/* $NetBSD: rd.c,v 1.13 1995/10/09 07:57:46 thorpej Exp $ */ /* * Copyright (c) 1988 University of Utah. * Copyright (c) 1982, 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: rd.c 1.44 92/12/26$ * * @(#)rd.c 8.2 (Berkeley) 5/19/94 */ /* * CS80/SS80 disk driver */ #include "rd.h" #if NRD > 0 #include #include #include #include #include #include #include #include #include #include #include #ifdef USELEDS #include #endif #include #include #include #include int rdinit(), rdstart(), rdgo(), rdintr(); void rdstrategy(); struct driver rddriver = { rdinit, "rd", rdstart, rdgo, rdintr, }; struct rd_softc rd_softc[NRD]; struct buf rdtab[NRD]; int rderrthresh = RDRETRY-1; /* when to start reporting errors */ #ifdef DEBUG /* error message tables */ char *err_reject[] = { 0, 0, "channel parity error", /* 0x2000 */ 0, 0, "illegal opcode", /* 0x0400 */ "module addressing", /* 0x0200 */ "address bounds", /* 0x0100 */ "parameter bounds", /* 0x0080 */ "illegal parameter", /* 0x0040 */ "message sequence", /* 0x0020 */ 0, "message length", /* 0x0008 */ 0, 0, 0 }; char *err_fault[] = { 0, "cross unit", /* 0x4000 */ 0, "controller fault", /* 0x1000 */ 0, 0, "unit fault", /* 0x0200 */ 0, "diagnostic result", /* 0x0080 */ 0, "operator release request", /* 0x0020 */ "diagnostic release request", /* 0x0010 */ "internal maintenance release request", /* 0x0008 */ 0, "power fail", /* 0x0002 */ "retransmit" /* 0x0001 */ }; char *err_access[] = { "illegal parallel operation", /* 0x8000 */ "uninitialized media", /* 0x4000 */ "no spares available", /* 0x2000 */ "not ready", /* 0x1000 */ "write protect", /* 0x0800 */ "no data found", /* 0x0400 */ 0, 0, "unrecoverable data overflow", /* 0x0080 */ "unrecoverable data", /* 0x0040 */ 0, "end of file", /* 0x0010 */ "end of volume", /* 0x0008 */ 0, 0, 0 }; char *err_info[] = { "operator release request", /* 0x8000 */ "diagnostic release request", /* 0x4000 */ "internal maintenance release request", /* 0x2000 */ "media wear", /* 0x1000 */ "latency induced", /* 0x0800 */ 0, 0, "auto sparing invoked", /* 0x0100 */ 0, "recoverable data overflow", /* 0x0040 */ "marginal data", /* 0x0020 */ "recoverable data", /* 0x0010 */ 0, "maintenance track overflow", /* 0x0004 */ 0, 0 }; struct rdstats rdstats[NRD]; int rddebug = 0x80; #define RDB_FOLLOW 0x01 #define RDB_STATUS 0x02 #define RDB_IDENT 0x04 #define RDB_IO 0x08 #define RDB_ASYNC 0x10 #define RDB_ERROR 0x80 #endif /* * Misc. HW description, indexed by sc_type. * Nothing really critical here, could do without it. */ struct rdidentinfo rdidentinfo[] = { { RD7946AID, 0, "7945A", 108416 }, { RD9134DID, 1, "9134D", 29088 }, { RD9134LID, 1, "9122S", 1232 }, { RD7912PID, 0, "7912P", 128128 }, { RD7914PID, 0, "7914P", 258048 }, { RD7958AID, 0, "7958A", 255276 }, { RD7957AID, 0, "7957A", 159544 }, { RD7933HID, 0, "7933H", 789958 }, { RD9134LID, 1, "9134L", 77840 }, { RD7936HID, 0, "7936H", 600978 }, { RD7937HID, 0, "7937H", 1116102 }, { RD7914CTID, 0, "7914CT", 258048 }, { RD7946AID, 0, "7946A", 108416 }, { RD9134LID, 1, "9122D", 1232 }, { RD7957BID, 0, "7957B", 159894 }, { RD7958BID, 0, "7958B", 297108 }, { RD7959BID, 0, "7959B", 594216 }, { RD2200AID, 0, "2200A", 654948 }, { RD2203AID, 0, "2203A", 1309896 } }; int numrdidentinfo = sizeof(rdidentinfo) / sizeof(rdidentinfo[0]); rdinit(hd) register struct hp_device *hd; { register struct rd_softc *rs = &rd_softc[hd->hp_unit]; rs->sc_hd = hd; rs->sc_punit = rdpunit(hd->hp_flags); rs->sc_type = rdident(rs, hd); if (rs->sc_type < 0) return(0); rs->sc_dq.dq_ctlr = hd->hp_ctlr; rs->sc_dq.dq_unit = hd->hp_unit; rs->sc_dq.dq_slave = hd->hp_slave; rs->sc_dq.dq_driver = &rddriver; rs->sc_flags = RDF_ALIVE; #ifdef DEBUG /* always report errors */ if (rddebug & RDB_ERROR) rderrthresh = 0; #endif return(1); } rdident(rs, hd) struct rd_softc *rs; struct hp_device *hd; { struct rd_describe desc; u_char stat, cmd[3]; int unit, lunit; char name[7]; register int ctlr, slave, id, i; ctlr = hd->hp_ctlr; slave = hd->hp_slave; unit = rs->sc_punit; lunit = hd->hp_unit; /* * Grab device id and make sure: * 1. It is a CS80 device. * 2. It is one of the types we support. * 3. If it is a 7946, we are accessing the disk unit (0) */ id = hpibid(ctlr, slave); #ifdef DEBUG if (rddebug & RDB_IDENT) printf("hpibid(%d, %d) -> %x\n", ctlr, slave, id); #endif if ((id & 0x200) == 0) return(-1); for (i = 0; i < numrdidentinfo; i++) if (id == rdidentinfo[i].ri_hwid) break; if (i == numrdidentinfo || unit > rdidentinfo[i].ri_maxunum) return(-1); id = i; /* * Reset drive and collect device description. * Don't really use the description info right now but * might come in handy in the future (for disk labels). */ rdreset(rs, hd); cmd[0] = C_SUNIT(unit); cmd[1] = C_SVOL(0); cmd[2] = C_DESC; hpibsend(ctlr, slave, C_CMD, cmd, sizeof(cmd)); hpibrecv(ctlr, slave, C_EXEC, &desc, 37); hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat)); bzero(name, sizeof(name)); if (!stat) { register int n = desc.d_name; for (i = 5; i >= 0; i--) { name[i] = (n & 0xf) + '0'; n >>= 4; } /* use drive characteristics to calculate xfer rate */ rs->sc_wpms = 1000000 * (desc.d_sectsize/2) / desc.d_blocktime; } #ifdef DEBUG if (rddebug & RDB_IDENT) { printf("rd%d: name: %x ('%s')\n", lunit, desc.d_name, name); printf(" iuw %x, maxxfr %d, ctype %d\n", desc.d_iuw, desc.d_cmaxxfr, desc.d_ctype); printf(" utype %d, bps %d, blkbuf %d, burst %d, blktime %d\n", desc.d_utype, desc.d_sectsize, desc.d_blkbuf, desc.d_burstsize, desc.d_blocktime); printf(" avxfr %d, ort %d, atp %d, maxint %d, fv %x, rv %x\n", desc.d_uavexfr, desc.d_retry, desc.d_access, desc.d_maxint, desc.d_fvbyte, desc.d_rvbyte); printf(" maxcyl/head/sect %d/%d/%d, maxvsect %d, inter %d\n", desc.d_maxcyl, desc.d_maxhead, desc.d_maxsect, desc.d_maxvsectl, desc.d_interleave); } #endif /* * Take care of a couple of anomolies: * 1. 7945A and 7946A both return same HW id * 2. 9122S and 9134D both return same HW id * 3. 9122D and 9134L both return same HW id */ switch (rdidentinfo[id].ri_hwid) { case RD7946AID: if (bcmp(name, "079450", 6) == 0) id = RD7945A; else id = RD7946A; break; case RD9134LID: if (bcmp(name, "091340", 6) == 0) id = RD9134L; else id = RD9122D; break; case RD9134DID: if (bcmp(name, "091220", 6) == 0) id = RD9122S; else id = RD9134D; break; } printf("rd%d: %s\n", lunit, rdidentinfo[id].ri_desc); return(id); } rdreset(rs, hd) register struct rd_softc *rs; register struct hp_device *hd; { u_char stat; rs->sc_clear.c_unit = C_SUNIT(rs->sc_punit); rs->sc_clear.c_cmd = C_CLEAR; hpibsend(hd->hp_ctlr, hd->hp_slave, C_TCMD, &rs->sc_clear, sizeof(rs->sc_clear)); hpibswait(hd->hp_ctlr, hd->hp_slave); hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat)); rs->sc_src.c_unit = C_SUNIT(RDCTLR); rs->sc_src.c_nop = C_NOP; rs->sc_src.c_cmd = C_SREL; rs->sc_src.c_param = C_REL; hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_src, sizeof(rs->sc_src)); hpibswait(hd->hp_ctlr, hd->hp_slave); hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat)); rs->sc_ssmc.c_unit = C_SUNIT(rs->sc_punit); rs->sc_ssmc.c_cmd = C_SSM; rs->sc_ssmc.c_refm = REF_MASK; rs->sc_ssmc.c_fefm = FEF_MASK; rs->sc_ssmc.c_aefm = AEF_MASK; rs->sc_ssmc.c_iefm = IEF_MASK; hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_ssmc, sizeof(rs->sc_ssmc)); hpibswait(hd->hp_ctlr, hd->hp_slave); hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat)); #ifdef DEBUG rdstats[hd->hp_unit].rdresets++; #endif } /* * Read or constuct a disklabel */ int rdgetinfo(dev) dev_t dev; { int unit = rdunit(dev); register struct rd_softc *rs = &rd_softc[unit]; register struct disklabel *lp = &rs->sc_info.ri_label; register struct partition *pi; char *msg, *readdisklabel(); /* * Set some default values to use while reading the label * or to use if there isn't a label. */ bzero((caddr_t)lp, sizeof *lp); lp->d_type = DTYPE_HPIB; lp->d_secsize = DEV_BSIZE; lp->d_nsectors = 32; lp->d_ntracks = 20; lp->d_ncylinders = 1; lp->d_secpercyl = 32*20; lp->d_npartitions = 3; lp->d_partitions[2].p_offset = 0; lp->d_partitions[2].p_size = LABELSECTOR+1; /* * Now try to read the disklabel */ msg = readdisklabel(rdlabdev(dev), rdstrategy, lp); if (msg == NULL) return(0); pi = lp->d_partitions; printf("rd%d: WARNING: %s, ", unit, msg); #ifdef COMPAT_NOLABEL printf("using old default partitioning\n"); rdmakedisklabel(unit, lp); #else printf("defining `c' partition as entire disk\n"); pi[2].p_size = rdidentinfo[rs->sc_type].ri_nblocks; /* XXX reset other info since readdisklabel screws with it */ lp->d_npartitions = 3; pi[0].p_size = 0; #endif return(0); } int rdopen(dev, flags, mode, p) dev_t dev; int flags, mode; struct proc *p; { register int unit = rdunit(dev); register struct rd_softc *rs = &rd_softc[unit]; int error, mask; if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0) return(ENXIO); /* * Wait for any pending opens/closes to complete */ while (rs->sc_flags & (RDF_OPENING|RDF_CLOSING)) sleep((caddr_t)rs, PRIBIO); /* * On first open, get label and partition info. * We may block reading the label, so be careful * to stop any other opens. */ if (rs->sc_info.ri_open == 0) { rs->sc_flags |= RDF_OPENING; error = rdgetinfo(dev); rs->sc_flags &= ~RDF_OPENING; wakeup((caddr_t)rs); if (error) return(error); } if (rs->sc_hd->hp_dk >= 0) { /* guess at xfer rate based on 3600 rpm (60 rps) */ if (rs->sc_wpms == 0) rs->sc_wpms = 60 * rs->sc_info.ri_label.d_nsectors * DEV_BSIZE / 2; dk_wpms[rs->sc_hd->hp_dk] = rs->sc_wpms; } mask = 1 << rdpart(dev); if (mode == S_IFCHR) rs->sc_info.ri_copen |= mask; else rs->sc_info.ri_bopen |= mask; rs->sc_info.ri_open |= mask; return(0); } int rdclose(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { int unit = rdunit(dev); register struct rd_softc *rs = &rd_softc[unit]; register struct rdinfo *ri = &rs->sc_info; int mask, s; mask = 1 << rdpart(dev); if (mode == S_IFCHR) ri->ri_copen &= ~mask; else ri->ri_bopen &= ~mask; ri->ri_open = ri->ri_bopen | ri->ri_copen; /* * On last close, we wait for all activity to cease since * the label/parition info will become invalid. Since we * might sleep, we must block any opens while we are here. * Note we don't have to about other closes since we know * we are the last one. */ if (ri->ri_open == 0) { rs->sc_flags |= RDF_CLOSING; s = splbio(); while (rdtab[unit].b_active) { rs->sc_flags |= RDF_WANTED; sleep((caddr_t)&rdtab[unit], PRIBIO); } splx(s); rs->sc_flags &= ~(RDF_CLOSING|RDF_WLABEL); wakeup((caddr_t)rs); } return(0); } void rdstrategy(bp) register struct buf *bp; { int unit = rdunit(bp->b_dev); register struct rd_softc *rs = &rd_softc[unit]; register struct buf *dp = &rdtab[unit]; register struct partition *pinfo; register daddr_t bn; register int sz, s; #ifdef DEBUG if (rddebug & RDB_FOLLOW) printf("rdstrategy(%x): dev %x, bn %x, bcount %x, %c\n", bp, bp->b_dev, bp->b_blkno, bp->b_bcount, (bp->b_flags & B_READ) ? 'R' : 'W'); #endif bn = bp->b_blkno; sz = howmany(bp->b_bcount, DEV_BSIZE); pinfo = &rs->sc_info.ri_label.d_partitions[rdpart(bp->b_dev)]; if (bn < 0 || bn + sz > pinfo->p_size) { sz = pinfo->p_size - bn; if (sz == 0) { bp->b_resid = bp->b_bcount; goto done; } if (sz < 0) { bp->b_error = EINVAL; goto bad; } bp->b_bcount = dbtob(sz); } /* * Check for write to write protected label */ if (bn + pinfo->p_offset <= LABELSECTOR && #if LABELSECTOR != 0 bn + pinfo->p_offset + sz > LABELSECTOR && #endif !(bp->b_flags & B_READ) && !(rs->sc_flags & RDF_WLABEL)) { bp->b_error = EROFS; goto bad; } bp->b_cylin = bn + pinfo->p_offset; s = splbio(); disksort(dp, bp); if (dp->b_active == 0) { dp->b_active = 1; rdustart(unit); } splx(s); return; bad: bp->b_flags |= B_ERROR; done: biodone(bp); } /* * Called from timeout() when handling maintenance releases */ void rdrestart(arg) void *arg; { int s = splbio(); rdustart((int)arg); splx(s); } rdustart(unit) register int unit; { register struct buf *bp; register struct rd_softc *rs = &rd_softc[unit]; bp = rdtab[unit].b_actf; rs->sc_addr = bp->b_un.b_addr; rs->sc_resid = bp->b_bcount; if (hpibreq(&rs->sc_dq)) rdstart(unit); } struct buf * rdfinish(unit, rs, bp) int unit; register struct rd_softc *rs; register struct buf *bp; { register struct buf *dp = &rdtab[unit]; dp->b_errcnt = 0; dp->b_actf = bp->b_actf; bp->b_resid = 0; biodone(bp); hpibfree(&rs->sc_dq); if (dp->b_actf) return(dp->b_actf); dp->b_active = 0; if (rs->sc_flags & RDF_WANTED) { rs->sc_flags &= ~RDF_WANTED; wakeup((caddr_t)dp); } return(NULL); } rdstart(unit) register int unit; { register struct rd_softc *rs = &rd_softc[unit]; register struct buf *bp = rdtab[unit].b_actf; register struct hp_device *hp = rs->sc_hd; register int part; again: #ifdef DEBUG if (rddebug & RDB_FOLLOW) printf("rdstart(%d): bp %x, %c\n", unit, bp, (bp->b_flags & B_READ) ? 'R' : 'W'); #endif part = rdpart(bp->b_dev); rs->sc_flags |= RDF_SEEK; rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit); rs->sc_ioc.c_volume = C_SVOL(0); rs->sc_ioc.c_saddr = C_SADDR; rs->sc_ioc.c_hiaddr = 0; rs->sc_ioc.c_addr = RDBTOS(bp->b_cylin); rs->sc_ioc.c_nop2 = C_NOP; rs->sc_ioc.c_slen = C_SLEN; rs->sc_ioc.c_len = rs->sc_resid; rs->sc_ioc.c_cmd = bp->b_flags & B_READ ? C_READ : C_WRITE; #ifdef DEBUG if (rddebug & RDB_IO) printf("rdstart: hpibsend(%x, %x, %x, %x, %x)\n", hp->hp_ctlr, hp->hp_slave, C_CMD, &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2); #endif if (hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2) == sizeof(rs->sc_ioc)-2) { if (hp->hp_dk >= 0) { dk_busy |= 1 << hp->hp_dk; dk_seek[hp->hp_dk]++; } #ifdef DEBUG if (rddebug & RDB_IO) printf("rdstart: hpibawait(%x)\n", hp->hp_ctlr); #endif hpibawait(hp->hp_ctlr); return; } /* * Experience has shown that the hpibwait in this hpibsend will * occasionally timeout. It appears to occur mostly on old 7914 * drives with full maintenance tracks. We should probably * integrate this with the backoff code in rderror. */ #ifdef DEBUG if (rddebug & RDB_ERROR) printf("rd%d: rdstart: cmd %x adr %d blk %d len %d ecnt %d\n", unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr, bp->b_blkno, rs->sc_resid, rdtab[unit].b_errcnt); rdstats[unit].rdretries++; #endif rs->sc_flags &= ~RDF_SEEK; rdreset(rs, hp); if (rdtab[unit].b_errcnt++ < RDRETRY) goto again; printf("rd%d: rdstart err: cmd 0x%x sect %d blk %d len %d\n", unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr, bp->b_blkno, rs->sc_resid); bp->b_flags |= B_ERROR; bp->b_error = EIO; bp = rdfinish(unit, rs, bp); if (bp) { rs->sc_addr = bp->b_un.b_addr; rs->sc_resid = bp->b_bcount; if (hpibreq(&rs->sc_dq)) goto again; } } rdgo(unit) register int unit; { register struct rd_softc *rs = &rd_softc[unit]; register struct hp_device *hp = rs->sc_hd; struct buf *bp = rdtab[unit].b_actf; int rw; rw = bp->b_flags & B_READ; if (hp->hp_dk >= 0) { dk_busy |= 1 << hp->hp_dk; dk_xfer[hp->hp_dk]++; dk_wds[hp->hp_dk] += rs->sc_resid >> 6; } #ifdef USELEDS if (inledcontrol == 0) ledcontrol(0, 0, LED_DISK); #endif hpibgo(hp->hp_ctlr, hp->hp_slave, C_EXEC, rs->sc_addr, rs->sc_resid, rw, rw != 0); } rdintr(unit) register int unit; { register struct rd_softc *rs = &rd_softc[unit]; register struct buf *bp = rdtab[unit].b_actf; register struct hp_device *hp = rs->sc_hd; u_char stat = 13; /* in case hpibrecv fails */ int rv, restart; #ifdef DEBUG if (rddebug & RDB_FOLLOW) printf("rdintr(%d): bp %x, %c, flags %x\n", unit, bp, (bp->b_flags & B_READ) ? 'R' : 'W', rs->sc_flags); if (bp == NULL) { printf("rd%d: bp == NULL\n", unit); return; } #endif if (hp->hp_dk >= 0) dk_busy &= ~(1 << hp->hp_dk); if (rs->sc_flags & RDF_SEEK) { rs->sc_flags &= ~RDF_SEEK; if (hpibustart(hp->hp_ctlr)) rdgo(unit); return; } if ((rs->sc_flags & RDF_SWAIT) == 0) { #ifdef DEBUG rdstats[unit].rdpolltries++; #endif if (hpibpptest(hp->hp_ctlr, hp->hp_slave) == 0) { #ifdef DEBUG rdstats[unit].rdpollwaits++; #endif if (hp->hp_dk >= 0) dk_busy |= 1 << hp->hp_dk; rs->sc_flags |= RDF_SWAIT; hpibawait(hp->hp_ctlr); return; } } else rs->sc_flags &= ~RDF_SWAIT; rv = hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1); if (rv != 1 || stat) { #ifdef DEBUG if (rddebug & RDB_ERROR) printf("rdintr: recv failed or bad stat %d\n", stat); #endif restart = rderror(unit); #ifdef DEBUG rdstats[unit].rdretries++; #endif if (rdtab[unit].b_errcnt++ < RDRETRY) { if (restart) rdstart(unit); return; } bp->b_flags |= B_ERROR; bp->b_error = EIO; } if (rdfinish(unit, rs, bp)) rdustart(unit); } rdstatus(rs) register struct rd_softc *rs; { register int c, s; u_char stat; int rv; c = rs->sc_hd->hp_ctlr; s = rs->sc_hd->hp_slave; rs->sc_rsc.c_unit = C_SUNIT(rs->sc_punit); rs->sc_rsc.c_sram = C_SRAM; rs->sc_rsc.c_ram = C_RAM; rs->sc_rsc.c_cmd = C_STATUS; bzero((caddr_t)&rs->sc_stat, sizeof(rs->sc_stat)); rv = hpibsend(c, s, C_CMD, &rs->sc_rsc, sizeof(rs->sc_rsc)); if (rv != sizeof(rs->sc_rsc)) { #ifdef DEBUG if (rddebug & RDB_STATUS) printf("rdstatus: send C_CMD failed %d != %d\n", rv, sizeof(rs->sc_rsc)); #endif return(1); } rv = hpibrecv(c, s, C_EXEC, &rs->sc_stat, sizeof(rs->sc_stat)); if (rv != sizeof(rs->sc_stat)) { #ifdef DEBUG if (rddebug & RDB_STATUS) printf("rdstatus: send C_EXEC failed %d != %d\n", rv, sizeof(rs->sc_stat)); #endif return(1); } rv = hpibrecv(c, s, C_QSTAT, &stat, 1); if (rv != 1 || stat) { #ifdef DEBUG if (rddebug & RDB_STATUS) printf("rdstatus: recv failed %d or bad stat %d\n", rv, stat); #endif return(1); } return(0); } /* * Deal with errors. * Returns 1 if request should be restarted, * 0 if we should just quietly give up. */ rderror(unit) int unit; { struct rd_softc *rs = &rd_softc[unit]; register struct rd_stat *sp; struct buf *bp; daddr_t hwbn, pbn; if (rdstatus(rs)) { #ifdef DEBUG printf("rd%d: couldn't get status\n", unit); #endif rdreset(rs, rs->sc_hd); return(1); } sp = &rs->sc_stat; if (sp->c_fef & FEF_REXMT) return(1); if (sp->c_fef & FEF_PF) { rdreset(rs, rs->sc_hd); return(1); } /* * Unit requests release for internal maintenance. * We just delay awhile and try again later. Use expontially * increasing backoff ala ethernet drivers since we don't really * know how long the maintenance will take. With RDWAITC and * RDRETRY as defined, the range is 1 to 32 seconds. */ if (sp->c_fef & FEF_IMR) { extern int hz; int rdtimo = RDWAITC << rdtab[unit].b_errcnt; #ifdef DEBUG printf("rd%d: internal maintenance, %d second timeout\n", unit, rdtimo); rdstats[unit].rdtimeouts++; #endif hpibfree(&rs->sc_dq); timeout(rdrestart, (void *)unit, rdtimo * hz); return(0); } /* * Only report error if we have reached the error reporting * threshhold. By default, this will only report after the * retry limit has been exceeded. */ if (rdtab[unit].b_errcnt < rderrthresh) return(1); /* * First conjure up the block number at which the error occured. * Note that not all errors report a block number, in that case * we just use b_blkno. */ bp = rdtab[unit].b_actf; pbn = rs->sc_info.ri_label.d_partitions[rdpart(bp->b_dev)].p_offset; if ((sp->c_fef & FEF_CU) || (sp->c_fef & FEF_DR) || (sp->c_ief & IEF_RRMASK)) { hwbn = RDBTOS(pbn + bp->b_blkno); pbn = bp->b_blkno; } else { hwbn = sp->c_blk; pbn = RDSTOB(hwbn) - pbn; } /* * Now output a generic message suitable for badsect. * Note that we don't use harderr cuz it just prints * out b_blkno which is just the beginning block number * of the transfer, not necessary where the error occured. */ printf("rd%d%c: hard error sn%d\n", rdunit(bp->b_dev), 'a'+rdpart(bp->b_dev), pbn); /* * Now report the status as returned by the hardware with * attempt at interpretation (unless debugging). */ printf("rd%d %s error:", unit, (bp->b_flags & B_READ) ? "read" : "write"); #ifdef DEBUG if (rddebug & RDB_ERROR) { /* status info */ printf("\n volume: %d, unit: %d\n", (sp->c_vu>>4)&0xF, sp->c_vu&0xF); rdprinterr("reject", sp->c_ref, err_reject); rdprinterr("fault", sp->c_fef, err_fault); rdprinterr("access", sp->c_aef, err_access); rdprinterr("info", sp->c_ief, err_info); printf(" block: %d, P1-P10: ", hwbn); printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8)); printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8)); printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4)); /* command */ printf(" ioc: "); printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_pad, 8)); printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_hiaddr, 4)); printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_addr, 8)); printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_nop2, 4)); printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_len, 8)); printf("%s\n", hexstr(*(u_short *)&rs->sc_ioc.c_cmd, 4)); return(1); } #endif printf(" v%d u%d, R0x%x F0x%x A0x%x I0x%x\n", (sp->c_vu>>4)&0xF, sp->c_vu&0xF, sp->c_ref, sp->c_fef, sp->c_aef, sp->c_ief); printf("P1-P10: "); printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8)); printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8)); printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4)); return(1); } int rdread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (physio(rdstrategy, NULL, dev, B_READ, minphys, uio)); } int rdwrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (physio(rdstrategy, NULL, dev, B_WRITE, minphys, uio)); } int rdioctl(dev, cmd, data, flag, p) dev_t dev; int cmd; caddr_t data; int flag; struct proc *p; { int unit = rdunit(dev); register struct rd_softc *sc = &rd_softc[unit]; register struct disklabel *lp = &sc->sc_info.ri_label; int error, flags; switch (cmd) { case DIOCGDINFO: *(struct disklabel *)data = *lp; return (0); case DIOCGPART: ((struct partinfo *)data)->disklab = lp; ((struct partinfo *)data)->part = &lp->d_partitions[rdpart(dev)]; return (0); case DIOCWLABEL: if ((flag & FWRITE) == 0) return (EBADF); if (*(int *)data) sc->sc_flags |= RDF_WLABEL; else sc->sc_flags &= ~RDF_WLABEL; return (0); case DIOCSDINFO: if ((flag & FWRITE) == 0) return (EBADF); return (setdisklabel(lp, (struct disklabel *)data, (sc->sc_flags & RDF_WLABEL) ? 0 : sc->sc_info.ri_open, (struct cpu_disklabel *)0)); case DIOCWDINFO: if ((flag & FWRITE) == 0) return (EBADF); error = setdisklabel(lp, (struct disklabel *)data, (sc->sc_flags & RDF_WLABEL) ? 0 : sc->sc_info.ri_open, (struct cpu_disklabel *)0); if (error) return (error); flags = sc->sc_flags; sc->sc_flags = RDF_ALIVE | RDF_WLABEL; error = writedisklabel(rdlabdev(dev), rdstrategy, lp, (struct cpu_disklabel *)0); sc->sc_flags = flags; return (error); } return(EINVAL); } int rdsize(dev) dev_t dev; { register int unit = rdunit(dev); register struct rd_softc *rs = &rd_softc[unit]; int psize, didopen = 0; if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0) return(-1); /* * We get called very early on (via swapconf) * without the device being open so we may need * to handle it here. */ if (rs->sc_info.ri_open == 0) { if (rdopen(dev, FREAD|FWRITE, S_IFBLK, NULL)) return(-1); didopen = 1; } psize = rs->sc_info.ri_label.d_partitions[rdpart(dev)].p_size; if (didopen) (void) rdclose(dev, FREAD|FWRITE, S_IFBLK, NULL); return (psize); } #ifdef DEBUG rdprinterr(str, err, tab) char *str; short err; char *tab[]; { register int i; int printed; if (err == 0) return; printf(" %s error field:", str, err); printed = 0; for (i = 0; i < 16; i++) if (err & (0x8000 >> i)) printf("%s%s", printed++ ? " + " : " ", tab[i]); printf("\n"); } #endif /* * Non-interrupt driven, non-dma dump routine. */ int rddump(dev) dev_t dev; { int part = rdpart(dev); int unit = rdunit(dev); register struct rd_softc *rs = &rd_softc[unit]; register struct hp_device *hp = rs->sc_hd; register struct partition *pinfo; register daddr_t baddr; register int maddr, pages, i; char stat; extern int lowram, dumpsize; #ifdef DEBUG extern int pmapdebug; pmapdebug = 0; #endif /* is drive ok? */ if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0) return (ENXIO); pinfo = &rs->sc_info.ri_label.d_partitions[part]; /* dump parameters in range? */ if (dumplo < 0 || dumplo >= pinfo->p_size || pinfo->p_fstype != FS_SWAP) return (EINVAL); pages = dumpsize; if (dumplo + ctod(pages) > pinfo->p_size) pages = dtoc(pinfo->p_size - dumplo); maddr = lowram; baddr = dumplo + pinfo->p_offset; /* HPIB idle? */ if (!hpibreq(&rs->sc_dq)) { hpibreset(hp->hp_ctlr); rdreset(rs, rs->sc_hd); printf("[ drive %d reset ] ", unit); } for (i = 0; i < pages; i++) { #define NPGMB (1024*1024/NBPG) /* print out how many Mbs we have dumped */ if (i && (i % NPGMB) == 0) printf("%d ", i / NPGMB); #undef NPBMG rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit); rs->sc_ioc.c_volume = C_SVOL(0); rs->sc_ioc.c_saddr = C_SADDR; rs->sc_ioc.c_hiaddr = 0; rs->sc_ioc.c_addr = RDBTOS(baddr); rs->sc_ioc.c_nop2 = C_NOP; rs->sc_ioc.c_slen = C_SLEN; rs->sc_ioc.c_len = NBPG; rs->sc_ioc.c_cmd = C_WRITE; hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2); if (hpibswait(hp->hp_ctlr, hp->hp_slave)) return (EIO); pmap_enter(pmap_kernel(), (vm_offset_t)vmmap, maddr, VM_PROT_READ, TRUE); hpibsend(hp->hp_ctlr, hp->hp_slave, C_EXEC, vmmap, NBPG); (void) hpibswait(hp->hp_ctlr, hp->hp_slave); hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1); if (stat) return (EIO); maddr += NBPG; baddr += ctod(1); } return (0); } #endif