/* $OpenBSD: dbl_float.h,v 1.3 1998/07/02 19:04:56 mickey Exp $ */ /* * Copyright 1996 1995 by Open Software Foundation, Inc. * All Rights Reserved * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby granted, * provided that the above copyright notice appears in all copies and * that both the copyright notice and this permission notice appear in * supporting documentation. * * OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL OSF BE LIABLE FOR ANY SPECIAL, INDIRECT, OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT, * NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION * WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * pmk1.1 */ /* * (c) Copyright 1986 HEWLETT-PACKARD COMPANY * * To anyone who acknowledges that this file is provided "AS IS" * without any express or implied warranty: * permission to use, copy, modify, and distribute this file * for any purpose is hereby granted without fee, provided that * the above copyright notice and this notice appears in all * copies, and that the name of Hewlett-Packard Company not be * used in advertising or publicity pertaining to distribution * of the software without specific, written prior permission. * Hewlett-Packard Company makes no representations about the * suitability of this software for any purpose. */ #include /************************************** * Declare double precision functions * **************************************/ /* 32-bit word grabing functions */ #define Dbl_firstword(value) Dallp1(value) #define Dbl_secondword(value) Dallp2(value) #define Dbl_thirdword(value) dummy_location #define Dbl_fourthword(value) dummy_location #define Dbl_sign(object) Dsign(object) #define Dbl_exponent(object) Dexponent(object) #define Dbl_signexponent(object) Dsignexponent(object) #define Dbl_mantissap1(object) Dmantissap1(object) #define Dbl_mantissap2(object) Dmantissap2(object) #define Dbl_exponentmantissap1(object) Dexponentmantissap1(object) #define Dbl_allp1(object) Dallp1(object) #define Dbl_allp2(object) Dallp2(object) /* dbl_and_signs ands the sign bits of each argument and puts the result * into the first argument. dbl_or_signs ors those same sign bits */ #define Dbl_and_signs( src1dst, src2) \ Dallp1(src1dst) = (Dallp1(src2)|~(1<<31)) & Dallp1(src1dst) #define Dbl_or_signs( src1dst, src2) \ Dallp1(src1dst) = (Dallp1(src2)&(1<<31)) | Dallp1(src1dst) /* The hidden bit is always the low bit of the exponent */ #define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1) #define Dbl_clear_signexponent_set_hidden(srcdst) \ Deposit_dsignexponent(srcdst,1) #define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~(1<<31) #define Dbl_clear_signexponent(srcdst) \ Dallp1(srcdst) &= Dmantissap1((unsigned)-1) /* Exponent field for doubles has already been cleared and may be * included in the shift. Here we need to generate two double width * variable shifts. The insignificant bits can be ignored. * MTSAR f(varamount) * VSHD srcdst.high,srcdst.low => srcdst.low * VSHD 0,srcdst.high => srcdst.high * This is very difficult to model with C expressions since the shift amount * could exceed 32. */ /* varamount must be less than 64 */ #define Dbl_rightshift(srcdstA, srcdstB, varamount) \ {if((varamount) >= 32) { \ Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32); \ Dallp1(srcdstA)=0; \ } \ else if(varamount > 0) { \ Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), \ (varamount), Dallp2(srcdstB)); \ Dallp1(srcdstA) >>= varamount; \ } } /* varamount must be less than 64 */ #define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount) \ {if((varamount) >= 32) { \ Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> ((varamount)-32); \ Dallp1(srcdstA) &= (1<<31); /* clear exponentmantissa field */ \ } \ else if(varamount > 0) { \ Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \ (varamount), Dallp2(srcdstB)); \ Deposit_dexponentmantissap1(srcdstA, \ (Dexponentmantissap1(srcdstA)>>(varamount))); \ } } /* varamount must be less than 64 */ #define Dbl_leftshift(srcdstA, srcdstB, varamount) \ {if((varamount) >= 32) { \ Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32); \ Dallp2(srcdstB)=0; \ } \ else { \ if ((varamount) > 0) { \ Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) | \ (Dallp2(srcdstB) >> (32-(varamount))); \ Dallp2(srcdstB) <<= varamount; \ } \ } } #define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb) \ Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta)); \ Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb)) #define Dbl_rightshiftby1_withextent(leftb,right,dst) \ Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned)Extall(right) >> 1) | \ Extlow(right) #define Dbl_arithrightshiftby1(srcdstA,srcdstB) \ Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\ Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1 /* Sign extend the sign bit with an integer destination */ #define Dbl_signextendedsign(value) Dsignedsign(value) #define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0) /* Singles and doubles may include the sign and exponent fields. The * hidden bit and the hidden overflow must be included. */ #define Dbl_increment(dbl_valueA,dbl_valueB) \ if( (Dallp2(dbl_valueB) += 1) == 0 ) Dallp1(dbl_valueA) += 1 #define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \ if( (Dmantissap2(dbl_valueB) += 1) == 0 ) \ Deposit_dmantissap1(dbl_valueA,dbl_valueA+1) #define Dbl_decrement(dbl_valueA,dbl_valueB) \ if( Dallp2(dbl_valueB) == 0 ) Dallp1(dbl_valueA) -= 1; \ Dallp2(dbl_valueB) -= 1 #define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0) #define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0) #define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0) #define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0) #define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0) #define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff) #define Dbl_isnotzero(dbl_valueA,dbl_valueB) \ (Dallp1(dbl_valueA) || Dallp2(dbl_valueB)) #define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \ (Dhiddenhigh7mantissa(dbl_value)!=0) #define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0) #define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \ (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB)) #define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0) #define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0) #define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \ (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB)) #define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0) #define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \ Dallp2(dbl_valueB)==0) #define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0) #define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0) #define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0) #define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0) #define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \ (Dhiddenhigh3mantissa(dbl_value)==0) #define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \ (Dhiddenhigh7mantissa(dbl_value)==0) #define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0) #define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0) #define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \ (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) #define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \ (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) #define Dbl_isinfinity_exponent(dbl_value) \ (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT) #define Dbl_isnotinfinity_exponent(dbl_value) \ (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT) #define Dbl_isinfinity(dbl_valueA,dbl_valueB) \ (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \ Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) #define Dbl_isnan(dbl_valueA,dbl_valueB) \ (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \ (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0)) #define Dbl_isnotnan(dbl_valueA,dbl_valueB) \ (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT || \ (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)) #define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \ (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \ Dallp2(dbl_op1b) < Dallp2(dbl_op2b))) #define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \ (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \ Dallp2(dbl_op1b) > Dallp2(dbl_op2b))) #define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \ (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \ Dallp2(dbl_op1b) >= Dallp2(dbl_op2b))) #define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \ (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \ Dallp2(dbl_op1b) <= Dallp2(dbl_op2b))) #define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) && \ (Dallp2(dbl_op1b) == Dallp2(dbl_op2b))) #define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \ Dallp2(dbl_valueB) <<= 8 #define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \ Dallp2(dbl_valueB) <<= 7 #define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \ Dallp2(dbl_valueB) <<= 4 #define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \ Dallp2(dbl_valueB) <<= 3 #define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \ Dallp2(dbl_valueB) <<= 2 #define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \ Dallp2(dbl_valueB) <<= 1 #define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \ Dallp1(dbl_valueA) >>= 8 #define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \ Dallp1(dbl_valueA) >>= 4 #define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \ Dallp1(dbl_valueA) >>= 2 #define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \ Dallp1(dbl_valueA) >>= 1 /* This magnitude comparison uses the signless first words and * the regular part2 words. The comparison is graphically: * * 1st greater? ------------- * | * 1st less?-----------------+--------- * | | * 2nd greater or equal----->| | * False True */ #define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \ ((signlessleft <= signlessright) && \ ( (signlessleft < signlessright) || (Dallp2(leftB)wd0; \ Dallp2(destb) = src->wd1 #define Dbl_copytoptr(srca,srcb,dest) \ dest->wd0 = Dallp1(srca); \ dest->wd1 = Dallp2(srcb) /* An infinity is represented with the max exponent and a zero mantissa */ #define Dbl_setinfinity_exponent(dbl_value) \ Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT) #define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB) \ Deposit_dexponentmantissap1(dbl_valueA, \ (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)))); \ Dmantissap2(dbl_valueB) = 0 #define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) \ = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \ Dmantissap2(dbl_valueB) = 0 #define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) = (1<<31) | \ (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \ Dmantissap2(dbl_valueB) = 0 #define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign) \ Dallp1(dbl_valueA) = (sign << 31) | \ (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \ Dmantissap2(dbl_valueB) = 0 #define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign) #define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign) #define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value)) #define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1) #define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1) #define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff #define Dbl_setzero_exponent(dbl_value) \ Dallp1(dbl_value) &= 0x800fffff #define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) &= 0xfff00000; \ Dallp2(dbl_valueB) = 0 #define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000 #define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0 #define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) &= 0x80000000; \ Dallp2(dbl_valueB) = 0 #define Dbl_setzero_exponentmantissap1(dbl_valueA) \ Dallp1(dbl_valueA) &= 0x80000000 #define Dbl_setzero(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0 #define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0 #define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0 #define Dbl_setnegativezero(dbl_value) \ Dallp1(dbl_value) = 1 << 31; Dallp2(dbl_value) = 0 #define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = 1 << 31 /* Use the following macro for both overflow & underflow conditions */ #define ovfl - #define unfl + #define Dbl_setwrapped_exponent(dbl_value,exponent,op) \ Deposit_dexponent(dbl_value,(exponent op DBL_WRAP)) #define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \ | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ); \ Dallp2(dbl_valueB) = 0xFFFFFFFF #define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \ | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ) | (1<<31); \ Dallp2(dbl_valueB) = 0xFFFFFFFF #define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB) \ Deposit_dexponentmantissap1(dbl_valueA, \ (((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \ | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ))); \ Dallp2(dbl_valueB) = 0xFFFFFFFF #define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) = ((1<= 32 ) \ { \ /* Big shift requires examining the portion shift off \ the end to properly set inexact. */ \ if(shift < 64) \ { \ if(shift > 32) \ { \ Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB), \ shift-32, Extall(extent)); \ if(Dallp2(srcdstB) << (64 - (shift))) Ext_setone_low(extent); \ } \ else Extall(extent) = Dallp2(srcdstB); \ Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32); \ } \ else \ { \ Extall(extent) = Dallp1(srcdstA); \ if(Dallp2(srcdstB)) Ext_setone_low(extent); \ Dallp2(srcdstB) = 0; \ } \ Dallp1(srcdstA) = 0; \ } \ else \ { \ /* Small alignment is simpler. Extension is easily set. */ \ if (shift > 0) \ { \ Extall(extent) = Dallp2(srcdstB) << (32 - (shift)); \ Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \ Dallp2(srcdstB)); \ Dallp1(srcdstA) >>= shift; \ } \ else Extall(extent) = 0; \ } /* * Here we need to shift the result right to correct for an overshift * (due to the exponent becoming negative) during normalization. */ #define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent) \ Extall(extent) = Dallp2(srcdstB) << (32 - (shift)); \ Dallp2(srcdstB) = (Dallp1(srcdstA) << (32 - (shift))) | \ (Dallp2(srcdstB) >> (shift)); \ Dallp1(srcdstA) = Dallp1(srcdstA) >> shift #define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value) #define Dbl_hidden(dbl_value) Dhidden(dbl_value) #define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value) /* The left argument is never smaller than the right argument */ #define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb) \ if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--; \ Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb); \ Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta) /* Subtract right augmented with extension from left augmented with zeros and * store into result and extension. */ #define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb) \ Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb); \ if( (Extall(extent) = 0-Extall(extent)) ) \ { \ if((Dallp2(resultb)--) == 0) Dallp1(resulta)--; \ } #define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb) \ /* If the sum of the low words is less than either source, then \ * an overflow into the next word occurred. */ \ Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta); \ if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \ Dallp1(resulta)++ #define Dbl_xortointp1(left,right,result) \ result = Dallp1(left) XOR Dallp1(right) #define Dbl_xorfromintp1(left,right,result) \ Dallp1(result) = left XOR Dallp1(right) #define Dbl_swap_lower(left,right) \ Dallp2(left) = Dallp2(left) XOR Dallp2(right); \ Dallp2(right) = Dallp2(left) XOR Dallp2(right); \ Dallp2(left) = Dallp2(left) XOR Dallp2(right) /* Need to Initialize */ #define Dbl_makequietnan(desta,destb) \ Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \ | (1<<(32-(1+DBL_EXP_LENGTH+2))); \ Dallp2(destb) = 0 #define Dbl_makesignalingnan(desta,destb) \ Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \ | (1<<(32-(1+DBL_EXP_LENGTH+1))); \ Dallp2(destb) = 0 #define Dbl_normalize(dbl_opndA,dbl_opndB,exponent) \ while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) { \ Dbl_leftshiftby8(dbl_opndA,dbl_opndB); \ exponent -= 8; \ } \ if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) { \ Dbl_leftshiftby4(dbl_opndA,dbl_opndB); \ exponent -= 4; \ } \ while(Dbl_iszero_hidden(dbl_opndA)) { \ Dbl_leftshiftby1(dbl_opndA,dbl_opndB); \ exponent -= 1; \ } #define Twoword_add(src1dstA,src1dstB,src2A,src2B) \ /* \ * want this macro to generate: \ * ADD src1dstB,src2B,src1dstB; \ * ADDC src1dstA,src2A,src1dstA; \ */ \ if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \ Dallp1(src1dstA) += (src2A); \ Dallp2(src1dstB) += (src2B) #define Twoword_subtract(src1dstA,src1dstB,src2A,src2B) \ /* \ * want this macro to generate: \ * SUB src1dstB,src2B,src1dstB; \ * SUBB src1dstA,src2A,src1dstA; \ */ \ if ((src1dstB) < (src2B)) Dallp1(src1dstA)--; \ Dallp1(src1dstA) -= (src2A); \ Dallp2(src1dstB) -= (src2B) #define Dbl_setoverflow(resultA,resultB) \ /* set result to infinity or largest number */ \ switch (Rounding_mode()) { \ case ROUNDPLUS: \ if (Dbl_isone_sign(resultA)) { \ Dbl_setlargestnegative(resultA,resultB); \ } \ else { \ Dbl_setinfinitypositive(resultA,resultB); \ } \ break; \ case ROUNDMINUS: \ if (Dbl_iszero_sign(resultA)) { \ Dbl_setlargestpositive(resultA,resultB); \ } \ else { \ Dbl_setinfinitynegative(resultA,resultB); \ } \ break; \ case ROUNDNEAREST: \ Dbl_setinfinity_exponentmantissa(resultA,resultB); \ break; \ case ROUNDZERO: \ Dbl_setlargest_exponentmantissa(resultA,resultB); \ } #define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact) \ Dbl_clear_signexponent_set_hidden(opndp1); \ if (exponent >= (1-DBL_P)) { \ if (exponent >= -31) { \ guard = (Dallp2(opndp2) >> (-(exponent))) & 1; \ if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \ if (exponent > -31) { \ Variable_shift_double(opndp1,opndp2,1-exponent,opndp2); \ Dallp1(opndp1) >>= 1-exponent; \ } \ else { \ Dallp2(opndp2) = Dallp1(opndp1); \ Dbl_setzerop1(opndp1); \ } \ } \ else { \ guard = (Dallp1(opndp1) >> (-32-(exponent))) & 1; \ if (exponent == -32) sticky |= Dallp2(opndp2); \ else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << (64+(exponent))); \ Dallp2(opndp2) = Dallp1(opndp1) >> (-31-(exponent)); \ Dbl_setzerop1(opndp1); \ } \ inexact = guard | sticky; \ } \ else { \ guard = 0; \ sticky |= (Dallp1(opndp1) | Dallp2(opndp2)); \ Dbl_setzero(opndp1,opndp2); \ inexact = sticky; \ } int dbl_fadd __P((dbl_floating_point *, dbl_floating_point*, dbl_floating_point*, unsigned int *)); int dbl_fcmp __P((dbl_floating_point *, dbl_floating_point*, unsigned int, unsigned int *)); int dbl_fdiv __P((dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *)); int dbl_fmpy __P((dbl_floating_point *, dbl_floating_point *, dbl_floating_point*, unsigned int *)); int dbl_frem __P((dbl_floating_point *, dbl_floating_point *, dbl_floating_point*, unsigned int *)); int dbl_fsqrt __P((dbl_floating_point *, void *, dbl_floating_point *, unsigned int *)); int dbl_fsub __P((dbl_floating_point *, dbl_floating_point *, dbl_floating_point*, unsigned int *)); dbl_floating_point dbl_setoverflow __P((unsigned int)); int sgl_to_dbl_fcnvff __P((sgl_floating_point *, void *, dbl_floating_point *, unsigned int *)); int dbl_to_sgl_fcnvff __P((dbl_floating_point *, void *, sgl_floating_point *, unsigned int *)); int dbl_frnd __P((dbl_floating_point *, void *, dbl_floating_point *, unsigned int *));