/* $OpenBSD: cpu.c,v 1.39 2011/01/02 20:41:22 kettenis Exp $ */ /* * Copyright (c) 1998-2003 Michael Shalayeff * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include struct cpu_softc { struct device sc_dev; }; #ifdef MULTIPROCESSOR struct cpu_info *cpu_hatch_info; static volatile int start_secondary_cpu; #endif int cpumatch(struct device *, void *, void *); void cpuattach(struct device *, struct device *, void *); struct cfattach cpu_ca = { sizeof(struct cpu_softc), cpumatch, cpuattach }; struct cfdriver cpu_cd = { NULL, "cpu", DV_DULL }; int cpumatch(struct device *parent, void *cfdata, void *aux) { struct cfdata *cf = cfdata; struct confargs *ca = aux; /* probe any 1.0, 1.1 or 2.0 */ if (ca->ca_type.iodc_type != HPPA_TYPE_NPROC || ca->ca_type.iodc_sv_model != HPPA_NPROC_HPPA) return 0; if (cf->cf_unit >= MAXCPUS) return 0; return 1; } void cpuattach(struct device *parent, struct device *self, void *aux) { /* machdep.c */ extern struct pdc_model pdc_model; extern struct pdc_cache pdc_cache; extern struct pdc_btlb pdc_btlb; extern u_int cpu_ticksnum, cpu_ticksdenom; extern u_int fpu_enable; /* clock.c */ extern int cpu_hardclock(void *); /* ipi.c */ extern int hppa_ipi_intr(void *); struct confargs *ca = (struct confargs *)aux; struct cpu_info *ci; u_int mhz = 100 * cpu_ticksnum / cpu_ticksdenom; int cpuno = self->dv_unit; struct pglist mlist; struct vm_page *m; const char *p; int error; ci = &cpu_info[cpuno]; ci->ci_dev = self; ci->ci_cpuid = cpuno; ci->ci_hpa = ca->ca_hpa; /* Allocate stack for spin up and FPU emulation. */ TAILQ_INIT(&mlist); error = uvm_pglistalloc(PAGE_SIZE, 0, -1L, 0, 0, &mlist, 1, UVM_PLA_NOWAIT); if (error) { printf(": unable to allocate CPU stack!\n"); return; } m = TAILQ_FIRST(&mlist); ci->ci_stack = VM_PAGE_TO_PHYS(m); printf (": %s ", cpu_typename); if (pdc_model.hvers) { static const char lvls[4][4] = { "0", "1", "1.5", "2" }; printf("L%s-%c ", lvls[pdc_model.pa_lvl], "AB"[pdc_model.mc]); } printf ("%d", mhz / 100); if (mhz % 100 > 9) printf(".%02d", mhz % 100); printf("MHz"); if (fpu_enable) { extern u_int fpu_version; u_int32_t ver[2]; mtctl(fpu_enable, CR_CCR); __asm volatile( "fstds %%fr0,0(%0)\n\t" "copr,0,0\n\t" "fstds %%fr0,0(%0)" :: "r" (&ver) : "memory"); mtctl(0, CR_CCR); fpu_version = HPPA_FPUVER(ver[0]); printf(", FPU %s rev %d", hppa_mod_info(HPPA_TYPE_FPU, fpu_version >> 5), fpu_version & 0x1f); } printf("\n%s: ", self->dv_xname); p = ""; if (!pdc_cache.dc_conf.cc_sh) { printf("%uK(%db/l) Icache, ", pdc_cache.ic_size / 1024, pdc_cache.ic_conf.cc_line * 16); p = "D"; } printf("%uK(%db/l) wr-%s %scache, ", pdc_cache.dc_size / 1024, pdc_cache.dc_conf.cc_line * 16, pdc_cache.dc_conf.cc_wt? "thru" : "back", p); p = ""; if (!pdc_cache.dt_conf.tc_sh) { printf("%u ITLB, ", pdc_cache.it_size); p = "D"; } printf("%u %scoherent %sTLB", pdc_cache.dt_size, pdc_cache.dt_conf.tc_cst? "" : "in", p); if (pdc_btlb.finfo.num_c) printf(", %u BTLB", pdc_btlb.finfo.num_c); else if (pdc_btlb.finfo.num_i || pdc_btlb.finfo.num_d) printf(", %u/%u D/I BTLBs", pdc_btlb.finfo.num_i, pdc_btlb.finfo.num_d); cpu_intr_establish(IPL_CLOCK, 31, cpu_hardclock, NULL, "clock"); #ifdef MULTIPROCESSOR cpu_intr_establish(IPL_IPI, 30, hppa_ipi_intr, NULL, "ipi"); #endif printf("\n"); } #ifdef MULTIPROCESSOR void cpu_boot_secondary_processors(void) { struct cpu_info *ci; struct iomod *cpu; int i, j; /* Initialise primary CPU. */ ci = curcpu(); ci->ci_flags |= CPUF_RUNNING; hppa_ipi_init(ci); for (i = 0; i < HPPA_MAXCPUS; i++) { ci = &cpu_info[i]; if (ci->ci_cpuid == 0) continue; ci->ci_randseed = random(); sched_init_cpu(ci); /* Release the specified CPU by triggering an EIR{0}. */ cpu_hatch_info = ci; cpu = (struct iomod *)(ci->ci_hpa); cpu->io_eir = 0; asm volatile ("sync" ::: "memory"); /* Wait for CPU to wake up... */ j = 0; while (!(ci->ci_flags & CPUF_RUNNING) && j++ < 10000) delay(1000); if (!(ci->ci_flags & CPUF_RUNNING)) printf("failed to hatch cpu %i!\n", ci->ci_cpuid); } /* Release secondary CPUs. */ start_secondary_cpu = 1; asm volatile ("sync" ::: "memory"); } void cpu_hw_init(void) { struct cpu_info *ci = curcpu(); /* Purge TLB and flush caches. */ ptlball(); ficacheall(); fdcacheall(); /* Enable address translations. */ ci->ci_psw = PSL_I | PSL_Q | PSL_P | PSL_C | PSL_D; ci->ci_psw |= (cpu_info[0].ci_psw & PSL_O); } void cpu_hatch(void) { struct cpu_info *ci = curcpu(); extern u_long cpu_hzticks; u_long itmr; int s; /* Initialise IPIs. */ hppa_ipi_init(ci); /* Initialise clock. */ mtctl((1 << 31), CR_EIRR); mfctl(CR_ITMR, itmr); ci->ci_itmr = itmr; itmr += cpu_hzticks; mtctl(itmr, CR_ITMR); ci->ci_mask |= (1 << 31); /* Enable interrupts. */ mtctl(ci->ci_mask, CR_EIEM); ncpus++; ci->ci_flags |= CPUF_RUNNING; /* Wait for additional CPUs to spinup. */ while (!start_secondary_cpu) ; SCHED_LOCK(s); cpu_switchto(NULL, sched_chooseproc()); } void cpu_unidle(struct cpu_info *ci) { if (ci != curcpu()) hppa_ipi_send(ci, HPPA_IPI_NOP); } #endif void need_resched(struct cpu_info *ci) { ci->ci_want_resched = 1; /* There's a risk we'll be called before the idle threads start */ if (ci->ci_curproc) { setsoftast(ci->ci_curproc); cpu_unidle(ci); } }