioc.c_volume = C_SVOL(0); rs->sc_ioc.c_saddr = C_SADDR; rs->sc_ioc.c_hiaddr = 0; rs->sc_ioc.c_addr = HDBTOS(blkno); rs->sc_ioc.c_nop2 = C_NOP; rs->sc_ioc.c_slen = C_SLEN; rs->sc_ioc.c_len = nwrt * sectorsize; rs->sc_ioc.c_cmd = C_WRITE; hpibsend(ctlr, slave, C_CMD, &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2); if (hpibswait(ctlr, slave)) return (EIO); /* * Send the data. */ hpibsend(ctlr, slave, C_EXEC, va, nwrt * sectorsize); (void) hpibswait(ctlr, slave); hpibrecv(ctlr, slave, C_QSTAT, &stat, 1); if (stat) return (EIO); #else /* HD_DUMP_NOT_TRUSTED */ /* Let's just talk about this first... */ printf("%s: dump addr %p, blk %d\n", sc->sc_dev.dv_xname, va, blkno); delay(500 * 1000); /* half a second */ #endif /* HD_DUMP_NOT_TRUSTED */ /* update block count */ totwrt -= nwrt; blkno += nwrt; va += sectorsize * nwrt; } hddoingadump = 0; return (0); }