/* $OpenBSD: ahc_isa.c,v 1.3 1996/11/28 23:37:39 niklas Exp $ */ /* $NetBSD: ahc_isa.c,v 1.5 1996/10/21 22:27:39 thorpej Exp $ */ /* * Product specific probe and attach routines for: * 284X VLbus SCSI controllers * * Copyright (c) 1996 Jason R. Thorpe. * All rights reserved. * * Copyright (c) 1995, 1996 Christopher G. Demetriou. * All rights reserved. * * Copyright (c) 1994, 1995, 1996 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This front-end driver is really sort of a hack. The AHA-284X likes * to masquerade as an EISA device. However, on VLbus machines with * no EISA signature in the BIOS, the EISA bus will never be scanned. * This is intended to catch the 284X controllers on those systems * by looking in "EISA i/o space" for 284X controllers. * * This relies heavily on i/o port accounting. We also just use the * EISA macros for everything ... it's a real waste to redefine them. * * Note: there isn't any #ifdef for FreeBSD in this file, since the * FreeBSD EISA driver handles all cases of the 284X. * * -- Jason R. Thorpe * July 12, 1996 * * TODO: some code could be shared with ahc_eisa.c, but it would probably * be a logistical mightmare to even try. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* IO port address setting range as EISA slot number */ #define AHC_ISA_MIN_SLOT 0x1 /* from iobase = 0x1c00 */ #define AHC_ISA_MAX_SLOT 0xe /* to iobase = 0xec00 */ #define AHC_ISA_SLOT_OFFSET 0xc00 /* offset from EISA IO space */ #define AHC_ISA_IOSIZE 0x100 /* * I/O port offsets */ #define INTDEF 0x5cul /* Interrupt Definition Register */ #define AHC_ISA_VID (EISA_SLOTOFF_VID - AHC_ISA_SLOT_OFFSET) #define AHC_ISA_PID (EISA_SLOTOFF_PID - AHC_ISA_SLOT_OFFSET) #define AHC_ISA_PRIMING AHC_ISA_VID /* enable vendor/product ID */ /* * AHC_ISA_PRIMING register values (write) */ #define AHC_ISA_PRIMING_VID(index) (AHC_ISA_VID + (index)) #define AHC_ISA_PRIMING_PID(index) (AHC_ISA_PID + (index)) int ahc_isa_irq __P((bus_space_tag_t, bus_space_handle_t)); int ahc_isa_idstring __P((bus_space_tag_t, bus_space_handle_t, char *)); int ahc_isa_match __P((struct isa_attach_args *, bus_addr_t)); int ahc_isa_probe __P((struct device *, void *, void *)); void ahc_isa_attach __P((struct device *, struct device *, void *)); struct cfattach ahc_isa_ca = { sizeof(struct ahc_data), ahc_isa_probe, ahc_isa_attach }; /* * This keeps track of which slots are to be checked next if the * iobase locator is a wildcard. A simple static variable isn't enough, * since it's conceivable that a system might have more than one ISA * bus. * * The "bus" member is the unit number of the parent ISA bus, e.g. "0" * for "isa0". */ struct ahc_isa_slot { LIST_ENTRY(ahc_isa_slot) link; int bus; int slot; }; static LIST_HEAD(, ahc_isa_slot) ahc_isa_all_slots; static int ahc_isa_slot_initialized; /* * Return irq setting of the board, otherwise -1. */ int ahc_isa_irq(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { int irq; u_char intdef; ahc_reset("ahc_isa", iot, ioh); intdef = bus_space_read_1(iot, ioh, INTDEF); switch (irq = (intdef & 0xf)) { case 9: case 10: case 11: case 12: case 14: case 15: break; default: printf("ahc_isa_irq: illegal irq setting %d\n", intdef); return -1; } /* Note that we are going and return (to probe) */ return irq; } int ahc_isa_idstring(iot, ioh, idstring) bus_space_tag_t iot; bus_space_handle_t ioh; char *idstring; { u_int8_t vid[EISA_NVIDREGS], pid[EISA_NPIDREGS]; int i; /* Get the vendor ID bytes */ for (i = 0; i < EISA_NVIDREGS; i++) { bus_space_write_1(iot, ioh, AHC_ISA_PRIMING, AHC_ISA_PRIMING_VID(i)); vid[i] = bus_space_read_1(iot, ioh, AHC_ISA_VID + i); } /* Check for device existence */ if (EISA_VENDID_NODEV(vid)) { #if 0 printf("ahc_isa_idstring: no device at 0x%lx\n", ioh); /* XXX knows about ioh guts */ printf("\t(0x%x, 0x%x)\n", vid[0], vid[1]); #endif return (0); } /* And check that the firmware didn't biff something badly */ if (EISA_VENDID_IDDELAY(vid)) { printf("ahc_isa_idstring: BIOS biffed it at 0x%lx\n", ioh); /* XXX knows about ioh guts */ return (0); } /* Get the product ID bytes */ for (i = 0; i < EISA_NPIDREGS; i++) { bus_space_write_1(iot, ioh, AHC_ISA_PRIMING, AHC_ISA_PRIMING_PID(i)); pid[i] = bus_space_read_1(iot, ioh, AHC_ISA_PID + i); } /* Create the ID string from the vendor and product IDs */ idstring[0] = EISA_VENDID_0(vid); idstring[1] = EISA_VENDID_1(vid); idstring[2] = EISA_VENDID_2(vid); idstring[3] = EISA_PRODID_0(pid); idstring[4] = EISA_PRODID_1(pid); idstring[5] = EISA_PRODID_2(pid); idstring[6] = EISA_PRODID_3(pid); idstring[7] = '\0'; /* sanity */ return (1); } int ahc_isa_match(ia, iobase) struct isa_attach_args *ia; bus_addr_t iobase; { bus_space_tag_t iot = ia->ia_iot; bus_space_handle_t ioh; int irq; char idstring[EISA_IDSTRINGLEN]; /* * Get a mapping for the while slot-specific address * space. If we can't, assume nothing's there, but * warn about it. */ if (bus_space_map(iot, iobase, AHC_ISA_IOSIZE, 0, &ioh)) { #if 0 /* * Don't print anything out here, since this could * be common on machines configured to look for * ahc_eisa and ahc_isa. */ printf("ahc_isa_match: can't map I/O space for 0x%x\n", iobase); #endif return (0); } if (!ahc_isa_idstring(iot, ioh, idstring)) irq = -1; /* cannot get the ID string */ else if (strcmp(idstring, "ADP7756") && strcmp(idstring, "ADP7757")) irq = -1; /* unknown ID strings */ else irq = ahc_isa_irq(iot, ioh); bus_space_unmap(iot, ioh, AHC_ISA_IOSIZE); if (irq < 0) return (0); if (ia->ia_irq != IRQUNK && ia->ia_irq != irq) { printf("ahc_isa_match: irq mismatch (kernel %d, card %d)\n", ia->ia_irq, irq); return (0); } /* We have a match */ ia->ia_iobase = iobase; ia->ia_irq = irq; ia->ia_iosize = AHC_ISA_IOSIZE; ia->ia_msize = 0; return (1); } /* * Check the slots looking for a board we recognise * If we find one, note it's address (slot) and call * the actual probe routine to check it out. */ int ahc_isa_probe(parent, match, aux) struct device *parent; void *match, *aux; { struct isa_attach_args *ia = aux; struct ahc_isa_slot *as; if (ahc_isa_slot_initialized == 0) { LIST_INIT(&ahc_isa_all_slots); ahc_isa_slot_initialized = 1; } if (ia->ia_iobase != IOBASEUNK) return (ahc_isa_match(ia, ia->ia_iobase)); /* * Find this bus's state. If we don't yet have a slot * marker, allocate and initialize one. */ for (as = ahc_isa_all_slots.lh_first; as != NULL; as = as->link.le_next) if (as->bus == parent->dv_unit) goto found_slot_marker; /* * Don't have one, so make one. */ as = (struct ahc_isa_slot *) malloc(sizeof(struct ahc_isa_slot), M_DEVBUF, M_NOWAIT); if (as == NULL) panic("ahc_isa_probe: can't allocate slot marker"); as->bus = parent->dv_unit; as->slot = AHC_ISA_MIN_SLOT; LIST_INSERT_HEAD(&ahc_isa_all_slots, as, link); found_slot_marker: for (; as->slot <= AHC_ISA_MAX_SLOT; as->slot++) { if (ahc_isa_match(ia, EISA_SLOT_ADDR(as->slot) + AHC_ISA_SLOT_OFFSET)) { as->slot++; /* next slot to search */ return (1); } } /* No matching cards were found. */ return (0); } void ahc_isa_attach(parent, self, aux) struct device *parent, *self; void *aux; { ahc_type type; struct ahc_data *ahc = (void *)self; struct isa_attach_args *ia = aux; bus_space_tag_t iot = ia->ia_iot; bus_space_handle_t ioh; int irq; char idstring[EISA_IDSTRINGLEN]; const char *model; if (bus_space_map(iot, ia->ia_iobase, ia->ia_iosize, 0, &ioh)) panic("ahc_isa_attach: could not map slot I/O addresses"); if (!ahc_isa_idstring(iot, ioh, idstring)) panic("ahc_isa_attach: could not read ID string"); if ((irq = ahc_isa_irq(iot, ioh)) < 0) panic("ahc_isa_attach: ahc_isa_irq failed!"); if (strcmp(idstring, "ADP7756") == 0) { model = EISA_PRODUCT_ADP7756; type = AHC_284; } else if (strcmp(idstring, "ADP7757") == 0) { model = EISA_PRODUCT_ADP7757; type = AHC_284; } else { panic("ahc_isa_attach: Unknown device type %s\n", idstring); } printf(": %s\n", model); ahc_construct(ahc, iot, ioh, type, AHC_FNONE); #ifdef DEBUG /* * Tell the user what type of interrupts we're using. * usefull for debugging irq problems */ printf( "%s: Using %s Interrupts\n", ahc_name(ahc), ahc->pause & IRQMS ? "Level Sensitive" : "Edge Triggered"); #endif /* * Now that we know we own the resources we need, do the * card initialization. * * First, the aic7770 card specific setup. */ /* XXX * On AHA-284x, * all values are automagically intialized at * POST for these cards, so we can always rely * on the Scratch Ram values. However, we should * read the SEEPROM here (Dan has the code to do * it) so we can say what kind of translation the * BIOS is using. Printing out the geometry could * save a lot of users the grief of failed installs. */ /* * See if we have a Rev E or higher aic7770. Anything below a * Rev E will have a R/O autoflush disable configuration bit. * It's still not clear exactly what is differenent about the Rev E. * We think it allows 8 bit entries in the QOUTFIFO to support * "paging" SCBs so you can have more than 4 commands active at * once. */ { char *id_string; u_char sblkctl; u_char sblkctl_orig; sblkctl_orig = AHC_INB(ahc, SBLKCTL); sblkctl = sblkctl_orig ^ AUTOFLUSHDIS; AHC_OUTB(ahc, SBLKCTL, sblkctl); sblkctl = AHC_INB(ahc, SBLKCTL); if(sblkctl != sblkctl_orig) { id_string = "aic7770 >= Rev E, "; /* * Ensure autoflush is enabled */ sblkctl &= ~AUTOFLUSHDIS; AHC_OUTB(ahc, SBLKCTL, sblkctl); /* Allow paging on this adapter */ ahc->flags |= AHC_PAGESCBS; } else id_string = "aic7770 <= Rev C, "; printf("%s: %s", ahc_name(ahc), id_string); } /* Setup the FIFO threshold and the bus off time */ { u_char hostconf = AHC_INB(ahc, HOSTCONF); AHC_OUTB(ahc, BUSSPD, hostconf & DFTHRSH); AHC_OUTB(ahc, BUSTIME, (hostconf << 2) & BOFF); } /* * Generic aic7xxx initialization. */ if(ahc_init(ahc)){ ahc_free(ahc); return; } /* * Enable the board's BUS drivers */ AHC_OUTB(ahc, BCTL, ENABLE); /* * The IRQMS bit enables level sensitive interrupts only allow * IRQ sharing if its set. */ ahc->sc_ih = isa_intr_establish(ia->ia_ic, irq, ahc->pause & IRQMS ? IST_LEVEL : IST_EDGE, IPL_BIO, ahc_intr, ahc, ahc->sc_dev.dv_xname); if (ahc->sc_ih == NULL) { printf("%s: couldn't establish interrupt\n", ahc->sc_dev.dv_xname); ahc_free(ahc); return; } /* Attach sub-devices - always succeeds */ ahc_attach(ahc); }