/* $NetBSD: if_le.c,v 1.6 1995/09/02 05:04:18 thorpej Exp $ */ /* * Copyright (c) 1993 Adam Glass * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Adam Glass. * 4. The name of the Author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Adam Glass ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include "samachdep.h" #ifndef NLE #define NLE 1 #endif #ifdef LE_DEBUG int le_debug = 0; #endif #define ETHER_MIN_LEN 64 #define ETHER_MAX_LEN 1518 #define ETHER_ADDR_LEN 6 int le_probe(); int le_match(); void le_init(); int le_get(); int le_put(); void le_end(); struct le_sel { int le_id; int le_regs; int le_mem; int le_nvram; int le_heat; int le_bonus; } le0conf[] = { /* offsets for: ID REGS MEM NVRAM le_heat le_bonus*/ { 0, 0x4000, 0x8000, 0xC008, 1, 10 } }; extern struct netif_stats le_stats[]; struct netif_dif le_ifs[] = { /* dif_unit dif_nsel dif_stats dif_private */ { 0, NENTS(le0conf), &le_stats[0], le0conf, }, }; struct netif_stats le_stats[NENTS(le_ifs)]; struct netif_driver le_driver = { "le", /* netif_bname */ le_match, /* netif_match */ le_probe, /* netif_probe */ le_init, /* netif_init */ le_get, /* netif_get */ le_put, /* netif_put */ le_end, /* netif_end */ le_ifs, /* netif_ifs */ NENTS(le_ifs) /* netif_nifs */ }; struct le_softc { struct lereg0 *sc_r0; /* DIO registers */ struct lereg1 *sc_r1; /* LANCE registers */ void *sc_mem; struct init_block *sc_init; struct mds *sc_rd, *sc_td; u_char *sc_rbuf, *sc_tbuf; int sc_next_rd, sc_next_td; u_char sc_addr[ETHER_ADDR_LEN]; } le_softc[NLE]; static inline void lewrcsr(sc, port, val) struct le_softc *sc; register u_short port; register u_short val; { register struct lereg0 *ler0 = sc->sc_r0; register struct lereg1 *ler1 = sc->sc_r1; do { ler1->ler1_rap = port; } while ((ler0->ler0_status & LE_ACK) == 0); do { ler1->ler1_rdp = val; } while ((ler0->ler0_status & LE_ACK) == 0); } static inline u_short lerdcsr(sc, port) struct le_softc *sc; register u_short port; { register struct lereg0 *ler0 = sc->sc_r0; register struct lereg1 *ler1 = sc->sc_r1; register u_short val; do { ler1->ler1_rap = port; } while ((ler0->ler0_status & LE_ACK) == 0); do { val = ler1->ler1_rdp; } while ((ler0->ler0_status & LE_ACK) == 0); return (val); } leinit() { extern struct hp_hw sc_table[]; register struct hp_hw *hw; struct le_softc *sc; struct le_sel *sels; register int i, n; char *cp; i = 0; for (hw = sc_table; i < NLE && hw < &sc_table[MAXCTLRS]; hw++) { #ifdef LE_DEBUG if (le_debug) printf("found type %x\n", hw->hw_type); #endif #if 0 if (!HW_ISDEV(hw, D_LAN)) continue; #endif sels = (struct le_sel *)le_ifs[i].dif_private; sc = &le_softc[i]; sc->sc_r0 = (struct lereg0 *)(sels->le_id + (int)hw->hw_kva); if (sc->sc_r0->ler0_id != LEID) continue; sc->sc_r1 = (struct lereg1 *)(sels->le_regs + (int)hw->hw_kva); sc->sc_mem = (struct lereg2 *)(sels->le_mem + (int)hw->hw_kva); #ifdef LE_DEBUG if (le_debug) printf("le%d: DIO=%x regs=%x mem=%x\n", i, sc->sc_r0, sc->sc_r1, sc->sc_mem); #endif /* * Read the ethernet address off the board, one nibble at a time. */ cp = (char *)(sels->le_nvram + (int)hw->hw_kva); for (n = 0; n < sizeof(sc->sc_addr); n++) { sc->sc_addr[n] = (*++cp & 0xF) << 4; cp++; sc->sc_addr[n] |= *++cp & 0xF; cp++; } #ifdef LE_DEBUG if (le_debug) printf("le%d at sc%d physical address %s\n", i, hw->hw_sc, ether_sprintf(sc->sc_addr)); #endif hw->hw_pa = (caddr_t) i; /* XXX for autoconfig */ i++; } } int le_match(nif, machdep_hint) struct netif *nif; void *machdep_hint; { struct le_sel *sels; char *name = machdep_hint; int rv = 0; if (nif->nif_sel < le_ifs[nif->nif_unit].dif_nsel) { sels = (struct le_sel *)le_ifs[nif->nif_unit].dif_private; rv = sels[nif->nif_sel].le_heat; if (name && !strncmp(le_driver.netif_bname, name, 2)) rv += sels[nif->nif_sel].le_bonus; } #ifdef LE_DEBUG if (le_debug) printf("le%d: sel %d --> %d\n", nif->nif_unit, nif->nif_sel, rv); #endif return rv; } le_probe(nif, machdep_hint) struct netif *nif; void *machdep_hint; { char *cp; int i; /* the set unit is the current unit */ #ifdef LE_DEBUG if (le_debug) printf("le%d.%d: le_probe called\n", nif->nif_unit, nif->nif_sel); #endif /* XXX reset controller */ return 0; } #ifdef MEM_SUMMARY void le_mem_summary(unit) { struct lereg1 *ler1 = le_softc.sc_r1; struct lereg2 *ler2 = le_softc.sc_r2; register int i; printf("le%d: ler1 = %x\n", unit, ler1); printf("le%d: ler2 = %x\n", unit, ler2); #if 0 ler1->ler1_rap = LE_CSR0; ler1->ler1_rdp = LE_STOP; printf("le%d: csr0 = %x\n", unit, ler1->ler1_rdp); ler1->ler1_rap = LE_CSR1; printf("le%d: csr1 = %x\n", unit, ler1->ler1_rdp); ler1->ler1_rap = LE_CSR2; printf("le%d: csr2 = %x\n", unit, ler1->ler1_rdp); ler1->ler1_rap = LE_CSR3; printf("le%d: csr3 = %x\n", unit, ler1->ler1_rdp); #endif printf("le%d: ladrf[0] = %x\n", unit, ler2->ler2_ladrf[0]); printf("le%d: ladrf[1] = %x\n", unit, ler2->ler2_ladrf[1]); printf("le%d: ler2_rdra = %x\n", unit, ler2->ler2_rdra); printf("le%d: ler2_rlen = %x\n", unit, ler2->ler2_rlen); printf("le%d: ler2_tdra = %x\n", unit, ler2->ler2_tdra); printf("le%d: ler2_tlen = %x\n", unit, ler2->ler2_tlen); for (i = 0; i < LERBUF; i++) { printf("le%d: ler2_rmd[%d].rmd0 (ladr) = %x\n", unit, i, ler2->ler2_rmd[i].rmd0); printf("le%d: ler2_rmd[%d].rmd1 = %x\n", unit, i, ler2->ler2_rmd[i].rmd1); printf("le%d: ler2_rmd[%d].rmd2 (-bcnt) = %x\n", unit, i, ler2->ler2_rmd[i].rmd2); printf("le%d: ler2_rmd[%d].rmd3 (mcnt) = %x\n", unit, i, ler2->ler2_rmd[i].rmd3); printf("le%d: ler2_rbuf[%d] addr = %x\n", unit, i, &ler2->ler2_rbuf[i]); } for (i = 0; i < LETBUF; i++) { printf("le%d: ler2_tmd[%d].tmd0 = %x\n", unit, i, ler2->ler2_tmd[i].tmd0); printf("le%d: ler2_tmd[%d].tmd1 = %x\n", unit, i, ler2->ler2_tmd[i].tmd1); printf("le%d: ler2_tmd[%d].tmd2 (bcnt) = %x\n", unit, i, ler2->ler2_tmd[i].tmd2); printf("le%d: ler2_tmd[%d].tmd3 = %x\n", unit, i, ler2->ler2_tmd[i].tmd3); printf("le%d: ler2_tbuf[%d] addr = %x\n", unit, i, &ler2->ler2_tbuf[i]); } } #else #define le_mem_summary(u) #endif void le_error(unit, str, stat) int unit; char *str; u_short stat; { if (stat & LE_BABL) panic("le%d: been babbling, found by '%s'\n", unit, str); if (stat & LE_CERR) le_stats[unit].collision_error++; if (stat & LE_MISS) le_stats[unit].missed++; if (stat & LE_MERR) { printf("le%d: memory error in '%s'\n", unit, str); le_mem_summary(unit); panic("bye"); } } #define LANCE_ADDR(sc, a) \ ((u_long)(a) - (u_long)sc->sc_mem) /* LANCE initialization block set up. */ void lememinit(sc) register struct le_softc *sc; { int i; void *mem; u_long a; /* * At this point we assume that the memory allocated to the Lance is * quadword aligned. If it isn't then the initialisation is going * fail later on. */ mem = sc->sc_mem; sc->sc_init = mem; sc->sc_init->mode = LE_NORMAL; for (i = 0; i < ETHER_ADDR_LEN; i++) sc->sc_init->padr[i] = sc->sc_addr[i^1]; sc->sc_init->ladrf[0] = sc->sc_init->ladrf[1] = 0; mem += sizeof(struct init_block); sc->sc_rd = mem; a = LANCE_ADDR(sc, mem); sc->sc_init->rdra = a; sc->sc_init->rlen = ((a >> 16) & 0xff) | (RLEN << 13); mem += NRBUF * sizeof(struct mds); sc->sc_td = mem; a = LANCE_ADDR(sc, mem); sc->sc_init->tdra = a; sc->sc_init->tlen = ((a >> 16) & 0xff) | (TLEN << 13); mem += NTBUF * sizeof(struct mds); /* * Set up receive ring descriptors. */ sc->sc_rbuf = mem; for (i = 0; i < NRBUF; i++) { a = LANCE_ADDR(sc, mem); sc->sc_rd[i].addr = a; sc->sc_rd[i].flags = ((a >> 16) & 0xff) | LE_OWN; sc->sc_rd[i].bcnt = -BUFSIZE; sc->sc_rd[i].mcnt = 0; mem += BUFSIZE; } /* * Set up transmit ring descriptors. */ sc->sc_tbuf = mem; for (i = 0; i < NTBUF; i++) { a = LANCE_ADDR(sc, mem); sc->sc_td[i].addr = a; sc->sc_td[i].flags = ((a >> 16) & 0xff); sc->sc_td[i].bcnt = 0xf000; sc->sc_td[i].mcnt = 0; mem += BUFSIZE; } } void le_reset(unit, myea) int unit; u_char *myea; { struct le_softc *sc = &le_softc[unit]; u_long a; int timo = 100000, stat, i; #ifdef LE_DEBUG if (le_debug) { printf("le%d: le_reset called\n", unit); printf(" r0=%x, r1=%x, mem=%x, addr=%x:%x:%x:%x:%x:%x\n", sc->sc_r0, sc->sc_r1, sc->sc_mem, sc->sc_addr[0], sc->sc_addr[1], sc->sc_addr[2], sc->sc_addr[3], sc->sc_addr[4], sc->sc_addr[5]); } #endif lewrcsr(sc, 0, LE_STOP); for (timo = 1000; timo; timo--); sc->sc_next_rd = sc->sc_next_td = 0; /* Set up LANCE init block. */ lememinit(sc); if (myea) bcopy(sc->sc_addr, myea, ETHER_ADDR_LEN); /* Turn on byte swapping. */ lewrcsr(sc, 3, LE_BSWP); /* Give LANCE the physical address of its init block. */ a = LANCE_ADDR(sc, sc->sc_init); lewrcsr(sc, 1, a); lewrcsr(sc, 2, (a >> 16) & 0xff); #ifdef LE_DEBUG if (le_debug) printf("le%d: before init\n", unit); #endif /* Try to initialize the LANCE. */ lewrcsr(sc, 0, LE_INIT); /* Wait for initialization to finish. */ for (timo = 100000; timo; timo--) if (lerdcsr(sc, 0) & LE_IDON) break; if (lerdcsr(sc, 0) & LE_IDON) { /* Start the LANCE. */ lewrcsr(sc, 0, LE_INEA | LE_STRT | LE_IDON); } else printf("le%d: card failed to initialize\n", unit); #ifdef LE_DEBUG if (le_debug) printf("le%d: after init\n", unit); #endif le_mem_summary(unit); } int le_poll(desc, pkt, len) struct iodesc *desc; void *pkt; int len; { struct netif *nif = desc->io_netif; int unit = /*nif->nif_unit*/0; struct le_softc *sc = &le_softc[unit]; volatile struct lereg0 *ler0 = sc->sc_r0; volatile struct lereg1 *ler1 = sc->sc_r1; int length; volatile struct mds *cdm; register int stat; #ifdef LE_DEBUG if (/*le_debug*/0) printf("le%d: le_poll called. next_rd=%d\n", unit, sc->sc_next_rd); #endif stat = lerdcsr(sc, 0); lewrcsr(sc, 0, stat & (LE_BABL | LE_MISS | LE_MERR | LE_RINT)); cdm = &sc->sc_rd[sc->sc_next_rd]; if (cdm->flags & LE_OWN) return 0; #ifdef LE_DEBUG if (le_debug) { printf("next_rd %d\n", sc->sc_next_rd); printf("cdm->flags %x\n", cdm->flags); printf("cdm->bcnt %x, cdm->mcnt %x\n", cdm->bcnt, cdm->mcnt); printf("cdm->rbuf msg %d buf %d\n", cdm->mcnt, -cdm->bcnt ); } #endif if (stat & (LE_BABL | LE_CERR | LE_MISS | LE_MERR)) le_error(unit, "le_poll", stat); if (cdm->flags & (LE_FRAM | LE_OFLO | LE_CRC | LE_RBUFF)) { printf("le%d_poll: rmd status 0x%x\n", unit, cdm->flags); length = 0; goto cleanup; } if ((cdm->flags & (LE_STP|LE_ENP)) != (LE_STP|LE_ENP)) panic("le_poll: chained packet\n"); length = cdm->mcnt; #ifdef LE_DEBUG if (le_debug) printf("le_poll: length %d\n", length); #endif if (length >= BUFSIZE) { length = 0; panic("csr0 when bad things happen: %x\n", stat); goto cleanup; } if (!length) goto cleanup; length -= 4; if (length > 0) bcopy(sc->sc_rbuf + (BUFSIZE * sc->sc_next_rd), pkt, length); cleanup: cdm->mcnt = 0; cdm->flags |= LE_OWN; if (++sc->sc_next_rd >= NRBUF) sc->sc_next_rd = 0; #ifdef LE_DEBUG if (le_debug) printf("new next_rd %d\n", sc->sc_next_rd); #endif return length; } int le_put(desc, pkt, len) struct iodesc *desc; void *pkt; int len; { struct netif *nif = desc->io_netif; int unit = /*nif->nif_unit*/0; struct le_softc *sc = &le_softc[unit]; volatile struct lereg0 *ler0 = sc->sc_r0; volatile struct lereg1 *ler1 = sc->sc_r1; volatile struct mds *cdm; int timo, i, stat; le_put_loop: timo = 100000; #ifdef LE_DEBUG if (le_debug) printf("le%d: le_put called. next_td=%d\n", unit, sc->sc_next_td); #endif stat = lerdcsr(sc, 0); lewrcsr(sc, 0, stat & (LE_BABL | LE_MISS | LE_MERR | LE_TINT)); if (stat & (LE_BABL | LE_CERR | LE_MISS | LE_MERR)) le_error(unit, "le_put(way before xmit)", stat); cdm = &sc->sc_td[sc->sc_next_td]; i = 0; #if 0 while (cdm->flags & LE_OWN) { if ((i % 100) == 0) printf("le%d: output buffer busy - flags=%x\n", unit, cdm->flags); if (i++ > 500) break; } if (cdm->flags & LE_OWN) getchar(); #else while (cdm->flags & LE_OWN); #endif bcopy(pkt, sc->sc_tbuf + (BUFSIZE * sc->sc_next_td), len); if (len < ETHER_MIN_LEN) cdm->bcnt = -ETHER_MIN_LEN; else cdm->bcnt = -len; cdm->mcnt = 0; cdm->flags |= LE_OWN | LE_STP | LE_ENP; stat = lerdcsr(sc, 0); if (stat & (LE_BABL | LE_CERR | LE_MISS | LE_MERR)) le_error(unit, "le_put(before xmit)", stat); lewrcsr(sc, 0, LE_TDMD); stat = lerdcsr(sc, 0); if (stat & (LE_BABL | LE_CERR | LE_MISS | LE_MERR)) le_error(unit, "le_put(after xmit)", stat); do { if (--timo == 0) { printf("le%d: transmit timeout, stat = 0x%x\n", unit, stat); if (stat & LE_SERR) le_error(unit, "le_put(timeout)", stat); if (stat & LE_INIT) { printf("le%d: reset and retry packet\n"); lewrcsr(sc, 0, LE_TINT); /* sanity */ le_init(); goto le_put_loop; } break; } stat = lerdcsr(sc, 0); } while ((stat & LE_TINT) == 0); lewrcsr(sc, 0, LE_TINT); if (stat & (LE_BABL |/* LE_CERR |*/ LE_MISS | LE_MERR)) { printf("le_put: xmit error, buf %d\n", sc->sc_next_td); le_error(unit, "le_put(xmit error)", stat); } if (++sc->sc_next_td >= NTBUF) sc->sc_next_td = 0; if (cdm->flags & LE_DEF) le_stats[unit].deferred++; if (cdm->flags & LE_ONE) le_stats[unit].collisions++; if (cdm->flags & LE_MORE) le_stats[unit].collisions+=2; if (cdm->flags & LE_ERR) { printf("le%d: transmit error, error = 0x%x\n", unit, cdm->mcnt); return -1; } #ifdef LE_DEBUG if (le_debug) { printf("le%d: le_put() successful: sent %d\n", unit, len); printf("le%d: le_put(): flags: %x mcnt: %x\n", unit, (unsigned int) cdm->flags, (unsigned int) cdm->mcnt); } #endif return len; } int le_get(desc, pkt, len, timeout) struct iodesc *desc; void *pkt; int len; time_t timeout; { time_t t; int cc; t = getsecs(); cc = 0; while (((getsecs() - t) < timeout) && !cc) { cc = le_poll(desc, pkt, len); } return cc; } void le_init(desc, machdep_hint) struct iodesc *desc; void *machdep_hint; { struct netif *nif = desc->io_netif; int unit = nif->nif_unit; /* Get machine's common ethernet interface. This is done in leinit() */ /* machdep_common_ether(myea); */ leinit(); #ifdef LE_DEBUG if (le_debug) printf("le%d: le_init called\n", unit); #endif unit = 0; le_reset(unit, desc->myea); } void le_end(nif) struct netif *nif; { int unit = nif->nif_unit; #ifdef LE_DEBUG if (le_debug) printf("le%d: le_end called\n", unit); #endif lewrcsr(&le_softc[unit], 0, LE_STOP); }