/* $OpenBSD: glxsb.c,v 1.20 2010/09/20 02:46:50 deraadt Exp $ */ /* * Copyright (c) 2006 Tom Cosgrove * Copyright (c) 2003, 2004 Theo de Raadt * Copyright (c) 2003 Jason Wright * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for the security block on the AMD Geode LX processors * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CRYPTO #include #include #include #include #endif #define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */ #define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */ #define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */ #define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */ #define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */ #define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */ #define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */ /* For GLD_MSR_CTRL: */ #define SB_GMC_DIV0 0x0000 /* AES update divisor values */ #define SB_GMC_DIV1 0x0001 #define SB_GMC_DIV2 0x0002 #define SB_GMC_DIV3 0x0003 #define SB_GMC_DIV_MASK 0x0003 #define SB_GMC_SBI 0x0004 /* AES swap bits */ #define SB_GMC_SBY 0x0008 /* AES swap bytes */ #define SB_GMC_TW 0x0010 /* Time write (EEPROM) */ #define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */ #define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */ #define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */ #define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */ #define SB_GMC_T_SEL_MASK 0x0300 #define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */ #define SB_GMC_T_TM 0x0800 /* RNG test mode */ /* (deterministic) */ /* Security Block configuration/control registers (offsets from base) */ #define SB_CTL_A 0x0000 /* RW - SB Control A */ #define SB_CTL_B 0x0004 /* RW - SB Control B */ #define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */ #define SB_SOURCE_A 0x0010 /* RW - Source A */ #define SB_DEST_A 0x0014 /* RW - Destination A */ #define SB_LENGTH_A 0x0018 /* RW - Length A */ #define SB_SOURCE_B 0x0020 /* RW - Source B */ #define SB_DEST_B 0x0024 /* RW - Destination B */ #define SB_LENGTH_B 0x0028 /* RW - Length B */ #define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */ #define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */ #define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */ #define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */ #define SB_WKEY_3 0x003C /* WO - Writable Key 3 */ #define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */ #define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */ #define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */ #define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */ #define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */ #define SB_RANDOM_NUM 0x0050 /* RW - Random Number */ #define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */ #define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */ #define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */ #define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */ #define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */ /* For SB_CTL_A and _B */ #define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */ #define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */ #define SB_CTL_DEC 0x0000 /* Decrypt */ #define SB_CTL_WK 0x0004 /* Use writable key (we set) */ #define SB_CTL_DC 0x0008 /* Destination coherent */ #define SB_CTL_SC 0x0010 /* Source coherent */ #define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */ /* For SB_AES_INT */ #define SB_AI_DISABLE_AES_A 0x00001 /* Disable AES A compl int */ #define SB_AI_ENABLE_AES_A 0x00000 /* Enable AES A compl int */ #define SB_AI_DISABLE_AES_B 0x00002 /* Disable AES B compl int */ #define SB_AI_ENABLE_AES_B 0x00000 /* Enable AES B compl int */ #define SB_AI_DISABLE_EEPROM 0x00004 /* Disable EEPROM op comp int */ #define SB_AI_ENABLE_EEPROM 0x00000 /* Enable EEPROM op compl int */ #define SB_AI_AES_A_COMPLETE 0x10000 /* AES A operation complete */ #define SB_AI_AES_B_COMPLETE 0x20000 /* AES B operation complete */ #define SB_AI_EEPROM_COMPLETE 0x40000 /* EEPROM operation complete */ #define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */ #define SB_MEM_SIZE 0x0810 /* Size of memory block */ #define SB_AES_ALIGN 0x0010 /* Source and dest buffers */ /* must be 16-byte aligned */ #define SB_AES_BLOCK_SIZE 0x0010 /* * The Geode LX security block AES acceleration doesn't perform scatter- * gather: it just takes source and destination addresses. Therefore the * plain- and ciphertexts need to be contiguous. To this end, we allocate * a buffer for both, and accept the overhead of copying in and out. If * the number of bytes in one operation is bigger than allowed for by the * buffer (buffer is twice the size of the max length, as it has both input * and output) then we have to perform multiple encryptions/decryptions. */ #define GLXSB_MAX_AES_LEN 16384 #ifdef CRYPTO struct glxsb_dma_map { bus_dmamap_t dma_map; bus_dma_segment_t dma_seg; int dma_nsegs; int dma_size; caddr_t dma_vaddr; uint32_t dma_paddr; }; struct glxsb_session { uint32_t ses_key[4]; uint8_t ses_iv[SB_AES_BLOCK_SIZE]; int ses_klen; int ses_used; struct swcr_data *ses_swd_auth; struct swcr_data *ses_swd_enc; }; #endif /* CRYPTO */ struct glxsb_softc { struct device sc_dev; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; struct timeout sc_to; #ifdef CRYPTO bus_dma_tag_t sc_dmat; struct glxsb_dma_map sc_dma; int32_t sc_cid; int sc_nsessions; struct glxsb_session *sc_sessions; #endif /* CRYPTO */ uint64_t save_gld_msr; }; int glxsb_match(struct device *, void *, void *); void glxsb_attach(struct device *, struct device *, void *); int glxsb_activate(struct device *, int); void glxsb_rnd(void *); struct cfattach glxsb_ca = { sizeof(struct glxsb_softc), glxsb_match, glxsb_attach, NULL, glxsb_activate }; struct cfdriver glxsb_cd = { NULL, "glxsb", DV_DULL }; #ifdef CRYPTO #define GLXSB_SESSION(sid) ((sid) & 0x0fffffff) #define GLXSB_SID(crd,ses) (((crd) << 28) | ((ses) & 0x0fffffff)) static struct glxsb_softc *glxsb_sc; int glxsb_crypto_setup(struct glxsb_softc *); int glxsb_crypto_newsession(uint32_t *, struct cryptoini *); int glxsb_crypto_process(struct cryptop *); int glxsb_crypto_freesession(uint64_t); static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t, uint32_t, void *, int, void *); int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *); void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *); void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *); void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *); #endif /* CRYPTO */ int glxsb_match(struct device *parent, void *match, void *aux) { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO) return (1); return (0); } void glxsb_attach(struct device *parent, struct device *self, void *aux) { struct glxsb_softc *sc = (void *) self; struct pci_attach_args *pa = aux; bus_addr_t membase; bus_size_t memsize; uint64_t msr; #ifdef CRYPTO uint32_t intr; #endif msr = rdmsr(SB_GLD_MSR_CAP); if ((msr & 0xFFFF00) != 0x130400) { printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16)); return; } /* printf(": revision %d", (int) (msr & 0xFF)); */ /* Map in the security block configuration/control registers */ if (pci_mapreg_map(pa, PCI_MAPREG_START, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->sc_iot, &sc->sc_ioh, &membase, &memsize, SB_MEM_SIZE)) { printf(": can't find mem space\n"); return; } /* * Configure the Security Block. * * We want to enable the noise generator (T_NE), and enable the * linear feedback shift register and whitener post-processing * (T_SEL = 3). Also ensure that test mode (deterministic values) * is disabled. */ msr = rdmsr(SB_GLD_MSR_CTRL); msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK); msr |= SB_GMC_T_NE | SB_GMC_T_SEL3; #if 0 msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */ #endif wrmsr(SB_GLD_MSR_CTRL, msr); /* Install a periodic collector for the "true" (AMD's word) RNG */ timeout_set(&sc->sc_to, glxsb_rnd, sc); glxsb_rnd(sc); printf(": RNG"); #ifdef CRYPTO /* We don't have an interrupt handler, so disable completion INTs */ intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B | SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE | SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE; bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr); sc->sc_dmat = pa->pa_dmat; if (glxsb_crypto_setup(sc)) printf(" AES"); #endif printf("\n"); } int glxsb_activate(struct device *self, int act) { struct glxsb_softc *sc = (struct glxsb_softc *)self; switch (act) { case DVACT_QUIESCE: /* XXX should wait for current crypto op to finish */ break; case DVACT_SUSPEND: sc->save_gld_msr = rdmsr(SB_GLD_MSR_CTRL); break; case DVACT_RESUME: wrmsr(SB_GLD_MSR_CTRL, sc->save_gld_msr); break; } return (0); } void glxsb_rnd(void *v) { struct glxsb_softc *sc = v; uint32_t status, value; status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS); if (status & SB_RNS_TRNG_VALID) { value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM); add_true_randomness(value); } timeout_add_msec(&sc->sc_to, 10); } #ifdef CRYPTO int glxsb_crypto_setup(struct glxsb_softc *sc) { int algs[CRYPTO_ALGORITHM_MAX + 1]; /* Allocate a contiguous DMA-able buffer to work in */ if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0) return 0; bzero(algs, sizeof(algs)); algs[CRYPTO_AES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; sc->sc_cid = crypto_get_driverid(0); if (sc->sc_cid < 0) return 0; crypto_register(sc->sc_cid, algs, glxsb_crypto_newsession, glxsb_crypto_freesession, glxsb_crypto_process); sc->sc_nsessions = 0; glxsb_sc = sc; return 1; } int glxsb_crypto_newsession(uint32_t *sidp, struct cryptoini *cri) { struct glxsb_softc *sc = glxsb_sc; struct glxsb_session *ses = NULL; struct auth_hash *axf; struct enc_xform *txf; struct cryptoini *c; struct swcr_data *swd; int sesn, i; if (sc == NULL || sidp == NULL || cri == NULL) return (EINVAL); for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { if (sc->sc_sessions[sesn].ses_used == 0) { ses = &sc->sc_sessions[sesn]; break; } } if (ses == NULL) { sesn = sc->sc_nsessions; ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); if (sesn != 0) { bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses)); bzero(sc->sc_sessions, sesn * sizeof(*ses)); free(sc->sc_sessions, M_DEVBUF); } sc->sc_sessions = ses; ses = &sc->sc_sessions[sesn]; sc->sc_nsessions++; } bzero(ses, sizeof(*ses)); ses->ses_used = 1; for (c = cri; c != NULL; c = c->cri_next) { switch (c->cri_alg) { case CRYPTO_AES_CBC: if (c->cri_klen != 128) { swd = malloc(sizeof(struct swcr_data), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (swd == NULL) { glxsb_crypto_freesession(sesn); return (ENOMEM); } ses->ses_swd_enc = swd; txf = &enc_xform_rijndael128; if (txf->setkey(&(swd->sw_kschedule), c->cri_key, c->cri_klen / 8) < 0) { glxsb_crypto_freesession(sesn); return (EINVAL); } swd->sw_exf = txf; break; } arc4random_buf(ses->ses_iv, sizeof(ses->ses_iv)); ses->ses_klen = c->cri_klen; /* Copy the key (Geode LX wants the primary key only) */ bcopy(c->cri_key, ses->ses_key, sizeof(ses->ses_key)); break; case CRYPTO_MD5_HMAC: axf = &auth_hash_hmac_md5_96; goto authcommon; case CRYPTO_SHA1_HMAC: axf = &auth_hash_hmac_sha1_96; goto authcommon; case CRYPTO_RIPEMD160_HMAC: axf = &auth_hash_hmac_ripemd_160_96; goto authcommon; case CRYPTO_SHA2_256_HMAC: axf = &auth_hash_hmac_sha2_256_128; goto authcommon; case CRYPTO_SHA2_384_HMAC: axf = &auth_hash_hmac_sha2_384_192; goto authcommon; case CRYPTO_SHA2_512_HMAC: axf = &auth_hash_hmac_sha2_512_256; authcommon: swd = malloc(sizeof(struct swcr_data), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (swd == NULL) { glxsb_crypto_freesession(sesn); return (ENOMEM); } ses->ses_swd_auth = swd; swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if (swd->sw_ictx == NULL) { glxsb_crypto_freesession(sesn); return (ENOMEM); } swd->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if (swd->sw_octx == NULL) { glxsb_crypto_freesession(sesn); return (ENOMEM); } for (i = 0; i < c->cri_klen / 8; i++) c->cri_key[i] ^= HMAC_IPAD_VAL; axf->Init(swd->sw_ictx); axf->Update(swd->sw_ictx, c->cri_key, c->cri_klen / 8); axf->Update(swd->sw_ictx, hmac_ipad_buffer, axf->blocksize - (c->cri_klen / 8)); for (i = 0; i < c->cri_klen / 8; i++) c->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); axf->Init(swd->sw_octx); axf->Update(swd->sw_octx, c->cri_key, c->cri_klen / 8); axf->Update(swd->sw_octx, hmac_opad_buffer, axf->blocksize - (c->cri_klen / 8)); for (i = 0; i < c->cri_klen / 8; i++) c->cri_key[i] ^= HMAC_OPAD_VAL; swd->sw_axf = axf; swd->sw_alg = c->cri_alg; break; default: glxsb_crypto_freesession(sesn); return (EINVAL); } } *sidp = GLXSB_SID(0, sesn); return (0); } int glxsb_crypto_freesession(uint64_t tid) { struct glxsb_softc *sc = glxsb_sc; struct swcr_data *swd; struct auth_hash *axf; struct enc_xform *txf; int sesn; uint32_t sid = ((uint32_t)tid) & 0xffffffff; if (sc == NULL) return (EINVAL); sesn = GLXSB_SESSION(sid); if (sesn >= sc->sc_nsessions) return (EINVAL); if ((swd = sc->sc_sessions[sesn].ses_swd_enc)) { txf = swd->sw_exf; if (swd->sw_kschedule) txf->zerokey(&(swd->sw_kschedule)); free(swd, M_CRYPTO_DATA); } if ((swd = sc->sc_sessions[sesn].ses_swd_auth)) { axf = swd->sw_axf; if (swd->sw_ictx) { bzero(swd->sw_ictx, axf->ctxsize); free(swd->sw_ictx, M_CRYPTO_DATA); } if (swd->sw_octx) { bzero(swd->sw_octx, axf->ctxsize); free(swd->sw_octx, M_CRYPTO_DATA); } free(swd, M_CRYPTO_DATA); } bzero(&sc->sc_sessions[sesn], sizeof(sc->sc_sessions[sesn])); return (0); } /* * Must be called at splnet() or higher */ static __inline void glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc, uint32_t pdst, void *key, int len, void *iv) { uint32_t status; int i; if (len & 0xF) { printf("%s: len must be a multiple of 16 (not %d)\n", sc->sc_dev.dv_xname, len); return; } /* Set the source */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc); /* Set the destination address */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst); /* Set the data length */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len); /* Set the IV */ if (iv != NULL) { bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_CBC_IV, iv, 4); control |= SB_CTL_CBC; } /* Set the key */ bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4); /* Ask the security block to do it */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A, control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST); /* * Now wait until it is done. * * We do a busy wait. Obviously the number of iterations of * the loop required to perform the AES operation depends upon * the number of bytes to process. * * On a 500 MHz Geode LX we see * * length (bytes) typical max iterations * 16 12 * 64 22 * 256 59 * 1024 212 * 8192 1,537 * * Since we have a maximum size of operation defined in * GLXSB_MAX_AES_LEN, we use this constant to decide how long * to wait. Allow an order of magnitude longer than it should * really take, just in case. */ for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) { status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A); if ((status & SB_CTL_ST) == 0) /* Done */ return; } printf("%s: operation failed to complete\n", sc->sc_dev.dv_xname); } static int glxsb_crypto_swauth(struct cryptop *crp, struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf) { int type; if (crp->crp_flags & CRYPTO_F_IMBUF) type = CRYPTO_BUF_MBUF; else type = CRYPTO_BUF_IOV; return (swcr_authcompute(crp, crd, sw, buf, type)); } static int glxsb_crypto_swenc(struct cryptop *crp, struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf) { int type; if (crp->crp_flags & CRYPTO_F_IMBUF) type = CRYPTO_BUF_MBUF; else type = CRYPTO_BUF_IOV; return (swcr_encdec(crd, sw, buf, type)); } static int glxsb_crypto_encdec(struct cryptop *crp, struct cryptodesc *crd, struct glxsb_session *ses, struct glxsb_softc *sc, caddr_t buf) { char *op_src, *op_dst; uint32_t op_psrc, op_pdst; uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv; int err = 0; int len, tlen, xlen; int offset; uint32_t control; if (crd == NULL || (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) { err = EINVAL; goto out; } /* How much of our buffer will we need to use? */ xlen = crd->crd_len > GLXSB_MAX_AES_LEN ? GLXSB_MAX_AES_LEN : crd->crd_len; /* * XXX Check if we can have input == output on Geode LX. * XXX In the meantime, use two separate (adjacent) buffers. */ op_src = sc->sc_dma.dma_vaddr; op_dst = sc->sc_dma.dma_vaddr + xlen; op_psrc = sc->sc_dma.dma_paddr; op_pdst = sc->sc_dma.dma_paddr + xlen; if (crd->crd_flags & CRD_F_ENCRYPT) { control = SB_CTL_ENC; if (crd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(crd->crd_iv, op_iv, sizeof(op_iv)); else bcopy(ses->ses_iv, op_iv, sizeof(op_iv)); if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) { if (crp->crp_flags & CRYPTO_F_IMBUF) m_copyback((struct mbuf *)crp->crp_buf, crd->crd_inject, sizeof(op_iv), op_iv, M_NOWAIT); else if (crp->crp_flags & CRYPTO_F_IOV) cuio_copyback((struct uio *)crp->crp_buf, crd->crd_inject, sizeof(op_iv), op_iv); else bcopy(op_iv, crp->crp_buf + crd->crd_inject, sizeof(op_iv)); } } else { control = SB_CTL_DEC; if (crd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(crd->crd_iv, op_iv, sizeof(op_iv)); else { if (crp->crp_flags & CRYPTO_F_IMBUF) m_copydata((struct mbuf *)crp->crp_buf, crd->crd_inject, sizeof(op_iv), op_iv); else if (crp->crp_flags & CRYPTO_F_IOV) cuio_copydata((struct uio *)crp->crp_buf, crd->crd_inject, sizeof(op_iv), op_iv); else bcopy(crp->crp_buf + crd->crd_inject, op_iv, sizeof(op_iv)); } } offset = 0; tlen = crd->crd_len; piv = op_iv; /* Process the data in GLXSB_MAX_AES_LEN chunks */ while (tlen > 0) { len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen; if (crp->crp_flags & CRYPTO_F_IMBUF) m_copydata((struct mbuf *)crp->crp_buf, crd->crd_skip + offset, len, op_src); else if (crp->crp_flags & CRYPTO_F_IOV) cuio_copydata((struct uio *)crp->crp_buf, crd->crd_skip + offset, len, op_src); else bcopy(crp->crp_buf + crd->crd_skip + offset, op_src, len); glxsb_dma_pre_op(sc, &sc->sc_dma); glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key, len, op_iv); glxsb_dma_post_op(sc, &sc->sc_dma); if (crp->crp_flags & CRYPTO_F_IMBUF) m_copyback((struct mbuf *)crp->crp_buf, crd->crd_skip + offset, len, op_dst, M_NOWAIT); else if (crp->crp_flags & CRYPTO_F_IOV) cuio_copyback((struct uio *)crp->crp_buf, crd->crd_skip + offset, len, op_dst); else bcopy(op_dst, crp->crp_buf + crd->crd_skip + offset, len); offset += len; tlen -= len; if (tlen <= 0) { /* Ideally, just == 0 */ /* Finished - put the IV in session IV */ piv = ses->ses_iv; } /* * Copy out last block for use as next iteration/session IV. * * piv is set to op_iv[] before the loop starts, but is * set to ses->ses_iv if we're going to exit the loop this * time. */ if (crd->crd_flags & CRD_F_ENCRYPT) { bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv)); } else { /* Decryption, only need this if another iteration */ if (tlen > 0) { bcopy(op_src + len - sizeof(op_iv), piv, sizeof(op_iv)); } } } /* All AES processing has now been done. */ bzero(sc->sc_dma.dma_vaddr, xlen * 2); out: return (err); } int glxsb_crypto_process(struct cryptop *crp) { struct glxsb_softc *sc = glxsb_sc; struct glxsb_session *ses; struct cryptodesc *crd; int sesn,err = 0; int s; s = splnet(); if (crp == NULL || crp->crp_callback == NULL) { err = EINVAL; goto out; } crd = crp->crp_desc; if (crd == NULL) { err = EINVAL; goto out; } sesn = GLXSB_SESSION(crp->crp_sid); if (sesn >= sc->sc_nsessions) { err = EINVAL; goto out; } ses = &sc->sc_sessions[sesn]; if (ses->ses_used == 0) { err = EINVAL; goto out; } for (crd = crp->crp_desc; crd; crd = crd->crd_next) { switch (crd->crd_alg) { case CRYPTO_AES_CBC: if (ses->ses_swd_enc) { if ((err = glxsb_crypto_swenc(crp, crd, ses->ses_swd_enc, crp->crp_buf)) != 0) goto out; } else if ((err = glxsb_crypto_encdec(crp, crd, ses, sc, crp->crp_buf)) != 0) goto out; break; case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_RIPEMD160_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: if ((err = glxsb_crypto_swauth(crp, crd, ses->ses_swd_auth, crp->crp_buf)) != 0) goto out; break; default: err = EINVAL; goto out; } } out: crp->crp_etype = err; crypto_done(crp); splx(s); return (err); } int glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma) { int rc; dma->dma_nsegs = 1; dma->dma_size = size; rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size, 0, BUS_DMA_NOWAIT, &dma->dma_map); if (rc != 0) { printf("%s: couldn't create DMA map for %d bytes (%d)\n", sc->sc_dev.dv_xname, size, rc); goto fail0; } rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0, &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT); if (rc != 0) { printf("%s: couldn't allocate DMA memory of %d bytes (%d)\n", sc->sc_dev.dv_xname, size, rc); goto fail1; } rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size, &dma->dma_vaddr, BUS_DMA_NOWAIT); if (rc != 0) { printf("%s: couldn't map DMA memory for %d bytes (%d)\n", sc->sc_dev.dv_xname, size, rc); goto fail2; } rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, size, NULL, BUS_DMA_NOWAIT); if (rc != 0) { printf("%s: couldn't load DMA memory for %d bytes (%d)\n", sc->sc_dev.dv_xname, size, rc); goto fail3; } dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr; return 0; fail3: bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size); fail2: bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs); fail1: bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); fail0: return rc; } void glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma) { bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } void glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma) { bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); } void glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma) { bus_dmamap_unload(sc->sc_dmat, dma->dma_map); bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size); bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs); bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); } #endif /* CRYPTO */