/* $OpenBSD: isa_machdep.c,v 1.62 2008/04/26 14:33:27 kettenis Exp $ */ /* $NetBSD: isa_machdep.c,v 1.22 1997/06/12 23:57:32 thorpej Exp $ */ /*- * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1993, 1994, 1996, 1997 * Charles M. Hannum. All rights reserved. * Copyright (c) 1991 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)isa.c 7.2 (Berkeley) 5/13/91 */ #include #include #include #include #include #include #include #include "ioapic.h" #if NIOAPIC > 0 #include #include #endif #define _I386_BUS_DMA_PRIVATE #include #include #include #include #include #include #include #include #include #include "isadma.h" extern paddr_t avail_end; #define IDTVEC(name) __CONCAT(X,name) /* default interrupt vector table entries */ typedef int (*vector)(void); extern vector IDTVEC(intr)[]; void isa_strayintr(int); void intr_calculatemasks(void); int fakeintr(void *); #if NISADMA > 0 int _isa_bus_dmamap_create(bus_dma_tag_t, bus_size_t, int, bus_size_t, bus_size_t, int, bus_dmamap_t *); void _isa_bus_dmamap_destroy(bus_dma_tag_t, bus_dmamap_t); int _isa_bus_dmamap_load(bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t, struct proc *, int); int _isa_bus_dmamap_load_mbuf(bus_dma_tag_t, bus_dmamap_t, struct mbuf *, int); int _isa_bus_dmamap_load_uio(bus_dma_tag_t, bus_dmamap_t, struct uio *, int); int _isa_bus_dmamap_load_raw(bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *, int, bus_size_t, int); void _isa_bus_dmamap_unload(bus_dma_tag_t, bus_dmamap_t); void _isa_bus_dmamap_sync(bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t, int); int _isa_bus_dmamem_alloc(bus_dma_tag_t, bus_size_t, bus_size_t, bus_size_t, bus_dma_segment_t *, int, int *, int); void _isa_bus_dmamem_free(bus_dma_tag_t, bus_dma_segment_t *, int); int _isa_bus_dmamem_map(bus_dma_tag_t, bus_dma_segment_t *, int, size_t, caddr_t *, int); void _isa_bus_dmamem_unmap(bus_dma_tag_t, caddr_t, size_t); paddr_t _isa_bus_dmamem_mmap(bus_dma_tag_t, bus_dma_segment_t *, int, off_t, int, int); int _isa_dma_check_buffer(void *, bus_size_t, int, bus_size_t, struct proc *); int _isa_dma_alloc_bouncebuf(bus_dma_tag_t, bus_dmamap_t, bus_size_t, int); void _isa_dma_free_bouncebuf(bus_dma_tag_t, bus_dmamap_t); /* * Entry points for ISA DMA. These are mostly wrappers around * the generic functions that understand how to deal with bounce * buffers, if necessary. */ struct i386_bus_dma_tag isa_bus_dma_tag = { NULL, /* _cookie */ _isa_bus_dmamap_create, _isa_bus_dmamap_destroy, _isa_bus_dmamap_load, _isa_bus_dmamap_load_mbuf, _isa_bus_dmamap_load_uio, _isa_bus_dmamap_load_raw, _isa_bus_dmamap_unload, _isa_bus_dmamap_sync, _isa_bus_dmamem_alloc, _isa_bus_dmamem_free, _isa_bus_dmamem_map, _isa_bus_dmamem_unmap, _isa_bus_dmamem_mmap, }; #endif /* NISADMA > 0 */ /* * Fill in default interrupt table (in case of spurious interrupt * during configuration of kernel, setup interrupt control unit */ void isa_defaultirq(void) { int i; /* icu vectors */ for (i = 0; i < ICU_LEN; i++) setgate(&idt[ICU_OFFSET + i], IDTVEC(intr)[i], 0, SDT_SYS386IGT, SEL_KPL, GICODE_SEL); /* initialize 8259's */ outb(IO_ICU1, 0x11); /* reset; program device, four bytes */ outb(IO_ICU1+1, ICU_OFFSET); /* starting at this vector index */ outb(IO_ICU1+1, 1 << IRQ_SLAVE); /* slave on line 2 */ #ifdef AUTO_EOI_1 outb(IO_ICU1+1, 2 | 1); /* auto EOI, 8086 mode */ #else outb(IO_ICU1+1, 1); /* 8086 mode */ #endif outb(IO_ICU1+1, 0xff); /* leave interrupts masked */ outb(IO_ICU1, 0x68); /* special mask mode (if available) */ outb(IO_ICU1, 0x0a); /* Read IRR by default. */ #ifdef REORDER_IRQ outb(IO_ICU1, 0xc0 | (3 - 1)); /* pri order 3-7, 0-2 (com2 first) */ #endif outb(IO_ICU2, 0x11); /* reset; program device, four bytes */ outb(IO_ICU2+1, ICU_OFFSET+8); /* staring at this vector index */ outb(IO_ICU2+1, IRQ_SLAVE); #ifdef AUTO_EOI_2 outb(IO_ICU2+1, 2 | 1); /* auto EOI, 8086 mode */ #else outb(IO_ICU2+1, 1); /* 8086 mode */ #endif outb(IO_ICU2+1, 0xff); /* leave interrupts masked */ outb(IO_ICU2, 0x68); /* special mask mode (if available) */ outb(IO_ICU2, 0x0a); /* Read IRR by default. */ } void isa_nodefaultirq(void) { int i; /* icu vectors */ for (i = 0; i < ICU_LEN; i++) unsetgate(&idt[ICU_OFFSET + i]); } /* * Handle a NMI, possibly a machine check. * return true to panic system, false to ignore. */ int isa_nmi(void) { /* This is historic garbage; these ports are not readable */ log(LOG_CRIT, "No-maskable interrupt, may be parity error\n"); return(0); } u_long intrstray[ICU_LEN]; /* * Caught a stray interrupt, notify */ void isa_strayintr(int irq) { /* * Stray interrupts on irq 7 occur when an interrupt line is raised * and then lowered before the CPU acknowledges it. This generally * means either the device is screwed or something is cli'ing too * long and it's timing out. */ if (++intrstray[irq] <= 5) log(LOG_ERR, "stray interrupt %d%s\n", irq, intrstray[irq] >= 5 ? "; stopped logging" : ""); } int intrtype[ICU_LEN], intrmask[ICU_LEN], intrlevel[ICU_LEN]; int iminlevel[ICU_LEN], imaxlevel[ICU_LEN]; struct intrhand *intrhand[ICU_LEN]; int imask[NIPL]; /* Bitmask telling what interrupts are blocked. */ int iunmask[NIPL]; /* Bitmask telling what interrupts are accepted. */ /* * Recalculate the interrupt masks from scratch. * We could code special registry and deregistry versions of this function that * would be faster, but the code would be nastier, and we don't expect this to * happen very much anyway. */ void intr_calculatemasks(void) { int irq, level, unusedirqs; struct intrhand *q; /* First, figure out which levels each IRQ uses. */ unusedirqs = 0xffff; for (irq = 0; irq < ICU_LEN; irq++) { int levels = 0; for (q = intrhand[irq]; q; q = q->ih_next) levels |= 1 << IPL(q->ih_level); intrlevel[irq] = levels; if (levels) unusedirqs &= ~(1 << irq); } /* Then figure out which IRQs use each level. */ for (level = 0; level < NIPL; level++) { int irqs = 0; for (irq = 0; irq < ICU_LEN; irq++) if (intrlevel[irq] & (1 << level)) irqs |= 1 << irq; imask[level] = irqs | unusedirqs; } /* * Initialize soft interrupt masks to block themselves. */ IMASK(IPL_SOFTCLOCK) |= 1 << SIR_CLOCK; IMASK(IPL_SOFTNET) |= 1 << SIR_NET; IMASK(IPL_SOFTTTY) |= 1 << SIR_TTY; /* * Enforce a hierarchy that gives slow devices a better chance at not * dropping data. */ for (level = 0; level < NIPL - 1; level++) imask[level + 1] |= imask[level]; /* And eventually calculate the complete masks. */ for (irq = 0; irq < ICU_LEN; irq++) { int irqs = 1 << irq; int minlevel = IPL_NONE; int maxlevel = IPL_NONE; if (intrhand[irq] == NULL) { maxlevel = IPL_HIGH; irqs = IMASK(IPL_HIGH); } else { for (q = intrhand[irq]; q; q = q->ih_next) { irqs |= IMASK(q->ih_level); if (minlevel == IPL_NONE || q->ih_level < minlevel) minlevel = q->ih_level; if (q->ih_level > maxlevel) maxlevel = q->ih_level; } } if (irqs != IMASK(maxlevel)) panic("irq %d level %x mask mismatch: %x vs %x", irq, maxlevel, irqs, IMASK(maxlevel)); intrmask[irq] = irqs; iminlevel[irq] = minlevel; imaxlevel[irq] = maxlevel; #if 0 printf("irq %d: level %x, mask 0x%x (%x)\n", irq, imaxlevel[irq], intrmask[irq], IMASK(imaxlevel[irq])); #endif } /* Lastly, determine which IRQs are actually in use. */ { int irqs = 0; for (irq = 0; irq < ICU_LEN; irq++) if (intrhand[irq]) irqs |= 1 << irq; if (irqs >= 0x100) /* any IRQs >= 8 in use */ irqs |= 1 << IRQ_SLAVE; imen = ~irqs; SET_ICUS(); } /* For speed of splx, provide the inverse of the interrupt masks. */ for (irq = 0; irq < ICU_LEN; irq++) iunmask[irq] = ~imask[irq]; } int fakeintr(arg) void *arg; { return 0; } #define LEGAL_IRQ(x) ((x) >= 0 && (x) < ICU_LEN && (x) != 2) int isa_intr_alloc(isa_chipset_tag_t ic, int mask, int type, int *irq) { int i, bestirq, count; int tmp; struct intrhand **p, *q; if (type == IST_NONE) panic("intr_alloc: bogus type"); bestirq = -1; count = -1; /* some interrupts should never be dynamically allocated */ mask &= 0xdef8; /* * XXX some interrupts will be used later (6 for fdc, 12 for pms). * the right answer is to do "breadth-first" searching of devices. */ mask &= 0xefbf; for (i = 0; i < ICU_LEN; i++) { if (LEGAL_IRQ(i) == 0 || (mask & (1<ih_next, tmp++) ; if ((bestirq == -1) || (count > tmp)) { bestirq = i; count = tmp; } break; case IST_PULSE: /* this just isn't shareable */ continue; } } if (bestirq == -1) return (1); *irq = bestirq; return (0); } /* * Just check to see if an IRQ is available/can be shared. * 0 = interrupt not available * 1 = interrupt shareable * 2 = interrupt all to ourself */ int isa_intr_check(isa_chipset_tag_t ic, int irq, int type) { if (!LEGAL_IRQ(irq) || type == IST_NONE) return (0); switch (intrtype[irq]) { case IST_NONE: return (2); break; case IST_LEVEL: if (type != intrtype[irq]) return (0); return (1); break; case IST_EDGE: case IST_PULSE: if (type != IST_NONE) return (0); } return (1); } /* * Set up an interrupt handler to start being called. * XXX PRONE TO RACE CONDITIONS, UGLY, 'INTERESTING' INSERTION ALGORITHM. */ void * isa_intr_establish(isa_chipset_tag_t ic, int irq, int type, int level, int (*ih_fun)(void *), void *ih_arg, char *ih_what) { struct intrhand **p, *q, *ih; static struct intrhand fakehand = {fakeintr}; #if NIOAPIC > 0 struct mp_intr_map *mip; if (mp_busses != NULL) { int mpspec_pin = irq; int airq; if (mp_isa_bus == NULL) panic("no isa bus"); for (mip = mp_isa_bus->mb_intrs; mip != NULL; mip = mip->next) { if (mip->bus_pin == mpspec_pin) { airq = mip->ioapic_ih | irq; break; } } if (mip == NULL && mp_eisa_bus) { for (mip = mp_eisa_bus->mb_intrs; mip != NULL; mip = mip->next) { if (mip->bus_pin == mpspec_pin) { airq = mip->ioapic_ih | irq; break; } } } /* no MP mapping found -- invent! */ if (mip == NULL) airq = mpbios_invent(irq, type, mp_isa_bus->mb_idx); return (apic_intr_establish(airq, type, level, ih_fun, ih_arg, ih_what)); } #endif /* no point in sleeping unless someone can free memory. */ ih = malloc(sizeof *ih, M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); if (ih == NULL) { printf("%s: isa_intr_establish: can't malloc handler info\n", ih_what); return (NULL); } if (!LEGAL_IRQ(irq) || type == IST_NONE) { printf("%s: isa_intr_establish: bogus irq or type\n", ih_what); free(ih, M_DEVBUF); return (NULL); } switch (intrtype[irq]) { case IST_NONE: intrtype[irq] = type; break; case IST_EDGE: case IST_LEVEL: if (type == intrtype[irq]) break; case IST_PULSE: if (type != IST_NONE) { /*printf("%s: intr_establish: can't share %s with %s, irq %d\n", ih_what, isa_intr_typename(intrtype[irq]), isa_intr_typename(type), irq);*/ free(ih, M_DEVBUF); return (NULL); } break; } /* * Figure out where to put the handler. * This is O(N^2), but we want to preserve the order, and N is * generally small. */ for (p = &intrhand[irq]; (q = *p) != NULL; p = &q->ih_next) ; /* * Actually install a fake handler momentarily, since we might be doing * this with interrupts enabled and don't want the real routine called * until masking is set up. */ fakehand.ih_level = level; *p = &fakehand; intr_calculatemasks(); /* * Poke the real handler in now. */ ih->ih_fun = ih_fun; ih->ih_arg = ih_arg; ih->ih_next = NULL; ih->ih_level = level; ih->ih_irq = irq; evcount_attach(&ih->ih_count, ih_what, (void *)&ih->ih_irq, &evcount_intr); *p = ih; return (ih); } /* * Deregister an interrupt handler. */ void isa_intr_disestablish(isa_chipset_tag_t ic, void *arg) { struct intrhand *ih = arg; int irq = ih->ih_irq; struct intrhand **p, *q; #if NIOAPIC > 0 if (irq & APIC_INT_VIA_APIC) { apic_intr_disestablish(arg); return; } #endif if (!LEGAL_IRQ(irq)) panic("intr_disestablish: bogus irq %d", irq); /* * Remove the handler from the chain. * This is O(n^2), too. */ for (p = &intrhand[irq]; (q = *p) != NULL && q != ih; p = &q->ih_next) ; if (q) *p = q->ih_next; else panic("intr_disestablish: handler not registered"); evcount_detach(&ih->ih_count); free(ih, M_DEVBUF); intr_calculatemasks(); if (intrhand[irq] == NULL) intrtype[irq] = IST_NONE; } void isa_attach_hook(struct device *parent, struct device *self, struct isabus_attach_args *iba) { extern int isa_has_been_seen; /* * Notify others that might need to know that the ISA bus * has now been attached. */ if (isa_has_been_seen) panic("isaattach: ISA bus already seen!"); isa_has_been_seen = 1; } #if NISADMA > 0 /********************************************************************** * bus.h dma interface entry points **********************************************************************/ #ifdef ISA_DMA_STATS #define STAT_INCR(v) (v)++ #define STAT_DECR(v) do { \ if ((v) == 0) \ printf("%s:%d -- Already 0!\n", __FILE__, __LINE__); \ else \ (v)--; \ } while (0) u_long isa_dma_stats_loads; u_long isa_dma_stats_bounces; u_long isa_dma_stats_nbouncebufs; #else #define STAT_INCR(v) #define STAT_DECR(v) #endif /* * Create an ISA DMA map. */ int _isa_bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments, bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp) { struct i386_isa_dma_cookie *cookie; bus_dmamap_t map; int error, cookieflags; void *cookiestore; size_t cookiesize; /* Call common function to create the basic map. */ error = _bus_dmamap_create(t, size, nsegments, maxsegsz, boundary, flags, dmamp); if (error) return (error); map = *dmamp; map->_dm_cookie = NULL; cookiesize = sizeof(struct i386_isa_dma_cookie); /* * ISA only has 24-bits of address space. This means * we can't DMA to pages over 16M. In order to DMA to * arbitrary buffers, we use "bounce buffers" - pages * in memory below the 16M boundary. On DMA reads, * DMA happens to the bounce buffers, and is copied into * the caller's buffer. On writes, data is copied into * but bounce buffer, and the DMA happens from those * pages. To software using the DMA mapping interface, * this looks simply like a data cache. * * If we have more than 16M of RAM in the system, we may * need bounce buffers. We check and remember that here. * * There are exceptions, however. VLB devices can do * 32-bit DMA, and indicate that here. * * ...or, there is an opposite case. The most segments * a transfer will require is (maxxfer / NBPG) + 1. If * the caller can't handle that many segments (e.g. the * ISA DMA controller), we may have to bounce it as well. */ cookieflags = 0; if ((avail_end > ISA_DMA_BOUNCE_THRESHOLD && (flags & ISABUS_DMA_32BIT) == 0) || ((map->_dm_size / NBPG) + 1) > map->_dm_segcnt) { cookieflags |= ID_MIGHT_NEED_BOUNCE; cookiesize += (sizeof(bus_dma_segment_t) * map->_dm_segcnt); } /* * Allocate our cookie. */ if ((cookiestore = malloc(cookiesize, M_DEVBUF, ((flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK)|M_ZERO)) == NULL) { error = ENOMEM; goto out; } cookie = (struct i386_isa_dma_cookie *)cookiestore; cookie->id_flags = cookieflags; map->_dm_cookie = cookie; if (cookieflags & ID_MIGHT_NEED_BOUNCE) { /* * Allocate the bounce pages now if the caller * wishes us to do so. */ if ((flags & BUS_DMA_ALLOCNOW) == 0) goto out; error = _isa_dma_alloc_bouncebuf(t, map, size, flags); } out: if (error) { if (map->_dm_cookie != NULL) free(map->_dm_cookie, M_DEVBUF); _bus_dmamap_destroy(t, map); } return (error); } /* * Destroy an ISA DMA map. */ void _isa_bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map) { struct i386_isa_dma_cookie *cookie = map->_dm_cookie; /* * Free any bounce pages this map might hold. */ if (cookie->id_flags & ID_HAS_BOUNCE) _isa_dma_free_bouncebuf(t, map); free(cookie, M_DEVBUF); _bus_dmamap_destroy(t, map); } /* * Load an ISA DMA map with a linear buffer. */ int _isa_bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf, bus_size_t buflen, struct proc *p, int flags) { struct i386_isa_dma_cookie *cookie = map->_dm_cookie; int error; STAT_INCR(isa_dma_stats_loads); /* * Check to see if we might need to bounce the transfer. */ if (cookie->id_flags & ID_MIGHT_NEED_BOUNCE) { /* * Check if all pages are below the bounce * threshold. If they are, don't bother bouncing. */ if (_isa_dma_check_buffer(buf, buflen, map->_dm_segcnt, map->_dm_boundary, p) == 0) return (_bus_dmamap_load(t, map, buf, buflen, p, flags)); STAT_INCR(isa_dma_stats_bounces); /* * Allocate bounce pages, if necessary. */ if ((cookie->id_flags & ID_HAS_BOUNCE) == 0) { error = _isa_dma_alloc_bouncebuf(t, map, buflen, flags); if (error) return (error); } /* * Cache a pointer to the caller's buffer and * load the DMA map with the bounce buffer. */ cookie->id_origbuf = buf; cookie->id_origbuflen = buflen; error = _bus_dmamap_load(t, map, cookie->id_bouncebuf, buflen, p, flags); if (error) { /* * Free the bounce pages, unless our resources * are reserved for our exclusive use. */ if ((map->_dm_flags & BUS_DMA_ALLOCNOW) == 0) _isa_dma_free_bouncebuf(t, map); } /* ...so _isa_bus_dmamap_sync() knows we're bouncing */ cookie->id_flags |= ID_IS_BOUNCING; } else { /* * Just use the generic load function. */ error = _bus_dmamap_load(t, map, buf, buflen, p, flags); } return (error); } /* * Like _isa_bus_dmamap_load(), but for mbufs. */ int _isa_bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m, int flags) { panic("_isa_bus_dmamap_load_mbuf: not implemented"); } /* * Like _isa_bus_dmamap_load(), but for uios. */ int _isa_bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio, int flags) { panic("_isa_bus_dmamap_load_uio: not implemented"); } /* * Like _isa_bus_dmamap_load(), but for raw memory allocated with * bus_dmamem_alloc(). */ int _isa_bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map, bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags) { panic("_isa_bus_dmamap_load_raw: not implemented"); } /* * Unload an ISA DMA map. */ void _isa_bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map) { struct i386_isa_dma_cookie *cookie = map->_dm_cookie; /* * If we have bounce pages, free them, unless they're * reserved for our exclusive use. */ if ((cookie->id_flags & ID_HAS_BOUNCE) && (map->_dm_flags & BUS_DMA_ALLOCNOW) == 0) _isa_dma_free_bouncebuf(t, map); cookie->id_flags &= ~ID_IS_BOUNCING; /* * Do the generic bits of the unload. */ _bus_dmamap_unload(t, map); } /* * Synchronize an ISA DMA map. */ void _isa_bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset, bus_size_t len, int op) { struct i386_isa_dma_cookie *cookie = map->_dm_cookie; #ifdef DEBUG if ((op & (BUS_DMASYNC_PREWRITE|BUS_DMASYNC_POSTREAD)) != 0) { if (offset >= map->dm_mapsize) panic("_isa_bus_dmamap_sync: bad offset"); if (len == 0 || (offset + len) > map->dm_mapsize) panic("_isa_bus_dmamap_sync: bad length"); } #endif switch (op) { case BUS_DMASYNC_PREREAD: /* * Nothing to do for pre-read. */ break; case BUS_DMASYNC_PREWRITE: /* * If we're bouncing this transfer, copy the * caller's buffer to the bounce buffer. */ if (cookie->id_flags & ID_IS_BOUNCING) bcopy((char *)cookie->id_origbuf + offset, cookie->id_bouncebuf + offset, len); break; case BUS_DMASYNC_POSTREAD: /* * If we're bouncing this transfer, copy the * bounce buffer to the caller's buffer. */ if (cookie->id_flags & ID_IS_BOUNCING) bcopy((char *)cookie->id_bouncebuf + offset, cookie->id_origbuf + offset, len); break; case BUS_DMASYNC_POSTWRITE: /* * Nothing to do for post-write. */ break; } #if 0 /* This is a noop anyhow, so why bother calling it? */ _bus_dmamap_sync(t, map, op); #endif } /* * Allocate memory safe for ISA DMA. */ int _isa_bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags) { paddr_t high; if (avail_end > ISA_DMA_BOUNCE_THRESHOLD) high = trunc_page(ISA_DMA_BOUNCE_THRESHOLD); else high = trunc_page(avail_end); return (_bus_dmamem_alloc_range(t, size, alignment, boundary, segs, nsegs, rsegs, flags, 0, high)); } /* * Free memory safe for ISA DMA. */ void _isa_bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs) { _bus_dmamem_free(t, segs, nsegs); } /* * Map ISA DMA-safe memory into kernel virtual address space. */ int _isa_bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs, size_t size, caddr_t *kvap, int flags) { return (_bus_dmamem_map(t, segs, nsegs, size, kvap, flags)); } /* * Unmap ISA DMA-safe memory from kernel virtual address space. */ void _isa_bus_dmamem_unmap(bus_dma_tag_t t, caddr_t kva, size_t size) { _bus_dmamem_unmap(t, kva, size); } /* * mmap(2) ISA DMA-safe memory. */ paddr_t _isa_bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs, off_t off, int prot, int flags) { return (_bus_dmamem_mmap(t, segs, nsegs, off, prot, flags)); } /********************************************************************** * ISA DMA utility functions **********************************************************************/ /* * Return 0 if all pages in the passed buffer lie within the DMA'able * range RAM. */ int _isa_dma_check_buffer(void *buf, bus_size_t buflen, int segcnt, bus_size_t boundary, struct proc *p) { vaddr_t vaddr = (vaddr_t)buf; vaddr_t endva; paddr_t pa, lastpa; u_long pagemask = ~(boundary - 1); pmap_t pmap; int nsegs; endva = round_page(vaddr + buflen); nsegs = 1; lastpa = 0; if (p != NULL) pmap = p->p_vmspace->vm_map.pmap; else pmap = pmap_kernel(); for (; vaddr < endva; vaddr += NBPG) { /* * Get physical address for this segment. */ pmap_extract(pmap, (vaddr_t)vaddr, &pa); pa = trunc_page(pa); /* * Is it below the DMA'able threshold? */ if (pa > ISA_DMA_BOUNCE_THRESHOLD) return (EINVAL); if (lastpa) { /* * Check excessive segment count. */ if (lastpa + NBPG != pa) { if (++nsegs > segcnt) return (EFBIG); } /* * Check boundary restriction. */ if (boundary) { if ((lastpa ^ pa) & pagemask) return (EINVAL); } } lastpa = pa; } return (0); } int _isa_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t size, int flags) { struct i386_isa_dma_cookie *cookie = map->_dm_cookie; int error = 0; cookie->id_bouncebuflen = round_page(size); error = _isa_bus_dmamem_alloc(t, cookie->id_bouncebuflen, NBPG, map->_dm_boundary, cookie->id_bouncesegs, map->_dm_segcnt, &cookie->id_nbouncesegs, flags); if (error) goto out; error = _isa_bus_dmamem_map(t, cookie->id_bouncesegs, cookie->id_nbouncesegs, cookie->id_bouncebuflen, (caddr_t *)&cookie->id_bouncebuf, flags); out: if (error) { _isa_bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs); cookie->id_bouncebuflen = 0; cookie->id_nbouncesegs = 0; } else { cookie->id_flags |= ID_HAS_BOUNCE; STAT_INCR(isa_dma_stats_nbouncebufs); } return (error); } void _isa_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map) { struct i386_isa_dma_cookie *cookie = map->_dm_cookie; STAT_DECR(isa_dma_stats_nbouncebufs); _isa_bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen); _isa_bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs); cookie->id_bouncebuflen = 0; cookie->id_nbouncesegs = 0; cookie->id_flags &= ~ID_HAS_BOUNCE; } #endif /* NISADMA > 0 */