* $OpenBSD: slogn.sa,v 1.2 1996/05/29 21:05:40 niklas Exp $ * $NetBSD: slogn.sa,v 1.3 1994/10/26 07:49:54 cgd Exp $ * MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP * M68000 Hi-Performance Microprocessor Division * M68040 Software Package * * M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc. * All rights reserved. * * THE SOFTWARE is provided on an "AS IS" basis and without warranty. * To the maximum extent permitted by applicable law, * MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, * INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A * PARTICULAR PURPOSE and any warranty against infringement with * regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) * and any accompanying written materials. * * To the maximum extent permitted by applicable law, * IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER * (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS * PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR * OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE * SOFTWARE. Motorola assumes no responsibility for the maintenance * and support of the SOFTWARE. * * You are hereby granted a copyright license to use, modify, and * distribute the SOFTWARE so long as this entire notice is retained * without alteration in any modified and/or redistributed versions, * and that such modified versions are clearly identified as such. * No licenses are granted by implication, estoppel or otherwise * under any patents or trademarks of Motorola, Inc. * * slogn.sa 3.1 12/10/90 * * slogn computes the natural logarithm of an * input value. slognd does the same except the input value is a * denormalized number. slognp1 computes log(1+X), and slognp1d * computes log(1+X) for denormalized X. * * Input: Double-extended value in memory location pointed to by address * register a0. * * Output: log(X) or log(1+X) returned in floating-point register Fp0. * * Accuracy and Monotonicity: The returned result is within 2 ulps in * 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the * result is subsequently rounded to double precision. The * result is provably monotonic in double precision. * * Speed: The program slogn takes approximately 190 cycles for input * argument X such that |X-1| >= 1/16, which is the the usual * situation. For those arguments, slognp1 takes approximately * 210 cycles. For the less common arguments, the program will * run no worse than 10% slower. * * Algorithm: * LOGN: * Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in * u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2. * * Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven * significant bits of Y plus 2**(-7), i.e. F = 1.xxxxxx1 in base * 2 where the six "x" match those of Y. Note that |Y-F| <= 2**(-7). * * Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u, * log(1+u) = poly. * * Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) * by k*log(2) + (log(F) + poly). The values of log(F) are calculated * beforehand and stored in the program. * * lognp1: * Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in * u where u = 2X/(2+X). Otherwise, move on to Step 2. * * Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2 * of the algorithm for LOGN and compute log(1+X) as * k*log(2) + log(F) + poly where poly approximates log(1+u), * u = (Y-F)/F. * * Implementation Notes: * Note 1. There are 64 different possible values for F, thus 64 log(F)'s * need to be tabulated. Moreover, the values of 1/F are also * tabulated so that the division in (Y-F)/F can be performed by a * multiplication. * * Note 2. In Step 2 of lognp1, in order to preserved accuracy, the value * Y-F has to be calculated carefully when 1/2 <= X < 3/2. * * Note 3. To fully exploit the pipeline, polynomials are usually separated * into two parts evaluated independently before being added up. * slogn IDNT 2,1 Motorola 040 Floating Point Software Package section 8 include fpsp.h BOUNDS1 DC.L $3FFEF07D,$3FFF8841 BOUNDS2 DC.L $3FFE8000,$3FFFC000 LOGOF2 DC.L $3FFE0000,$B17217F7,$D1CF79AC,$00000000 one DC.L $3F800000 zero DC.L $00000000 infty DC.L $7F800000 negone DC.L $BF800000 LOGA6 DC.L $3FC2499A,$B5E4040B LOGA5 DC.L $BFC555B5,$848CB7DB LOGA4 DC.L $3FC99999,$987D8730 LOGA3 DC.L $BFCFFFFF,$FF6F7E97 LOGA2 DC.L $3FD55555,$555555A4 LOGA1 DC.L $BFE00000,$00000008 LOGB5 DC.L $3F175496,$ADD7DAD6 LOGB4 DC.L $3F3C71C2,$FE80C7E0 LOGB3 DC.L $3F624924,$928BCCFF LOGB2 DC.L $3F899999,$999995EC LOGB1 DC.L $3FB55555,$55555555 TWO DC.L $40000000,$00000000 LTHOLD DC.L $3f990000,$80000000,$00000000,$00000000 LOGTBL: DC.L $3FFE0000,$FE03F80F,$E03F80FE,$00000000 DC.L $3FF70000,$FF015358,$833C47E2,$00000000 DC.L $3FFE0000,$FA232CF2,$52138AC0,$00000000 DC.L $3FF90000,$BDC8D83E,$AD88D549,$00000000 DC.L $3FFE0000,$F6603D98,$0F6603DA,$00000000 DC.L $3FFA0000,$9CF43DCF,$F5EAFD48,$00000000 DC.L $3FFE0000,$F2B9D648,$0F2B9D65,$00000000 DC.L $3FFA0000,$DA16EB88,$CB8DF614,$00000000 DC.L $3FFE0000,$EF2EB71F,$C4345238,$00000000 DC.L $3FFB0000,$8B29B775,$1BD70743,$00000000 DC.L $3FFE0000,$EBBDB2A5,$C1619C8C,$00000000 DC.L $3FFB0000,$A8D839F8,$30C1FB49,$00000000 DC.L $3FFE0000,$E865AC7B,$7603A197,$00000000 DC.L $3FFB0000,$C61A2EB1,$8CD907AD,$00000000 DC.L $3FFE0000,$E525982A,$F70C880E,$00000000 DC.L $3FFB0000,$E2F2A47A,$DE3A18AF,$00000000 DC.L $3FFE0000,$E1FC780E,$1FC780E2,$00000000 DC.L $3FFB0000,$FF64898E,$DF55D551,$00000000 DC.L $3FFE0000,$DEE95C4C,$A037BA57,$00000000 DC.L $3FFC0000,$8DB956A9,$7B3D0148,$00000000 DC.L $3FFE0000,$DBEB61EE,$D19C5958,$00000000 DC.L $3FFC0000,$9B8FE100,$F47BA1DE,$00000000 DC.L $3FFE0000,$D901B203,$6406C80E,$00000000 DC.L $3FFC0000,$A9372F1D,$0DA1BD17,$00000000 DC.L $3FFE0000,$D62B80D6,$2B80D62C,$00000000 DC.L $3FFC0000,$B6B07F38,$CE90E46B,$00000000 DC.L $3FFE0000,$D3680D36,$80D3680D,$00000000 DC.L $3FFC0000,$C3FD0329,$06488481,$00000000 DC.L $3FFE0000,$D0B69FCB,$D2580D0B,$00000000 DC.L $3FFC0000,$D11DE0FF,$15AB18CA,$00000000 DC.L $3FFE0000,$CE168A77,$25080CE1,$00000000 DC.L $3FFC0000,$DE1433A1,$6C66B150,$00000000 DC.L $3FFE0000,$CB8727C0,$65C393E0,$00000000 DC.L $3FFC0000,$EAE10B5A,$7DDC8ADD,$00000000 DC.L $3FFE0000,$C907DA4E,$871146AD,$00000000 DC.L $3FFC0000,$F7856E5E,$E2C9B291,$00000000 DC.L $3FFE0000,$C6980C69,$80C6980C,$00000000 DC.L $3FFD0000,$82012CA5,$A68206D7,$00000000 DC.L $3FFE0000,$C4372F85,$5D824CA6,$00000000 DC.L $3FFD0000,$882C5FCD,$7256A8C5,$00000000 DC.L $3FFE0000,$C1E4BBD5,$95F6E947,$00000000 DC.L $3FFD0000,$8E44C60B,$4CCFD7DE,$00000000 DC.L $3FFE0000,$BFA02FE8,$0BFA02FF,$00000000 DC.L $3FFD0000,$944AD09E,$F4351AF6,$00000000 DC.L $3FFE0000,$BD691047,$07661AA3,$00000000 DC.L $3FFD0000,$9A3EECD4,$C3EAA6B2,$00000000 DC.L $3FFE0000,$BB3EE721,$A54D880C,$00000000 DC.L $3FFD0000,$A0218434,$353F1DE8,$00000000 DC.L $3FFE0000,$B92143FA,$36F5E02E,$00000000 DC.L $3FFD0000,$A5F2FCAB,$BBC506DA,$00000000 DC.L $3FFE0000,$B70FBB5A,$19BE3659,$00000000 DC.L $3FFD0000,$ABB3B8BA,$2AD362A5,$00000000 DC.L $3FFE0000,$B509E68A,$9B94821F,$00000000 DC.L $3FFD0000,$B1641795,$CE3CA97B,$00000000 DC.L $3FFE0000,$B30F6352,$8917C80B,$00000000 DC.L $3FFD0000,$B7047551,$5D0F1C61,$00000000 DC.L $3FFE0000,$B11FD3B8,$0B11FD3C,$00000000 DC.L $3FFD0000,$BC952AFE,$EA3D13E1,$00000000 DC.L $3FFE0000,$AF3ADDC6,$80AF3ADE,$00000000 DC.L $3FFD0000,$C2168ED0,$F458BA4A,$00000000 DC.L $3FFE0000,$AD602B58,$0AD602B6,$00000000 DC.L $3FFD0000,$C788F439,$B3163BF1,$00000000 DC.L $3FFE0000,$AB8F69E2,$8359CD11,$00000000 DC.L $3FFD0000,$CCECAC08,$BF04565D,$00000000 DC.L $3FFE0000,$A9C84A47,$A07F5638,$00000000 DC.L $3FFD0000,$D2420487,$2DD85160,$00000000 DC.L $3FFE0000,$A80A80A8,$0A80A80B,$00000000 DC.L $3FFD0000,$D7894992,$3BC3588A,$00000000 DC.L $3FFE0000,$A655C439,$2D7B73A8,$00000000 DC.L $3FFD0000,$DCC2C4B4,$9887DACC,$00000000 DC.L $3FFE0000,$A4A9CF1D,$96833751,$00000000 DC.L $3FFD0000,$E1EEBD3E,$6D6A6B9E,$00000000 DC.L $3FFE0000,$A3065E3F,$AE7CD0E0,$00000000 DC.L $3FFD0000,$E70D785C,$2F9F5BDC,$00000000 DC.L $3FFE0000,$A16B312E,$A8FC377D,$00000000 DC.L $3FFD0000,$EC1F392C,$5179F283,$00000000 DC.L $3FFE0000,$9FD809FD,$809FD80A,$00000000 DC.L $3FFD0000,$F12440D3,$E36130E6,$00000000 DC.L $3FFE0000,$9E4CAD23,$DD5F3A20,$00000000 DC.L $3FFD0000,$F61CCE92,$346600BB,$00000000 DC.L $3FFE0000,$9CC8E160,$C3FB19B9,$00000000 DC.L $3FFD0000,$FB091FD3,$8145630A,$00000000 DC.L $3FFE0000,$9B4C6F9E,$F03A3CAA,$00000000 DC.L $3FFD0000,$FFE97042,$BFA4C2AD,$00000000 DC.L $3FFE0000,$99D722DA,$BDE58F06,$00000000 DC.L $3FFE0000,$825EFCED,$49369330,$00000000 DC.L $3FFE0000,$9868C809,$868C8098,$00000000 DC.L $3FFE0000,$84C37A7A,$B9A905C9,$00000000 DC.L $3FFE0000,$97012E02,$5C04B809,$00000000 DC.L $3FFE0000,$87224C2E,$8E645FB7,$00000000 DC.L $3FFE0000,$95A02568,$095A0257,$00000000 DC.L $3FFE0000,$897B8CAC,$9F7DE298,$00000000 DC.L $3FFE0000,$94458094,$45809446,$00000000 DC.L $3FFE0000,$8BCF55DE,$C4CD05FE,$00000000 DC.L $3FFE0000,$92F11384,$0497889C,$00000000 DC.L $3FFE0000,$8E1DC0FB,$89E125E5,$00000000 DC.L $3FFE0000,$91A2B3C4,$D5E6F809,$00000000 DC.L $3FFE0000,$9066E68C,$955B6C9B,$00000000 DC.L $3FFE0000,$905A3863,$3E06C43B,$00000000 DC.L $3FFE0000,$92AADE74,$C7BE59E0,$00000000 DC.L $3FFE0000,$8F1779D9,$FDC3A219,$00000000 DC.L $3FFE0000,$94E9BFF6,$15845643,$00000000 DC.L $3FFE0000,$8DDA5202,$37694809,$00000000 DC.L $3FFE0000,$9723A1B7,$20134203,$00000000 DC.L $3FFE0000,$8CA29C04,$6514E023,$00000000 DC.L $3FFE0000,$995899C8,$90EB8990,$00000000 DC.L $3FFE0000,$8B70344A,$139BC75A,$00000000 DC.L $3FFE0000,$9B88BDAA,$3A3DAE2F,$00000000 DC.L $3FFE0000,$8A42F870,$5669DB46,$00000000 DC.L $3FFE0000,$9DB4224F,$FFE1157C,$00000000 DC.L $3FFE0000,$891AC73A,$E9819B50,$00000000 DC.L $3FFE0000,$9FDADC26,$8B7A12DA,$00000000 DC.L $3FFE0000,$87F78087,$F78087F8,$00000000 DC.L $3FFE0000,$A1FCFF17,$CE733BD4,$00000000 DC.L $3FFE0000,$86D90544,$7A34ACC6,$00000000 DC.L $3FFE0000,$A41A9E8F,$5446FB9F,$00000000 DC.L $3FFE0000,$85BF3761,$2CEE3C9B,$00000000 DC.L $3FFE0000,$A633CD7E,$6771CD8B,$00000000 DC.L $3FFE0000,$84A9F9C8,$084A9F9D,$00000000 DC.L $3FFE0000,$A8489E60,$0B435A5E,$00000000 DC.L $3FFE0000,$83993052,$3FBE3368,$00000000 DC.L $3FFE0000,$AA59233C,$CCA4BD49,$00000000 DC.L $3FFE0000,$828CBFBE,$B9A020A3,$00000000 DC.L $3FFE0000,$AC656DAE,$6BCC4985,$00000000 DC.L $3FFE0000,$81848DA8,$FAF0D277,$00000000 DC.L $3FFE0000,$AE6D8EE3,$60BB2468,$00000000 DC.L $3FFE0000,$80808080,$80808081,$00000000 DC.L $3FFE0000,$B07197A2,$3C46C654,$00000000 ADJK equ L_SCR1 X equ FP_SCR1 XDCARE equ X+2 XFRAC equ X+4 F equ FP_SCR2 FFRAC equ F+4 KLOG2 equ FP_SCR3 SAVEU equ FP_SCR4 xref t_frcinx xref t_extdnrm xref t_operr xref t_dz xdef slognd slognd: *--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT MOVE.L #-100,ADJK(a6) ...INPUT = 2^(ADJK) * FP0 *----normalize the input value by left shifting k bits (k to be determined *----below), adjusting exponent and storing -k to ADJK *----the value TWOTO100 is no longer needed. *----Note that this code assumes the denormalized input is NON-ZERO. MoveM.L D2-D7,-(A7) ...save some registers Clr.L D3 ...D3 is exponent of smallest norm. # Move.L 4(A0),D4 Move.L 8(A0),D5 ...(D4,D5) is (Hi_X,Lo_X) Clr.L D2 ...D2 used for holding K Tst.L D4 BNE.B HiX_not0 HiX_0: Move.L D5,D4 Clr.L D5 Move.L #32,D2 Clr.L D6 BFFFO D4{0:32},D6 LSL.L D6,D4 Add.L D6,D2 ...(D3,D4,D5) is normalized Move.L D3,X(a6) Move.L D4,XFRAC(a6) Move.L D5,XFRAC+4(a6) Neg.L D2 Move.L D2,ADJK(a6) FMove.X X(a6),FP0 MoveM.L (A7)+,D2-D7 ...restore registers LEA X(a6),A0 Bra.B LOGBGN ...begin regular log(X) HiX_not0: Clr.L D6 BFFFO D4{0:32},D6 ...find first 1 Move.L D6,D2 ...get k LSL.L D6,D4 Move.L D5,D7 ...a copy of D5 LSL.L D6,D5 Neg.L D6 AddI.L #32,D6 LSR.L D6,D7 Or.L D7,D4 ...(D3,D4,D5) normalized Move.L D3,X(a6) Move.L D4,XFRAC(a6) Move.L D5,XFRAC+4(a6) Neg.L D2 Move.L D2,ADJK(a6) FMove.X X(a6),FP0 MoveM.L (A7)+,D2-D7 ...restore registers LEA X(a6),A0 Bra.B LOGBGN ...begin regular log(X) xdef slogn slogn: *--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S FMOVE.X (A0),FP0 ...LOAD INPUT CLR.L ADJK(a6) LOGBGN: *--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS *--A FINITE, NON-ZERO, NORMALIZED NUMBER. move.l (a0),d0 move.w 4(a0),d0 move.l (a0),X(a6) move.l 4(a0),X+4(a6) move.l 8(a0),X+8(a6) TST.L D0 ...CHECK IF X IS NEGATIVE BLT.W LOGNEG ...LOG OF NEGATIVE ARGUMENT IS INVALID CMP2.L BOUNDS1,D0 ...X IS POSITIVE, CHECK IF X IS NEAR 1 BCC.W LOGNEAR1 ...BOUNDS IS ROUGHLY [15/16, 17/16] LOGMAIN: *--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 *--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. *--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. *--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) *-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). *--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING *--LOG(1+U) CAN BE VERY EFFICIENT. *--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO *--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. *--GET K, Y, F, AND ADDRESS OF 1/F. ASR.L #8,D0 ASR.L #8,D0 ...SHIFTED 16 BITS, BIASED EXPO. OF X SUBI.L #$3FFF,D0 ...THIS IS K ADD.L ADJK(a6),D0 ...ADJUST K, ORIGINAL INPUT MAY BE DENORM. LEA LOGTBL,A0 ...BASE ADDRESS OF 1/F AND LOG(F) FMOVE.L D0,FP1 ...CONVERT K TO FLOATING-POINT FORMAT *--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F MOVE.L #$3FFF0000,X(a6) ...X IS NOW Y, I.E. 2^(-K)*X MOVE.L XFRAC(a6),FFRAC(a6) ANDI.L #$FE000000,FFRAC(a6) ...FIRST 7 BITS OF Y ORI.L #$01000000,FFRAC(a6) ...GET F: ATTACH A 1 AT THE EIGHTH BIT MOVE.L FFRAC(a6),D0 ...READY TO GET ADDRESS OF 1/F ANDI.L #$7E000000,D0 ASR.L #8,D0 ASR.L #8,D0 ASR.L #4,D0 ...SHIFTED 20, D0 IS THE DISPLACEMENT ADDA.L D0,A0 ...A0 IS THE ADDRESS FOR 1/F FMOVE.X X(a6),FP0 move.l #$3fff0000,F(a6) clr.l F+8(a6) FSUB.X F(a6),FP0 ...Y-F FMOVEm.X FP2/fp3,-(sp) ...SAVE FP2 WHILE FP0 IS NOT READY *--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K *--REGISTERS SAVED: FPCR, FP1, FP2 LP1CONT1: *--AN RE-ENTRY POINT FOR LOGNP1 FMUL.X (A0),FP0 ...FP0 IS U = (Y-F)/F FMUL.X LOGOF2,FP1 ...GET K*LOG2 WHILE FP0 IS NOT READY FMOVE.X FP0,FP2 FMUL.X FP2,FP2 ...FP2 IS V=U*U FMOVE.X FP1,KLOG2(a6) ...PUT K*LOG2 IN MEMEORY, FREE FP1 *--LOG(1+U) IS APPROXIMATED BY *--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS *--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] FMOVE.X FP2,FP3 FMOVE.X FP2,FP1 FMUL.D LOGA6,FP1 ...V*A6 FMUL.D LOGA5,FP2 ...V*A5 FADD.D LOGA4,FP1 ...A4+V*A6 FADD.D LOGA3,FP2 ...A3+V*A5 FMUL.X FP3,FP1 ...V*(A4+V*A6) FMUL.X FP3,FP2 ...V*(A3+V*A5) FADD.D LOGA2,FP1 ...A2+V*(A4+V*A6) FADD.D LOGA1,FP2 ...A1+V*(A3+V*A5) FMUL.X FP3,FP1 ...V*(A2+V*(A4+V*A6)) ADDA.L #16,A0 ...ADDRESS OF LOG(F) FMUL.X FP3,FP2 ...V*(A1+V*(A3+V*A5)), FP3 RELEASED FMUL.X FP0,FP1 ...U*V*(A2+V*(A4+V*A6)) FADD.X FP2,FP0 ...U+V*(A1+V*(A3+V*A5)), FP2 RELEASED FADD.X (A0),FP1 ...LOG(F)+U*V*(A2+V*(A4+V*A6)) FMOVEm.X (sp)+,FP2/fp3 ...RESTORE FP2 FADD.X FP1,FP0 ...FP0 IS LOG(F) + LOG(1+U) fmove.l d1,fpcr FADD.X KLOG2(a6),FP0 ...FINAL ADD bra t_frcinx LOGNEAR1: *--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. FMOVE.X FP0,FP1 FSUB.S one,FP1 ...FP1 IS X-1 FADD.S one,FP0 ...FP0 IS X+1 FADD.X FP1,FP1 ...FP1 IS 2(X-1) *--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL *--IN U, U = 2(X-1)/(X+1) = FP1/FP0 LP1CONT2: *--THIS IS AN RE-ENTRY POINT FOR LOGNP1 FDIV.X FP0,FP1 ...FP1 IS U FMOVEm.X FP2/fp3,-(sp) ...SAVE FP2 *--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 *--LET V=U*U, W=V*V, CALCULATE *--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY *--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) FMOVE.X FP1,FP0 FMUL.X FP0,FP0 ...FP0 IS V FMOVE.X FP1,SAVEU(a6) ...STORE U IN MEMORY, FREE FP1 FMOVE.X FP0,FP1 FMUL.X FP1,FP1 ...FP1 IS W FMOVE.D LOGB5,FP3 FMOVE.D LOGB4,FP2 FMUL.X FP1,FP3 ...W*B5 FMUL.X FP1,FP2 ...W*B4 FADD.D LOGB3,FP3 ...B3+W*B5 FADD.D LOGB2,FP2 ...B2+W*B4 FMUL.X FP3,FP1 ...W*(B3+W*B5), FP3 RELEASED FMUL.X FP0,FP2 ...V*(B2+W*B4) FADD.D LOGB1,FP1 ...B1+W*(B3+W*B5) FMUL.X SAVEU(a6),FP0 ...FP0 IS U*V FADD.X FP2,FP1 ...B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED FMOVEm.X (sp)+,FP2/fp3 ...FP2 RESTORED FMUL.X FP1,FP0 ...U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) fmove.l d1,fpcr FADD.X SAVEU(a6),FP0 bra t_frcinx rts LOGNEG: *--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID bra t_operr xdef slognp1d slognp1d: *--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT * Simply return the denorm bra t_extdnrm xdef slognp1 slognp1: *--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S FMOVE.X (A0),FP0 ...LOAD INPUT fabs.x fp0 ;test magnitude fcmp.x LTHOLD,fp0 ;compare with min threshold fbgt.w LP1REAL ;if greater, continue fmove.l #0,fpsr ;clr N flag from compare fmove.l d1,fpcr fmove.x (a0),fp0 ;return signed argument bra t_frcinx LP1REAL: FMOVE.X (A0),FP0 ...LOAD INPUT CLR.L ADJK(a6) FMOVE.X FP0,FP1 ...FP1 IS INPUT Z FADD.S one,FP0 ...X := ROUND(1+Z) FMOVE.X FP0,X(a6) MOVE.W XFRAC(a6),XDCARE(a6) MOVE.L X(a6),D0 TST.L D0 BLE.W LP1NEG0 ...LOG OF ZERO OR -VE CMP2.L BOUNDS2,D0 BCS.W LOGMAIN ...BOUNDS2 IS [1/2,3/2] *--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, *--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, *--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). LP1NEAR1: *--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) CMP2.L BOUNDS1,D0 BCS.B LP1CARE LP1ONE16: *--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) *--WHERE U = 2Z/(2+Z) = 2Z/(1+X). FADD.X FP1,FP1 ...FP1 IS 2Z FADD.S one,FP0 ...FP0 IS 1+X *--U = FP1/FP0 BRA.W LP1CONT2 LP1CARE: *--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE *--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST *--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], *--THERE ARE ONLY TWO CASES. *--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z *--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z *--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF *--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. MOVE.L XFRAC(a6),FFRAC(a6) ANDI.L #$FE000000,FFRAC(a6) ORI.L #$01000000,FFRAC(a6) ...F OBTAINED CMPI.L #$3FFF8000,D0 ...SEE IF 1+Z > 1 BGE.B KISZERO KISNEG1: FMOVE.S TWO,FP0 move.l #$3fff0000,F(a6) clr.l F+8(a6) FSUB.X F(a6),FP0 ...2-F MOVE.L FFRAC(a6),D0 ANDI.L #$7E000000,D0 ASR.L #8,D0 ASR.L #8,D0 ASR.L #4,D0 ...D0 CONTAINS DISPLACEMENT FOR 1/F FADD.X FP1,FP1 ...GET 2Z FMOVEm.X FP2/fp3,-(sp) ...SAVE FP2 FADD.X FP1,FP0 ...FP0 IS Y-F = (2-F)+2Z LEA LOGTBL,A0 ...A0 IS ADDRESS OF 1/F ADDA.L D0,A0 FMOVE.S negone,FP1 ...FP1 IS K = -1 BRA.W LP1CONT1 KISZERO: FMOVE.S one,FP0 move.l #$3fff0000,F(a6) clr.l F+8(a6) FSUB.X F(a6),FP0 ...1-F MOVE.L FFRAC(a6),D0 ANDI.L #$7E000000,D0 ASR.L #8,D0 ASR.L #8,D0 ASR.L #4,D0 FADD.X FP1,FP0 ...FP0 IS Y-F FMOVEm.X FP2/fp3,-(sp) ...FP2 SAVED LEA LOGTBL,A0 ADDA.L D0,A0 ...A0 IS ADDRESS OF 1/F FMOVE.S zero,FP1 ...FP1 IS K = 0 BRA.W LP1CONT1 LP1NEG0: *--FPCR SAVED. D0 IS X IN COMPACT FORM. TST.L D0 BLT.B LP1NEG LP1ZERO: FMOVE.S negone,FP0 fmove.l d1,fpcr bra t_dz LP1NEG: FMOVE.S zero,FP0 fmove.l d1,fpcr bra t_operr end