* $OpenBSD: bindec.sa,v 1.4 2013/02/02 13:32:05 miod Exp $ * $NetBSD: bindec.sa,v 1.3 1994/10/26 07:48:51 cgd Exp $ * MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP * M68000 Hi-Performance Microprocessor Division * M68040 Software Package * * M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc. * All rights reserved. * * THE SOFTWARE is provided on an "AS IS" basis and without warranty. * To the maximum extent permitted by applicable law, * MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, * INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A * PARTICULAR PURPOSE and any warranty against infringement with * regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) * and any accompanying written materials. * * To the maximum extent permitted by applicable law, * IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER * (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS * PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR * OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE * SOFTWARE. Motorola assumes no responsibility for the maintenance * and support of the SOFTWARE. * * You are hereby granted a copyright license to use, modify, and * distribute the SOFTWARE so long as this entire notice is retained * without alteration in any modified and/or redistributed versions, * and that such modified versions are clearly identified as such. * No licenses are granted by implication, estoppel or otherwise * under any patents or trademarks of Motorola, Inc. * * bindec.sa 3.4 1/3/91 * * bindec * * Description: * Converts an input in extended precision format * to bcd format. * * Input: * a0 points to the input extended precision value * value in memory; d0 contains the k-factor sign-extended * to 32-bits. The input may be either normalized, * unnormalized, or denormalized. * * Output: result in the FP_SCR1 space on the stack. * * Saves and Modifies: D2-D7,A2,FP2 * * Algorithm: * * A1. Set RM and size ext; Set SIGMA = sign of input. * The k-factor is saved for use in d7. Clear the * BINDEC_FLG for separating normalized/denormalized * input. If input is unnormalized or denormalized, * normalize it. * * A2. Set X = abs(input). * * A3. Compute ILOG. * ILOG is the log base 10 of the input value. It is * approximated by adding e + 0.f when the original * value is viewed as 2^^e * 1.f in extended precision. * This value is stored in d6. * * A4. Clr INEX bit. * The operation in A3 above may have set INEX2. * * A5. Set ICTR = 0; * ICTR is a flag used in A13. It must be set before the * loop entry A6. * * A6. Calculate LEN. * LEN is the number of digits to be displayed. The * k-factor can dictate either the total number of digits, * if it is a positive number, or the number of digits * after the decimal point which are to be included as * significant. See the 68882 manual for examples. * If LEN is computed to be greater than 17, set OPERR in * USER_FPSR. LEN is stored in d4. * * A7. Calculate SCALE. * SCALE is equal to 10^ISCALE, where ISCALE is the number * of decimal places needed to insure LEN integer digits * in the output before conversion to bcd. LAMBDA is the * sign of ISCALE, used in A9. Fp1 contains * 10^^(abs(ISCALE)) using a rounding mode which is a * function of the original rounding mode and the signs * of ISCALE and X. A table is given in the code. * * A8. Clr INEX; Force RZ. * The operation in A3 above may have set INEX2. * RZ mode is forced for the scaling operation to insure * only one rounding error. The grs bits are collected in * the INEX flag for use in A10. * * A9. Scale X -> Y. * The mantissa is scaled to the desired number of * significant digits. The excess digits are collected * in INEX2. * * A10. Or in INEX. * If INEX is set, round error occurred. This is * compensated for by 'or-ing' in the INEX2 flag to * the lsb of Y. * * A11. Restore original FPCR; set size ext. * Perform FINT operation in the user's rounding mode. * Keep the size to extended. * * A12. Calculate YINT = FINT(Y) according to user's rounding * mode. The FPSP routine sintd0 is used. The output * is in fp0. * * A13. Check for LEN digits. * If the int operation results in more than LEN digits, * or less than LEN -1 digits, adjust ILOG and repeat from * A6. This test occurs only on the first pass. If the * result is exactly 10^LEN, decrement ILOG and divide * the mantissa by 10. * * A14. Convert the mantissa to bcd. * The binstr routine is used to convert the LEN digit * mantissa to bcd in memory. The input to binstr is * to be a fraction; i.e. (mantissa)/10^LEN and adjusted * such that the decimal point is to the left of bit 63. * The bcd digits are stored in the correct position in * the final string area in memory. * * A15. Convert the exponent to bcd. * As in A14 above, the exp is converted to bcd and the * digits are stored in the final string. * Test the length of the final exponent string. If the * length is 4, set operr. * * A16. Write sign bits to final string. * * Implementation Notes: * * The registers are used as follows: * * d0: scratch; LEN input to binstr * d1: scratch * d2: upper 32-bits of mantissa for binstr * d3: scratch;lower 32-bits of mantissa for binstr * d4: LEN * d5: LAMBDA/ICTR * d6: ILOG * d7: k-factor * a0: ptr for original operand/final result * a1: scratch pointer * a2: pointer to FP_X; abs(original value) in ext * fp0: scratch * fp1: scratch * fp2: scratch * F_SCR1: * F_SCR2: * L_SCR1: * L_SCR2: * BINDEC IDNT 2,1 Motorola 040 Floating Point Software Package include fpsp.h section 8 * Constants in extended precision LOG2 dc.l $3FFD0000,$9A209A84,$FBCFF798,$00000000 LOG2UP1 dc.l $3FFD0000,$9A209A84,$FBCFF799,$00000000 * Constants in single precision FONE dc.l $3F800000,$00000000,$00000000,$00000000 FTWO dc.l $40000000,$00000000,$00000000,$00000000 FTEN dc.l $41200000,$00000000,$00000000,$00000000 F4933 dc.l $459A2800,$00000000,$00000000,$00000000 RBDTBL dc.b 0,0,0,0 dc.b 3,3,2,2 dc.b 3,2,2,3 dc.b 2,3,3,2 xref binstr xref sintdo xref ptenrn,ptenrm,ptenrp xdef bindec xdef sc_mul bindec: movem.l d2-d7/a2,-(a7) fmovem.x fp0-fp2,-(a7) * A1. Set RM and size ext. Set SIGMA = sign input; * The k-factor is saved for use in d7. Clear BINDEC_FLG for * separating normalized/denormalized input. If the input * is a denormalized number, set the BINDEC_FLG memory word * to signal denorm. If the input is unnormalized, normalize * the input and test for denormalized result. * fmove.l #rm_mode,FPCR ;set RM and ext move.l (a0),L_SCR2(a6) ;save exponent for sign check move.l d0,d7 ;move k-factor to d7 clr.b BINDEC_FLG(a6) ;clr norm/denorm flag move.w STAG(a6),d0 ;get stag andi.w #$e000,d0 ;isolate stag bits beq A2_str ;if zero, input is norm * * Normalize the denorm * un_de_norm: move.w (a0),d0 andi.w #$7fff,d0 ;strip sign of normalized exp move.l 4(a0),d1 move.l 8(a0),d2 norm_loop: sub.w #1,d0 add.l d2,d2 addx.l d1,d1 tst.l d1 bge.b norm_loop * * Test if the normalized input is denormalized * tst.w d0 bgt.b pos_exp ;if greater than zero, it is a norm st BINDEC_FLG(a6) ;set flag for denorm pos_exp: andi.w #$7fff,d0 ;strip sign of normalized exp move.w d0,(a0) move.l d1,4(a0) move.l d2,8(a0) * A2. Set X = abs(input). * A2_str: move.l (a0),FP_SCR2(a6) ; move input to work space move.l 4(a0),FP_SCR2+4(a6) ; move input to work space move.l 8(a0),FP_SCR2+8(a6) ; move input to work space andi.l #$7fffffff,FP_SCR2(a6) ;create abs(X) * A3. Compute ILOG. * ILOG is the log base 10 of the input value. It is approx- * imated by adding e + 0.f when the original value is viewed * as 2^^e * 1.f in extended precision. This value is stored * in d6. * * Register usage: * Input/Output * d0: k-factor/exponent * d2: x/x * d3: x/x * d4: x/x * d5: x/x * d6: x/ILOG * d7: k-factor/Unchanged * a0: ptr for original operand/final result * a1: x/x * a2: x/x * fp0: x/float(ILOG) * fp1: x/x * fp2: x/x * F_SCR1:x/x * F_SCR2:Abs(X)/Abs(X) with $3fff exponent * L_SCR1:x/x * L_SCR2:first word of X packed/Unchanged tst.b BINDEC_FLG(a6) ;check for denorm beq.b A3_cont ;if clr, continue with norm move.l #-4933,d6 ;force ILOG = -4933 bra.b A4_str A3_cont: move.w FP_SCR2(a6),d0 ;move exp to d0 move.w #$3fff,FP_SCR2(a6) ;replace exponent with 0x3fff fmove.x FP_SCR2(a6),fp0 ;now fp0 has 1.f sub.w #$3fff,d0 ;strip off bias fadd.w d0,fp0 ;add in exp fsub.s FONE,fp0 ;subtract off 1.0 fbge.w pos_res ;if pos, branch fmul.x LOG2UP1,fp0 ;if neg, mul by LOG2UP1 fmove.l fp0,d6 ;put ILOG in d6 as a lword bra.b A4_str ;go move out ILOG pos_res: fmul.x LOG2,fp0 ;if pos, mul by LOG2 fmove.l fp0,d6 ;put ILOG in d6 as a lword * A4. Clr INEX bit. * The operation in A3 above may have set INEX2. A4_str: fmove.l #0,FPSR ;zero all of fpsr - nothing needed * A5. Set ICTR = 0; * ICTR is a flag used in A13. It must be set before the * loop entry A6. The lower word of d5 is used for ICTR. clr.w d5 ;clear ICTR * A6. Calculate LEN. * LEN is the number of digits to be displayed. The k-factor * can dictate either the total number of digits, if it is * a positive number, or the number of digits after the * original decimal point which are to be included as * significant. See the 68882 manual for examples. * If LEN is computed to be greater than 17, set OPERR in * USER_FPSR. LEN is stored in d4. * * Register usage: * Input/Output * d0: exponent/Unchanged * d2: x/x/scratch * d3: x/x * d4: exc picture/LEN * d5: ICTR/Unchanged * d6: ILOG/Unchanged * d7: k-factor/Unchanged * a0: ptr for original operand/final result * a1: x/x * a2: x/x * fp0: float(ILOG)/Unchanged * fp1: x/x * fp2: x/x * F_SCR1:x/x * F_SCR2:Abs(X) with $3fff exponent/Unchanged * L_SCR1:x/x * L_SCR2:first word of X packed/Unchanged A6_str: tst.l d7 ;branch on sign of k ble.b k_neg ;if k <= 0, LEN = ILOG + 1 - k move.l d7,d4 ;if k > 0, LEN = k bra.b len_ck ;skip to LEN check k_neg: move.l d6,d4 ;first load ILOG to d4 sub.l d7,d4 ;subtract off k addq.l #1,d4 ;add in the 1 len_ck: tst.l d4 ;LEN check: branch on sign of LEN ble.b LEN_ng ;if neg, set LEN = 1 cmp.l #17,d4 ;test if LEN > 17 ble.b A7_str ;if not, forget it move.l #17,d4 ;set max LEN = 17 tst.l d7 ;if negative, never set OPERR ble.b A7_str ;if positive, continue or.l #opaop_mask,USER_FPSR(a6) ;set OPERR & AIOP in USER_FPSR bra.b A7_str ;finished here LEN_ng: moveq.l #1,d4 ;min LEN is 1 * A7. Calculate SCALE. * SCALE is equal to 10^ISCALE, where ISCALE is the number * of decimal places needed to insure LEN integer digits * in the output before conversion to bcd. LAMBDA is the sign * of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using * the rounding mode as given in the following table (see * Coonen, p. 7.23 as ref.; however, the SCALE variable is * of opposite sign in bindec.sa from Coonen). * * Initial USE * FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] * ---------------------------------------------- * RN 00 0 0 00/0 RN * RN 00 0 1 00/0 RN * RN 00 1 0 00/0 RN * RN 00 1 1 00/0 RN * RZ 01 0 0 11/3 RP * RZ 01 0 1 11/3 RP * RZ 01 1 0 10/2 RM * RZ 01 1 1 10/2 RM * RM 10 0 0 11/3 RP * RM 10 0 1 10/2 RM * RM 10 1 0 10/2 RM * RM 10 1 1 11/3 RP * RP 11 0 0 10/2 RM * RP 11 0 1 11/3 RP * RP 11 1 0 11/3 RP * RP 11 1 1 10/2 RM * * Register usage: * Input/Output * d0: exponent/scratch - final is 0 * d2: x/0 or 24 for A9 * d3: x/scratch - offset ptr into PTENRM array * d4: LEN/Unchanged * d5: 0/ICTR:LAMBDA * d6: ILOG/ILOG or k if ((k<=0)&(ILOG 0, skip this cmp.l d6,d7 ;test k - ILOG blt.b k_pos ;if ILOG >= k, skip this move.l d7,d6 ;if ((k<0) & (ILOG < k)) ILOG = k k_pos: move.l d6,d0 ;calc ILOG + 1 - LEN in d0 addq.l #1,d0 ;add the 1 sub.l d4,d0 ;sub off LEN swap d5 ;use upper word of d5 for LAMBDA clr.w d5 ;set it zero initially clr.w d2 ;set up d2 for very small case tst.l d0 ;test sign of ISCALE bge.b iscale ;if pos, skip next inst addq.w #1,d5 ;if neg, set LAMBDA true cmp.l #$ffffecd4,d0 ;test iscale <= -4908 bgt.b no_inf ;if false, skip rest addi.l #24,d0 ;add in 24 to iscale move.l #24,d2 ;put 24 in d2 for A9 no_inf: neg.l d0 ;and take abs of ISCALE iscale: fmove.s FONE,fp1 ;init fp1 to 1 bfextu USER_FPCR(a6){26:2},d1 ;get initial rmode bits add.w d1,d1 ;put them in bits 2:1 add.w d5,d1 ;add in LAMBDA add.w d1,d1 ;put them in bits 3:1 tst.l L_SCR2(a6) ;test sign of original x bge.b x_pos ;if pos, don't set bit 0 addq.l #1,d1 ;if neg, set bit 0 x_pos: lea.l RBDTBL,a2 ;load rbdtbl base move.b (a2,d1),d3 ;load d3 with new rmode lsl.l #4,d3 ;put bits in proper position fmove.l d3,fpcr ;load bits into fpu lsr.l #4,d3 ;put bits in proper position tst.b d3 ;decode new rmode for pten table bne.b not_rn ;if zero, it is RN lea.l PTENRN,a1 ;load a1 with RN table base bra.b rmode ;exit decode not_rn: lsr.b #1,d3 ;get lsb in carry bcc.b not_rp ;if carry clear, it is RM lea.l PTENRP,a1 ;load a1 with RP table base bra.b rmode ;exit decode not_rp: lea.l PTENRM,a1 ;load a1 with RM table base rmode: clr.l d3 ;clr table index e_loop: lsr.l #1,d0 ;shift next bit into carry bcc.b e_next ;if zero, skip the mul fmul.x (a1,d3),fp1 ;mul by 10**(d3_bit_no) e_next: add.l #12,d3 ;inc d3 to next pwrten table entry tst.l d0 ;test if ISCALE is zero bne.b e_loop ;if not, loop * A8. Clr INEX; Force RZ. * The operation in A3 above may have set INEX2. * RZ mode is forced for the scaling operation to insure * only one rounding error. The grs bits are collected in * the INEX flag for use in A10. * * Register usage: * Input/Output fmove.l #0,FPSR ;clr INEX fmove.l #rz_mode,FPCR ;set RZ rounding mode * A9. Scale X -> Y. * The mantissa is scaled to the desired number of significant * digits. The excess digits are collected in INEX2. If mul, * Check d2 for excess 10 exponential value. If not zero, * the iscale value would have caused the pwrten calculation * to overflow. Only a negative iscale can cause this, so * multiply by 10^(d2), which is now only allowed to be 24, * with a multiply by 10^8 and 10^16, which is exact since * 10^24 is exact. If the input was denormalized, we must * create a busy stack frame with the mul command and the * two operands, and allow the fpu to complete the multiply. * * Register usage: * Input/Output * d0: FPCR with RZ mode/Unchanged * d2: 0 or 24/unchanged * d3: x/x * d4: LEN/Unchanged * d5: ICTR:LAMBDA * d6: ILOG/Unchanged * d7: k-factor/Unchanged * a0: ptr for original operand/final result * a1: ptr to PTENRM array/Unchanged * a2: x/x * fp0: float(ILOG)/X adjusted for SCALE (Y) * fp1: 10^ISCALE/Unchanged * fp2: x/x * F_SCR1:x/x * F_SCR2:Abs(X) with $3fff exponent/Unchanged * L_SCR1:x/x * L_SCR2:first word of X packed/Unchanged A9_str: fmove.x (a0),fp0 ;load X from memory fabs.x fp0 ;use abs(X) tst.w d5 ;LAMBDA is in lower word of d5 bne.b short_sc_mul ;if neg (LAMBDA = 1), scale by mul fdiv.x fp1,fp0 ;calculate X / SCALE -> Y to fp0 bra.b A10_st ;branch to A10 sc_mul: short_sc_mul: tst.b BINDEC_FLG(a6) ;check for denorm beq.b A9_norm ;if norm, continue with mul fmovem.x fp1,-(a7) ;load ETEMP with 10^ISCALE move.l 8(a0),-(a7) ;load FPTEMP with input arg move.l 4(a0),-(a7) move.l (a0),-(a7) move.l #18,d3 ;load count for busy stack A9_loop: clr.l -(a7) ;clear lword on stack dbf.w d3,A9_loop move.b VER_TMP(a6),(a7) ;write current version number move.b #BUSY_SIZE-4,1(a7) ;write current busy size move.b #$10,$44(a7) ;set fcefpte[15] bit move.w #$0023,$40(a7) ;load cmdreg1b with mul command move.b #$fe,$8(a7) ;load all 1s to cu savepc frestore (a7)+ ;restore frame to fpu for completion fmul.x 36(a1),fp0 ;multiply fp0 by 10^8 fmul.x 48(a1),fp0 ;multiply fp0 by 10^16 bra.b A10_st A9_norm: tst.w d2 ;test for small exp case beq.b A9_con ;if zero, continue as normal fmul.x 36(a1),fp0 ;multiply fp0 by 10^8 fmul.x 48(a1),fp0 ;multiply fp0 by 10^16 A9_con: fmul.x fp1,fp0 ;calculate X * SCALE -> Y to fp0 * A10. Or in INEX. * If INEX is set, round error occurred. This is compensated * for by 'or-ing' in the INEX2 flag to the lsb of Y. * * Register usage: * Input/Output * d0: FPCR with RZ mode/FPSR with INEX2 isolated * d2: x/x * d3: x/x * d4: LEN/Unchanged * d5: ICTR:LAMBDA * d6: ILOG/Unchanged * d7: k-factor/Unchanged * a0: ptr for original operand/final result * a1: ptr to PTENxx array/Unchanged * a2: x/ptr to FP_SCR2(a6) * fp0: Y/Y with lsb adjusted * fp1: 10^ISCALE/Unchanged * fp2: x/x A10_st: fmove.l FPSR,d0 ;get FPSR fmove.x fp0,FP_SCR2(a6) ;move Y to memory lea.l FP_SCR2(a6),a2 ;load a2 with ptr to FP_SCR2 btst.l #9,d0 ;check if INEX2 set beq.b A11_st ;if clear, skip rest ori.l #1,8(a2) ;or in 1 to lsb of mantissa fmove.x FP_SCR2(a6),fp0 ;write adjusted Y back to fpu * A11. Restore original FPCR; set size ext. * Perform FINT operation in the user's rounding mode. Keep * the size to extended. The sintdo entry point in the sint * routine expects the FPCR value to be in USER_FPCR for * mode and precision. The original FPCR is saved in L_SCR1. A11_st: move.l USER_FPCR(a6),L_SCR1(a6) ;save it for later andi.l #$00000030,USER_FPCR(a6) ;set size to ext, * ;block exceptions * A12. Calculate YINT = FINT(Y) according to user's rounding mode. * The FPSP routine sintd0 is used. The output is in fp0. * * Register usage: * Input/Output * d0: FPSR with AINEX cleared/FPCR with size set to ext * d2: x/x/scratch * d3: x/x * d4: LEN/Unchanged * d5: ICTR:LAMBDA/Unchanged * d6: ILOG/Unchanged * d7: k-factor/Unchanged * a0: ptr for original operand/src ptr for sintdo * a1: ptr to PTENxx array/Unchanged * a2: ptr to FP_SCR2(a6)/Unchanged * a6: temp pointer to FP_SCR2(a6) - orig value saved and restored * fp0: Y/YINT * fp1: 10^ISCALE/Unchanged * fp2: x/x * F_SCR1:x/x * F_SCR2:Y adjusted for inex/Y with original exponent * L_SCR1:x/original USER_FPCR * L_SCR2:first word of X packed/Unchanged A12_st: movem.l d0-d1/a0-a1,-(a7) ;save regs used by sintd0 move.l L_SCR1(a6),-(a7) move.l L_SCR2(a6),-(a7) lea.l FP_SCR2(a6),a0 ;a0 is ptr to F_SCR2(a6) fmove.x fp0,(a0) ;move Y to memory at FP_SCR2(a6) tst.l L_SCR2(a6) ;test sign of original operand bge.b do_fint ;if pos, use Y or.l #$80000000,(a0) ;if neg, use -Y do_fint: move.l USER_FPSR(a6),-(a7) bsr sintdo ;sint routine returns int in fp0 move.b (a7),USER_FPSR(a6) add.l #4,a7 move.l (a7)+,L_SCR2(a6) move.l (a7)+,L_SCR1(a6) movem.l (a7)+,d0-d1/a0-a1 ;restore regs used by sint move.l L_SCR2(a6),FP_SCR2(a6) ;restore original exponent move.l L_SCR1(a6),USER_FPCR(a6) ;restore user's FPCR * A13. Check for LEN digits. * If the int operation results in more than LEN digits, * or less than LEN -1 digits, adjust ILOG and repeat from * A6. This test occurs only on the first pass. If the * result is exactly 10^LEN, decrement ILOG and divide * the mantissa by 10. The calculation of 10^LEN cannot * be inexact, since all powers of ten upto 10^27 are exact * in extended precision, so the use of a previous power-of-ten * table will introduce no error. * * * Register usage: * Input/Output * d0: FPCR with size set to ext/scratch final = 0 * d2: x/x * d3: x/scratch final = x * d4: LEN/LEN adjusted * d5: ICTR:LAMBDA/LAMBDA:ICTR * d6: ILOG/ILOG adjusted * d7: k-factor/Unchanged * a0: pointer into memory for packed bcd string formation * a1: ptr to PTENxx array/Unchanged * a2: ptr to FP_SCR2(a6)/Unchanged * fp0: int portion of Y/abs(YINT) adjusted * fp1: 10^ISCALE/Unchanged * fp2: x/10^LEN * F_SCR1:x/x * F_SCR2:Y with original exponent/Unchanged * L_SCR1:original USER_FPCR/Unchanged * L_SCR2:first word of X packed/Unchanged A13_st: swap d5 ;put ICTR in lower word of d5 tst.w d5 ;check if ICTR = 0 bne not_zr ;if non-zero, go to second test * * Compute 10^(LEN-1) * fmove.s FONE,fp2 ;init fp2 to 1.0 move.l d4,d0 ;put LEN in d0 subq.l #1,d0 ;d0 = LEN -1 clr.l d3 ;clr table index l_loop: lsr.l #1,d0 ;shift next bit into carry bcc.b l_next ;if zero, skip the mul fmul.x (a1,d3),fp2 ;mul by 10**(d3_bit_no) l_next: add.l #12,d3 ;inc d3 to next pwrten table entry tst.l d0 ;test if LEN is zero bne.b l_loop ;if not, loop * * 10^LEN-1 is computed for this test and A14. If the input was * denormalized, check only the case in which YINT > 10^LEN. * tst.b BINDEC_FLG(a6) ;check if input was norm beq.b A13_con ;if norm, continue with checking fabs.x fp0 ;take abs of YINT bra test_2 * * Compare abs(YINT) to 10^(LEN-1) and 10^LEN * A13_con: fabs.x fp0 ;take abs of YINT fcmp.x fp2,fp0 ;compare abs(YINT) with 10^(LEN-1) fbge.w test_2 ;if greater, do next test subq.l #1,d6 ;subtract 1 from ILOG move.w #1,d5 ;set ICTR fmove.l #rm_mode,FPCR ;set rmode to RM fmul.s FTEN,fp2 ;compute 10^LEN bra.w A6_str ;return to A6 and recompute YINT test_2: fmul.s FTEN,fp2 ;compute 10^LEN fcmp.x fp2,fp0 ;compare abs(YINT) with 10^LEN fblt.w A14_st ;if less, all is ok, go to A14 fbgt.w fix_ex ;if greater, fix and redo fdiv.s FTEN,fp0 ;if equal, divide by 10 addq.l #1,d6 ; and inc ILOG bra.b A14_st ; and continue elsewhere fix_ex: addq.l #1,d6 ;increment ILOG by 1 move.w #1,d5 ;set ICTR fmove.l #rm_mode,FPCR ;set rmode to RM bra.w A6_str ;return to A6 and recompute YINT * * Since ICTR <> 0, we have already been through one adjustment, * and shouldn't have another; this is to check if abs(YINT) = 10^LEN * 10^LEN is again computed using whatever table is in a1 since the * value calculated cannot be inexact. * not_zr: fmove.s FONE,fp2 ;init fp2 to 1.0 move.l d4,d0 ;put LEN in d0 clr.l d3 ;clr table index z_loop: lsr.l #1,d0 ;shift next bit into carry bcc.b z_next ;if zero, skip the mul fmul.x (a1,d3),fp2 ;mul by 10**(d3_bit_no) z_next: add.l #12,d3 ;inc d3 to next pwrten table entry tst.l d0 ;test if LEN is zero bne.b z_loop ;if not, loop fabs.x fp0 ;get abs(YINT) fcmp.x fp2,fp0 ;check if abs(YINT) = 10^LEN fbne.w A14_st ;if not, skip this fdiv.s FTEN,fp0 ;divide abs(YINT) by 10 addq.l #1,d6 ;and inc ILOG by 1 addq.l #1,d4 ; and inc LEN fmul.s FTEN,fp2 ; if LEN++, the get 10^^LEN * A14. Convert the mantissa to bcd. * The binstr routine is used to convert the LEN digit * mantissa to bcd in memory. The input to binstr is * to be a fraction; i.e. (mantissa)/10^LEN and adjusted * such that the decimal point is to the left of bit 63. * The bcd digits are stored in the correct position in * the final string area in memory. * * * Register usage: * Input/Output * d0: x/LEN call to binstr - final is 0 * d1: x/0 * d2: x/ms 32-bits of mant of abs(YINT) * d3: x/ls 32-bits of mant of abs(YINT) * d4: LEN/Unchanged * d5: ICTR:LAMBDA/LAMBDA:ICTR * d6: ILOG * d7: k-factor/Unchanged * a0: pointer into memory for packed bcd string formation * /ptr to first mantissa byte in result string * a1: ptr to PTENxx array/Unchanged * a2: ptr to FP_SCR2(a6)/Unchanged * fp0: int portion of Y/abs(YINT) adjusted * fp1: 10^ISCALE/Unchanged * fp2: 10^LEN/Unchanged * F_SCR1:x/Work area for final result * F_SCR2:Y with original exponent/Unchanged * L_SCR1:original USER_FPCR/Unchanged * L_SCR2:first word of X packed/Unchanged A14_st: fmove.l #rz_mode,FPCR ;force rz for conversion fdiv.x fp2,fp0 ;divide abs(YINT) by 10^LEN lea.l FP_SCR1(a6),a0 fmove.x fp0,(a0) ;move abs(YINT)/10^LEN to memory move.l 4(a0),d2 ;move 2nd word of FP_RES to d2 move.l 8(a0),d3 ;move 3rd word of FP_RES to d3 clr.l 4(a0) ;zero word 2 of FP_RES clr.l 8(a0) ;zero word 3 of FP_RES move.l (a0),d0 ;move exponent to d0 swap d0 ;put exponent in lower word beq.b no_sft ;if zero, don't shift subi.l #$3ffd,d0 ;sub bias less 2 to make fract tst.l d0 ;check if > 1 bgt.b no_sft ;if so, don't shift neg.l d0 ;make exp positive m_loop: lsr.l #1,d2 ;shift d2:d3 right, add 0s roxr.l #1,d3 ;the number of places dbf.w d0,m_loop ;given in d0 no_sft: tst.l d2 ;check for mantissa of zero bne.b no_zr ;if not, go on tst.l d3 ;continue zero check beq.b zer_m ;if zero, go directly to binstr no_zr: clr.l d1 ;put zero in d1 for addx addi.l #$00000080,d3 ;inc at bit 7 addx.l d1,d2 ;continue inc andi.l #$ffffff80,d3 ;strip off lsb not used by 882 zer_m: move.l d4,d0 ;put LEN in d0 for binstr call addq.l #3,a0 ;a0 points to M16 byte in result bsr binstr ;call binstr to convert mant * A15. Convert the exponent to bcd. * As in A14 above, the exp is converted to bcd and the * digits are stored in the final string. * * Digits are stored in L_SCR1(a6) on return from BINDEC as: * * 32 16 15 0 * ----------------------------------------- * | 0 | e3 | e2 | e1 | e4 | X | X | X | * ----------------------------------------- * * And are moved into their proper places in FP_SCR1. If digit e4 * is non-zero, OPERR is signaled. In all cases, all 4 digits are * written as specified in the 881/882 manual for packed decimal. * * Register usage: * Input/Output * d0: x/LEN call to binstr - final is 0 * d1: x/scratch (0);shift count for final exponent packing * d2: x/ms 32-bits of exp fraction/scratch * d3: x/ls 32-bits of exp fraction * d4: LEN/Unchanged * d5: ICTR:LAMBDA/LAMBDA:ICTR * d6: ILOG * d7: k-factor/Unchanged * a0: ptr to result string/ptr to L_SCR1(a6) * a1: ptr to PTENxx array/Unchanged * a2: ptr to FP_SCR2(a6)/Unchanged * fp0: abs(YINT) adjusted/float(ILOG) * fp1: 10^ISCALE/Unchanged * fp2: 10^LEN/Unchanged * F_SCR1:Work area for final result/BCD result * F_SCR2:Y with original exponent/ILOG/10^4 * L_SCR1:original USER_FPCR/Exponent digits on return from binstr * L_SCR2:first word of X packed/Unchanged A15_st: tst.b BINDEC_FLG(a6) ;check for denorm beq.b not_denorm ftst.x fp0 ;test for zero fbeq.w den_zero ;if zero, use k-factor or 4933 fmove.l d6,fp0 ;float ILOG fabs.x fp0 ;get abs of ILOG bra.b convrt den_zero: tst.l d7 ;check sign of the k-factor blt.b use_ilog ;if negative, use ILOG fmove.s F4933,fp0 ;force exponent to 4933 bra.b convrt ;do it use_ilog: fmove.l d6,fp0 ;float ILOG fabs.x fp0 ;get abs of ILOG bra.b convrt not_denorm: ftst.x fp0 ;test for zero fbne.w not_zero ;if zero, force exponent fmove.s FONE,fp0 ;force exponent to 1 bra.b convrt ;do it not_zero: fmove.l d6,fp0 ;float ILOG fabs.x fp0 ;get abs of ILOG convrt: fdiv.x 24(a1),fp0 ;compute ILOG/10^4 fmove.x fp0,FP_SCR2(a6) ;store fp0 in memory move.l 4(a2),d2 ;move word 2 to d2 move.l 8(a2),d3 ;move word 3 to d3 move.w (a2),d0 ;move exp to d0 beq.b x_loop_fin ;if zero, skip the shift subi.w #$3ffd,d0 ;subtract off bias neg.w d0 ;make exp positive x_loop: lsr.l #1,d2 ;shift d2:d3 right roxr.l #1,d3 ;the number of places dbf.w d0,x_loop ;given in d0 x_loop_fin: clr.l d1 ;put zero in d1 for addx addi.l #$00000080,d3 ;inc at bit 6 addx.l d1,d2 ;continue inc andi.l #$ffffff80,d3 ;strip off lsb not used by 882 move.l #4,d0 ;put 4 in d0 for binstr call lea.l L_SCR1(a6),a0 ;a0 is ptr to L_SCR1 for exp digits bsr binstr ;call binstr to convert exp move.l L_SCR1(a6),d0 ;load L_SCR1 lword to d0 move.l #12,d1 ;use d1 for shift count lsr.l d1,d0 ;shift d0 right by 12 bfins d0,FP_SCR1(a6){4:12} ;put e3:e2:e1 in FP_SCR1 lsr.l d1,d0 ;shift d0 right by 12 bfins d0,FP_SCR1(a6){16:4} ;put e4 in FP_SCR1 tst.b d0 ;check if e4 is zero beq.b A16_st ;if zero, skip rest or.l #opaop_mask,USER_FPSR(a6) ;set OPERR & AIOP in USER_FPSR * A16. Write sign bits to final string. * Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). * * Register usage: * Input/Output * d0: x/scratch - final is x * d2: x/x * d3: x/x * d4: LEN/Unchanged * d5: ICTR:LAMBDA/LAMBDA:ICTR * d6: ILOG/ILOG adjusted * d7: k-factor/Unchanged * a0: ptr to L_SCR1(a6)/Unchanged * a1: ptr to PTENxx array/Unchanged * a2: ptr to FP_SCR2(a6)/Unchanged * fp0: float(ILOG)/Unchanged * fp1: 10^ISCALE/Unchanged * fp2: 10^LEN/Unchanged * F_SCR1:BCD result with correct signs * F_SCR2:ILOG/10^4 * L_SCR1:Exponent digits on return from binstr * L_SCR2:first word of X packed/Unchanged A16_st: clr.l d0 ;clr d0 for collection of signs andi.b #$0f,FP_SCR1(a6) ;clear first nibble of FP_SCR1 tst.l L_SCR2(a6) ;check sign of original mantissa bge.b mant_p ;if pos, don't set SM moveq.l #2,d0 ;move 2 in to d0 for SM mant_p: tst.l d6 ;check sign of ILOG bge.b wr_sgn ;if pos, don't set SE addq.l #1,d0 ;set bit 0 in d0 for SE wr_sgn: bfins d0,FP_SCR1(a6){0:2} ;insert SM and SE into FP_SCR1 * Clean up and restore all registers used. fmove.l #0,FPSR ;clear possible inex2/ainex bits fmovem.x (a7)+,fp0-fp2 movem.l (a7)+,d2-d7/a2 rts end