/* $OpenBSD: zs.c,v 1.1 1997/10/14 07:25:29 gingold Exp $ */ /* $NetBSD: zs.c,v 1.42 1996/11/20 18:57:03 gwr Exp $ */ /*- * Copyright (c) 1996 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Gordon W. Ross. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * Runs two serial lines per chip using slave drivers. * Plain tty/async lines use the zs_async slave. * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #include */ /* * XXX: Hard code this to make console init easier... */ #define NZS 2 /* XXX */ /* * The Sun3 provides a 3.6864 MHz clock to the ZS chips. */ #define PCLK (3686400) /* PCLK pin input clock rate */ /* * Define interrupt levels. */ #define ZSHARD_PRI 6 /* Wired on the CPU board... */ #define ZSSOFT_PRI 3 /* Want tty pri (4) but this is OK. */ #define ZS_DELAY() delay(3) /* * The layout of this is hardware-dependent (padding, order). */ struct zschan { volatile u_char zc_csr; /* ctrl,status, and indirect access */ u_char zc_pad2[15]; volatile u_char zc_data; /* data */ u_char zc_pad1[15]; }; #define ZS_SIZE (sizeof (struct zschan)) struct zsdevice { /* Yes, they are backwards. */ struct zschan zs_chan_b; struct zschan zs_chan_a; }; /* Default OBIO addresses. */ static int zs_physaddr[NZS] = {0x17011000, 0x17012000}; /* Saved PROM mappings */ static struct zsdevice *zsaddr[NZS]; /* See zs_init() */ /* Flags from cninit() */ static int zs_hwflags[NZS][2]; /* Default speed for each channel */ static int zs_defspeed[NZS][2] = { { 1200, /* keyboard */ 1200 }, /* mouse */ { 9600, /* ttya */ 9600 }, /* ttyb */ }; static struct zschan *zs_get_chan_addr __P((int, int)); int zs_getc __P((volatile void *)); static void zs_putc __P((volatile void *, int)); int zscngetc __P((dev_t)); void zscnputc __P((dev_t, int)); void nullcnprobe __P((struct consdev *)); void zscninit __P((struct consdev *)); void umprintf __P((const char *, ...)); /* Find PROM mappings (for console support). */ void zs_init __P((void)); void zs_init() { int i; for (i = 0; i < NZS; i++) { zsaddr[i] = (struct zsdevice *) bus_mapin (BUS_KBUS, zs_physaddr[i], ZS_SIZE); } } static struct zschan * zs_get_chan_addr(zsc_unit, channel) int zsc_unit, channel; { struct zsdevice *addr; struct zschan *zc; if (zsc_unit >= NZS) return NULL; addr = zsaddr[zsc_unit]; if (addr == NULL) return NULL; if (channel == 0) { zc = &addr->zs_chan_a; } else { zc = &addr->zs_chan_b; } return (zc); } static u_char zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ ZSWR1_RIE | ZSWR1_SIE, /* | ZSWR1_TIE, */ 0, /* 0x18 + ZSHARD_PRI, * IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE, 0, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 14, /*12: BAUDLO (default=9600) */ 0, /*13: BAUDHI (default=9600) */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA, ZSWR15_BREAK_IE | ZSWR15_DCD_IE }; /**************************************************************** * Autoconfig ****************************************************************/ /* Definition of the driver for autoconfig. */ static int zsc_match __P((struct device *, void *, void *)); static void zsc_attach __P((struct device *, struct device *, void *)); static int zsc_print __P((void *, const char *name)); struct cfattach zsc_ca = { sizeof(struct zsc_softc), zsc_match, zsc_attach }; struct cfdriver zsc_cd = { NULL, "zsc", DV_DULL }; static int zshard(void *); int zssoft(void *); static struct intrhand levelhard = { zshard }; /* static struct intrhand levelsoft = { zssoft }; */ /* * Is the zs chip present? */ static int zsc_match(parent, vcf, aux) struct device *parent; void *vcf, *aux; { struct cfdata *cf = vcf; struct confargs *ca = aux; int pa, unit, x; void *va; if (ca->ca_bustype != BUS_KBUS) return 0; unit = cf->cf_unit; if (unit < 0 || unit >= NZS) return (0); /* * OBIO match functions may be called for every possible * physical address, so match only our physical address. * This driver only supports its default mappings, so * non-default locators must match our defaults. */ if ((pa = ca->ca_paddr) == -1) { /* Use our default PA. */ pa = zs_physaddr[unit]; } else { /* Validate the given PA. */ if (pa != zs_physaddr[unit]) return (0); } if (pa != ca->ca_paddr) return (0); /* Make sure zs_init() found mappings. */ va = zsaddr[unit]; if (va == NULL) return (0); /* This returns -1 on a fault (bus error). */ x = peek_byte(va); return (x != -1); } /* * Attach a found zs. * * Match slave number to zs unit number, so that misconfiguration will * not set up the keyboard as ttya, etc. */ static void zsc_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct zsc_softc *zsc = (void *) self; /* struct cfdata *cf = self->dv_cfdata; */ struct zsc_attach_args zsc_args; volatile struct zschan *zc; struct zs_chanstate *cs; int zsc_unit, intpri, channel; int reset, s; static int didintr; zsc_unit = zsc->zsc_dev.dv_unit; /* if ((intpri = cf->cf_intpri) == -1) */ intpri = ZSHARD_PRI; printf(" level %d (softpri %d)\n", intpri, ZSSOFT_PRI); /* Use the mapping setup by the Sun PROM. */ if (zsaddr[zsc_unit] == NULL) panic("zs_attach: zs%d not mapped\n", zsc_unit); /* * Initialize software state for each channel. */ for (channel = 0; channel < 2; channel++) { cs = &zsc->zsc_cs[channel]; zc = zs_get_chan_addr(zsc_unit, channel); cs->cs_reg_csr = &zc->zc_csr; cs->cs_reg_data = &zc->zc_data; cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; /* Define BAUD rate clock for the MI code. */ cs->cs_brg_clk = PCLK / 16; /* XXX: get defspeed from EEPROM instead? */ cs->cs_defspeed = zs_defspeed[zsc_unit][channel]; bcopy(zs_init_reg, cs->cs_creg, 16); bcopy(zs_init_reg, cs->cs_preg, 16); /* * Clear the master interrupt enable. * The INTENA is common to both channels, * so just do it on the A channel. */ if (channel == 0) { zs_write_reg(cs, 9, 0); } /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ zsc_args.channel = channel; zsc_args.hwflags = zs_hwflags[zsc_unit][channel]; if (config_found(self, (void *)&zsc_args, zsc_print) == NULL) { /* No sub-driver. Just reset it. */ reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splzs(); zs_write_reg(cs, 9, reset); splx(s); } } /* Now safe to install interrupt handlers */ if (!didintr) { didintr = 1; /* intr_establish (ZSSOFT_PRI, 0, &levelsoft); */ intr_establish (INTR_ZS, IH_CAN_DELAY, &levelhard); } /* * Set the master interrupt enable and interrupt vector. * (common to both channels, do it on A) */ cs = &zsc->zsc_cs[0]; s = splzs(); /* interrupt vector */ zs_write_reg(cs, 2, zs_init_reg[2]); /* master interrupt control (enable) */ zs_write_reg(cs, 9, zs_init_reg[9]); splx(s); } static int zsc_print(aux, name) void *aux; const char *name; { struct zsc_attach_args *args = aux; if (name != NULL) printf("%s: ", name); if (args->channel != -1) printf(" channel %d", args->channel); return UNCONF; } static int zshard(arg) void *arg; { struct zsc_softc *zsc; int unit, rval; /* Do ttya/ttyb first, because they go faster. */ rval = 0; unit = zsc_cd.cd_ndevs; while (--unit >= 0) { zsc = zsc_cd.cd_devs[unit]; if (zsc != NULL) { rval |= zsc_intr_hard(zsc); } } return rval; } int zssoftpending; void zsc_req_softint(zsc) struct zsc_softc *zsc; { if (zssoftpending == 0) { /* We are at splzs here, so no need to lock. */ zssoftpending = ZSSOFT_PRI; setsoftzs (); } } int zssoft(arg) void *arg; { struct zsc_softc *zsc; int unit; /* This is not the only ISR on this IPL. */ if (zssoftpending == 0) return (0); /* * The soft intr. bit will be set by zshard only if * the variable zssoftpending is zero. The order of * these next two statements prevents our clearing * the soft intr bit just after zshard has set it. */ /* isr_soft_clear(ZSSOFT_PRI); */ zssoftpending = 0; /* Do ttya/ttyb first, because they go faster. */ unit = zsc_cd.cd_ndevs; while (--unit >= 0) { zsc = zsc_cd.cd_devs[unit]; if (zsc != NULL) { (void) zsc_intr_soft(zsc); } } return (1); } /* * Read or write the chip with suitable delays. */ u_char zs_read_reg(cs, reg) struct zs_chanstate *cs; u_char reg; { u_char val; *cs->cs_reg_csr = reg; ZS_DELAY(); val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_reg(cs, reg, val) struct zs_chanstate *cs; u_char reg, val; { *cs->cs_reg_csr = reg; ZS_DELAY(); *cs->cs_reg_csr = val; ZS_DELAY(); } u_char zs_read_csr(cs) struct zs_chanstate *cs; { register u_char v; v = *cs->cs_reg_csr; ZS_DELAY(); return v; } u_char zs_read_data(cs) struct zs_chanstate *cs; { register u_char v; v = *cs->cs_reg_data; ZS_DELAY(); return v; } void zs_write_csr(cs, val) struct zs_chanstate *cs; u_char val; { *cs->cs_reg_csr = val; ZS_DELAY(); } void zs_write_data(cs, val) struct zs_chanstate *cs; u_char val; { *cs->cs_reg_data = val; ZS_DELAY(); } /**************************************************************** * Console support functions (Sun3 specific!) ****************************************************************/ /* * Polled input char. */ int zs_getc(arg) volatile void *arg; { register volatile struct zschan *zc = arg; register int s, c, rr0; s = splhigh(); /* Wait for a character to arrive. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); c = zc->zc_data; ZS_DELAY(); splx(s); /* * This is used by the kd driver to read scan codes, * so don't translate '\r' ==> '\n' here... */ return (c); } /* * Polled output char. */ static void zs_putc(arg, c) volatile void *arg; int c; { register volatile struct zschan *zc = arg; register int s, rr0; s = splhigh(); /* Wait for transmitter to become ready. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_TX_READY) == 0); zc->zc_data = c; ZS_DELAY(); do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_TX_READY) == 0); splx(s); } extern struct consdev consdev_kd; /* keyboard/display */ extern struct consdev consdev_tty; extern struct consdev *cn_tab; /* physical console device info */ void *zs_conschan = (void *) 0x17012020; /* * This function replaces sys/dev/cninit.c * Determine which device is the console using * the PROM "input source" and "output sink". */ void cninit() { /* struct zschan *zc; */ struct consdev *cn; int zsc_unit, channel; char inSource; inSource = 1; switch (inSource) { case 1: /* ttya */ case 2: /* ttyb */ zsc_unit = 1; channel = inSource - 1; cn = &consdev_tty; cn->cn_dev = makedev(ZSTTY_MAJOR, channel); cn->cn_pri = CN_REMOTE; break; case 3: /* ttyc (rewired keyboard connector) */ case 4: /* ttyd (rewired mouse connector) */ zsc_unit = 0; channel = inSource - 3; cn = &consdev_tty; cn->cn_dev = makedev(ZSTTY_MAJOR, (channel+2)); cn->cn_pri = CN_REMOTE; break; default: #if 0 mon_printf("cninit: invalid PROM console selector\n"); #endif /* assume keyboard/display */ /* fallthrough */ case 0: /* keyboard/display */ zsc_unit = 0; channel = 0; cn = &consdev_kd; /* Set cn_dev, cn_pri in kd.c */ break; } #if 0 zc = zs_get_chan_addr(zsc_unit, channel); if (zc == NULL) { #if 0 mon_printf("cninit: zs not mapped.\n"); #endif return; } zs_conschan = zc; #endif zs_hwflags[zsc_unit][channel] = ZS_HWFLAG_CONSOLE; cn_tab = cn; (*cn->cn_init)(cn); } /* We never call this. */ void nullcnprobe(cn) struct consdev *cn; { } void zscninit(cn) struct consdev *cn; { #if 0 int unit = minor(cn->cn_dev) & 1; mon_printf("console is zstty%d (tty%c)\n", unit, unit + 'a'); #endif } /* * Polled console input putchar. */ int zscngetc(dev) dev_t dev; { register volatile struct zschan *zc = zs_conschan; register int c; c = zs_getc(zc); return (c); } /* * Polled console output putchar. */ void zscnputc(dev, c) dev_t dev; int c; { register volatile struct zschan *zc = zs_conschan; zs_putc(zc, c); if (c == '\n') zs_putc (zc, '\r'); } struct consdev consdev_tty = { nullcnprobe, zscninit, zscngetc, zscnputc, nullcnpollc, }; /* * Handle user request to enter kernel debugger. */ void zs_abort() { register volatile struct zschan *zc = zs_conschan; int rr0; /* Wait for end of break to avoid PROM abort. */ /* XXX - Limit the wait? */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while (rr0 & ZSRR0_BREAK); /* XXX - Always available, but may be the PROM monitor. */ Debugger(); } #if 1 static __inline__ int zs_hack_read_reg (int reg) { register volatile struct zschan *zc = zs_conschan; int val; zc->zc_csr = reg; ZS_DELAY(); val = zc->zc_csr; ZS_DELAY(); return val; } #endif void zs_hack (void); void zs_hack (void) { int rr[16]; static int regs[] = {0, 1, 2, 3, 10, 12, 13, 15, -1}; int *p; for (p = regs; *p != -1; p++) rr[*p] = zs_hack_read_reg (*p); printf ("zs_hack:\n"); for (p =regs; *p != -1; p++) printf ("regs[%d] = 0x%02x\n", *p, rr[*p]); }