/* $OpenBSD: dvma.h,v 1.1 1997/10/14 07:25:30 gingold Exp $ */ /* $NetBSD: dvma.h,v 1.4 1996/11/20 18:57:08 gwr Exp $ */ /*- * Copyright (c) 1996 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Gordon W. Ross. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * dvmamap manages a range of DVMA addresses intended to create double * mappings of physical memory. In a way, `dvmamap' is a submap of the * VM map `phys_map'. The difference is the use of the `resource map' * routines to manage page allocation, allowing DVMA addresses to be * allocated and freed from within interrupt routines. * * Note that `phys_map' can still be used to allocate memory-backed pages * in DVMA space. */ extern struct map *dvmamap; /* Allow up to 1 Mb of DVMA space. */ #define DVMA_SIZE (1 << 20) /* * The dvma resource map is defined in page units, which are numbered 1 to N. * Use these macros to convert to/from virtual addresses. */ #define rctov(n) ctob(((n)-1)) #define vtorc(v) ((btoc(v))+1) extern caddr_t kdvma_mapin __P((caddr_t, int, int)); extern caddr_t dvma_malloc __P((size_t, void *, int)); extern void dvma_free __P((caddr_t, size_t, void *)); extern void dvma_mapout __P((vm_offset_t kva, vm_offset_t va, int len)); extern vm_offset_t dvma_mapin __P((struct vm_map *, vm_offset_t, int, int));