/* $OpenBSD: adb_direct.c,v 1.8 1997/04/22 23:50:05 gene Exp $ */ /* $NetBSD: adb_direct.c,v 1.5 1997/04/21 18:04:28 scottr Exp $ */ /* From: adb_direct.c 2.02 4/18/97 jpw */ /* * Copyright (C) 1996, 1997 John P. Wittkoski * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by John P. Wittkoski. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* This code is rather messy, but I don't have time right now * to clean it up as much as I would like. * But it works, so I'm happy. :-) jpw */ #if defined(__NetBSD__) || defined(__OpenBSD__) #include #include #include #include #include #include #include /* required for adbvar.h */ #include #include #include "adbvar.h" #define printf_intr printf #else #include "via.h" /* for macos based testing */ typedef unsigned char u_char; #endif /* more verbose for testing */ /*#define DEBUG*/ /* some misc. leftovers */ #define vPB 0x0000 #define vPB3 0x08 #define vPB4 0x10 #define vPB5 0x20 #define vSR_INT 0x04 #define vSR_OUT 0x10 /* types of adb hardware that we (will eventually) support */ #define ADB_HW_UNKNOWN 0x01 /* don't know */ #define ADB_HW_II 0x02 /* Mac II series */ #define ADB_HW_IISI 0x03 /* Mac IIsi series */ #define ADB_HW_PB 0x04 /* PowerBook series */ #define ADB_HW_CUDA 0x05 /* Machines with a Cuda chip */ /* the type of ADB action that we are currently preforming */ #define ADB_ACTION_NOTREADY 0x01 /* has not been initialized yet */ #define ADB_ACTION_IDLE 0x02 /* the bus is currently idle */ #define ADB_ACTION_OUT 0x03 /* sending out a command */ #define ADB_ACTION_IN 0x04 /* receiving data */ /* * These describe the state of the ADB bus itself, although they * don't necessarily correspond directly to ADB states. * Note: these are not really used in the IIsi code. */ #define ADB_BUS_UNKNOWN 0x01 /* we don't know yet - all models */ #define ADB_BUS_IDLE 0x02 /* bus is idle - all models */ #define ADB_BUS_CMD 0x03 /* starting a command - II models */ #define ADB_BUS_ODD 0x04 /* the "odd" state - II models */ #define ADB_BUS_EVEN 0x05 /* the "even" state - II models */ #define ADB_BUS_ACTIVE 0x06 /* active state - IIsi models */ #define ADB_BUS_ACK 0x07 /* currently ACKing - IIsi models */ /* * Shortcuts for setting or testing the VIA bit states. * Not all shortcuts are used for every type of ADB hardware. */ #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5) #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5) #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5) #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5) #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \ vBufB) | vPB4) & ~vPB5) #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \ vBufB) | vPB5) & ~vPB4 ) #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT #define ADB_SR() via_reg(VIA1, vSR) #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3)) #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3)) #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT)) #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \ vIFR) & vSR_INT)) /* * This is the delay that is required (in uS) between certain * ADB transactions. The actual timing delay for for each uS is * calculated at boot time to account for differences in machine speed. */ #define ADB_DELAY 150 /* * Maximum ADB message length; includes space for data, result, and * device code - plus a little for safety. */ #define MAX_ADB_MSG_LENGTH 20 /* * A structure for storing information about each ADB device. */ struct ADBDevEntry { void (*ServiceRtPtr) __P((void)); void *DataAreaAddr; char devType; char origAddr; char currentAddr; }; /* * Used to hold ADB commands that are waiting to be sent out. */ struct adbCmdHoldEntry { u_char outBuf[MAX_ADB_MSG_LENGTH]; /* our message */ u_char *saveBuf; /* buffer to know where to save result */ u_char *compRout; /* completion routine pointer */ u_char *data; /* completion routine data pointer */ }; /* * A few variables that we need and their initial values. */ int adbHardware = ADB_HW_UNKNOWN; int adbActionState = ADB_ACTION_NOTREADY; int adbBusState = ADB_BUS_UNKNOWN; int adbWaiting = 0; /* waiting for return data from the device */ int adbWriteDelay = 0; /* working on (or waiting to do) a write */ int adbOutQueueHasData = 0; /* something in the queue waiting to go out */ int adbNextEnd = 0; /* the next incoming bute is the last (II) */ int adbWaitingCmd = 0; /* ADB command we are waiting for */ u_char *adbBuffer = (long) 0; /* pointer to user data area */ void *adbCompRout = (long) 0; /* pointer to the completion routine */ void *adbCompData = (long) 0; /* pointer to the completion routine data */ long adbFakeInts = 0; /* keeps track of fake ADB interrupts for * timeouts (II) */ int adbStarting = 1; /* doing ADBReInit so do polling differently */ int adbSendTalk = 0; /* the intr routine is sending the talk, not * the user (II) */ int adbPolling = 0; /* we are polling for service request */ int adbPollCmd = 0; /* the last poll command we sent */ u_char adbInputBuffer[MAX_ADB_MSG_LENGTH]; /* data input buffer */ u_char adbOutputBuffer[MAX_ADB_MSG_LENGTH]; /* data output buffer */ struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */ int adbSentChars = 0; /* how many characters we have sent */ int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */ int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */ int adbLastCommand = 0; /* the last ADB command we sent (II) */ struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */ int ADBNumDevices; /* num. of ADB devices found with ADBReInit */ extern struct mac68k_machine_S mac68k_machine; int zshard __P((int)); void pm_setup_adb __P((void)); void pm_check_adb_devices __P((int)); void pm_intr __P((void)); int pm_adb_op __P((u_char *, void *, void *, int)); void pm_init_adb_device __P((void)); /* * The following are private routines. */ void print_single __P((u_char *)); void adb_intr __P((void)); void adb_intr_II __P((void)); void adb_intr_IIsi __P((void)); void adb_intr_cuda __P((void)); int send_adb_II __P((u_char *, u_char *, void *, void *, int)); int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int)); int send_adb_cuda __P((u_char *, u_char *, void *, void *, int)); void adb_intr_cuda_test __P((void)); void adb_handle_unsol __P((u_char *)); void adb_op_comprout __P((void)); void adb_reinit __P((void)); int count_adbs __P((void)); int get_ind_adb_info __P((ADBDataBlock *, int)); int get_adb_info __P((ADBDataBlock *, int)); int set_adb_info __P((ADBSetInfoBlock *, int)); void adb_setup_hw_type __P((void)); int adb_op __P((Ptr, Ptr, Ptr, short)); void adb_handle_unsol __P((u_char *)); int adb_op_sync __P((Ptr, Ptr, Ptr, short)); void adb_read_II __P((u_char *)); void adb_cleanup __P((u_char *)); void adb_cleanup_IIsi __P((u_char *)); void adb_comp_exec __P((void)); int adb_cmd_result __P((u_char *)); int adb_cmd_extra __P((u_char *)); int adb_guess_next_device __P((void)); int adb_prog_switch_enable __P((void)); int adb_prog_switch_disable __P((void)); /* we should create this and it will be the public version */ int send_adb __P((u_char *, void *, void *)); /* * print_single * Diagnostic display routine. Displays the hex values of the * specified elements of the u_char. The length of the "string" * is in [0]. */ void print_single(thestring) u_char *thestring; { int x; if ((int) (thestring[0]) == 0) { printf_intr("nothing returned\n"); return; } if (thestring == 0) { printf_intr("no data - null pointer\n"); return; } if (thestring[0] > 20) { printf_intr("ADB: ACK > 20 no way!\n"); thestring[0] = 20; } printf_intr("(length=0x%x):", thestring[0]); for (x = 0; x < thestring[0]; x++) printf_intr(" 0x%02x", thestring[x + 1]); printf_intr("\n"); } /* * called when when an adb interrupt happens * * Cuda version of adb_intr * TO DO: do we want to add some zshard calls in here? */ void adb_intr_cuda(void) { int i, ending, len; unsigned int s; s = splhigh(); /* can't be too careful - might be called */ /* from a routine, NOT an interrupt */ ADB_VIA_CLR_INTR(); /* clear interrupt */ ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ switch_start: switch (adbActionState) { case ADB_ACTION_IDLE: /* This is an unexpected packet, so grab the first (dummy) * byte, set up the proper vars, and tell the chip we are * starting to receive the packet by setting the TIP bit. */ adbInputBuffer[1] = ADB_SR(); ADB_SET_STATE_TIP(); ADB_SET_SR_INPUT(); delay(ADB_DELAY); /* required delay */ #ifdef DEBUG printf_intr("idle 0x%02x ", adbInputBuffer[1]); #endif adbInputBuffer[0] = 1; adbActionState = ADB_ACTION_IN; break; case ADB_ACTION_IN: adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* intr off means this is the last byte (end of frame) */ if (ADB_INTR_IS_OFF) ending = 1; else ending = 0; /* if the second byte is 0xff, it's a "dummy" packet */ if (adbInputBuffer[2] == 0xff) ending = 1; if (1 == ending) { /* end of message? */ #ifdef DEBUG printf_intr("in end 0x%02x ", adbInputBuffer[adbInputBuffer[0]]); print_single(adbInputBuffer); #endif /* Are we waiting AND does this packet match what we * are waiting for AND is it coming from either the * ADB or RTC/PRAM sub-device? This section _should_ * recognize all ADB and RTC/PRAM type commands, but * there may be more... NOTE: commands are always at * [4], even for RTC/PRAM commands. */ if ((adbWaiting == 1) && (adbInputBuffer[4] == adbWaitingCmd) && ((adbInputBuffer[2] == 0x00) || (adbInputBuffer[2] == 0x01))) { if (adbBuffer != (long) 0) { /* if valid return data pointer */ /* get return length minus extras */ len = adbInputBuffer[0] - 4; /* * If adb_op is ever made to be called * from a user routine, we should use * a copyout or copyin here to be sure * we're in the correct context */ for (i = 1; i <= len; i++) adbBuffer[i] = adbInputBuffer[4 + i]; if (len < 0) len = 0; adbBuffer[0] = len; } /* call completion routine and clean up */ adb_comp_exec(); adbWaitingCmd = 0; adbWaiting = 0; adbBuffer = (long) 0; adbCompRout = (long) 0; adbCompData = (long) 0; } else { /* * This was an unsolicited packet, so * pass the data off to the handler for * this device if we are NOT doing this * during a ADBReInit. * This section IGNORES all data that is not * from the ADB sub-device. That is, not from * RTC or PRAM. Maybe we should fix later, * but do the other devices every send things * without being asked? */ if (adbStarting == 0) if (adbInputBuffer[2] == 0x00) adb_handle_unsol(adbInputBuffer); } /* reset vars and signal the end of this frame */ adbActionState = ADB_ACTION_IDLE; adbInputBuffer[0] = 0; ADB_SET_STATE_IDLE_CUDA(); /* * If there is something waiting to be sent out, * the set everything up and send the first byte. */ if (adbWriteDelay == 1) { delay(ADB_DELAY); /* required */ adbSentChars = 0; adbActionState = ADB_ACTION_OUT; /* TO DO: don't we need to set up adbWaiting vars here??? */ /* * If the interrupt is on, we were too slow * and the chip has already started to send * something to us, so back out of the write * and start a read cycle. */ if (ADB_INTR_IS_ON) { ADB_SET_STATE_IDLE_CUDA(); ADB_SET_SR_INPUT(); adbSentChars = 0; adbActionState = ADB_ACTION_IDLE; adbInputBuffer[0] = 0; break; } /* * If we got here, it's ok to start sending * so load the first byte and tell the chip * we want to send. */ ADB_SET_SR_OUTPUT(); ADB_SR() = adbOutputBuffer[adbSentChars + 1]; ADB_SET_STATE_TIP(); } } else { ADB_TOGGLE_STATE_ACK_CUDA(); #ifdef DEBUG printf_intr("in 0x%02x ", adbInputBuffer[adbInputBuffer[0]]); #endif } break; case ADB_ACTION_OUT: i = ADB_SR(); /* reset SR-intr in IFR */ #ifdef DEBUG printf_intr("intr out 0x%02x ", i); #endif ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ adbSentChars++; if (ADB_INTR_IS_ON) { /* ADB intr low during write */ #ifdef DEBUG printf_intr("intr was on "); #endif ADB_SET_STATE_IDLE_CUDA(); ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ adbSentChars = 0; /* must start all over */ adbActionState = ADB_ACTION_IDLE; /* new state */ adbInputBuffer[0] = 0; adbWriteDelay = 1; /* must retry when done with * read */ delay(ADB_DELAY); goto switch_start; /* process next state right * now */ break; } if (adbOutputBuffer[0] == adbSentChars) { /* check for done */ if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data * back? */ adbWaiting = 1; /* signal waiting for return */ adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */ } else {/* no talk, so done */ adb_comp_exec(); /* call completion * routine */ adbWaitingCmd = 0; /* reset "waiting" vars, * just in case */ adbBuffer = (long) 0; adbCompRout = (long) 0; adbCompData = (long) 0; } adbWriteDelay = 0; /* done writing */ adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */ ADB_SET_STATE_IDLE_CUDA(); #ifdef DEBUG printf_intr("write done "); #endif } else { ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */ ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to * shift */ #ifdef DEBUG printf_intr("toggle "); #endif } break; case ADB_ACTION_NOTREADY: printf_intr("adb: not yet initialized\n"); break; default: printf_intr("intr: unknown ADB state\n"); } ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ splx(s); /* restore */ return; } /* end adb_intr_IIsi */ int send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int command) { int i, s, len; #ifdef DEBUG printf_intr("SEND\n"); #endif if (adbActionState == ADB_ACTION_NOTREADY) return 1; s = splhigh(); /* don't interrupt while we are messing with * the ADB */ if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */ (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */ } else if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */ adbWriteDelay = 1; /* if no, then we'll "queue" * it up */ else { splx(s); return 1; /* really busy! */ } #ifdef DEBUG printf_intr("QUEUE\n"); #endif if ((long) in == (long) 0) { /* need to convert? */ /* don't need to use adb_cmd_extra here because this section * will be called */ /* ONLY when it is an ADB command (no RTC or PRAM) */ if ((command & 0x0c) == 0x08) /* copy addl data ONLY if * doing a listen! */ len = buffer[0]; /* length of additional data */ else len = 0;/* no additional data */ adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl. * data */ adbOutputBuffer[1] = 0x00; /* mark as an ADB command */ adbOutputBuffer[2] = (u_char) command; /* load command */ for (i = 1; i <= len; i++) /* copy additional output * data, if any */ adbOutputBuffer[2 + i] = buffer[i]; } else for (i = 0; i <= (adbOutputBuffer[0] + 1); i++) adbOutputBuffer[i] = in[i]; adbSentChars = 0; /* nothing sent yet */ adbBuffer = buffer; /* save buffer to know where to save result */ adbCompRout = compRout; /* save completion routine pointer */ adbCompData = data; /* save completion routine data pointer */ adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */ if (adbWriteDelay != 1) { /* start command now? */ #ifdef DEBUG printf_intr("out start NOW"); #endif delay(ADB_DELAY); adbActionState = ADB_ACTION_OUT; /* set next state */ ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */ ADB_SET_STATE_ACKOFF_CUDA(); ADB_SET_STATE_TIP(); /* tell ADB that we want to send */ } adbWriteDelay = 1; /* something in the write "queue" */ splx(s); if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */ /* poll until byte done */ while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON) || (adbWaiting == 1)) if (ADB_SR_INTR_IS_ON) /* wait for "interrupt" */ adb_intr_cuda(); /* go process * "interrupt" */ return 0; } /* send_adb_cuda */ /* TO DO: add one or two zshard calls in here */ void adb_intr_II(void) { int i, len, intr_on = 0; int send = 0, do_srq = 0; unsigned int s; s = splhigh(); /* can't be too careful - might be called */ /* from a routine, NOT an interrupt */ ADB_VIA_CLR_INTR(); /* clear interrupt */ ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ /*if (ADB_INTR_IS_ON)*/ /* printf_intr("INTR ON ");*/ if (ADB_INTR_IS_ON) intr_on = 1; /* save for later */ switch (adbActionState) { case ADB_ACTION_IDLE: if (!intr_on) { /* printf_intr("FAKE DROPPED \n"); */ /* printf_intr(" XX "); */ i = ADB_SR(); break; } adbNextEnd = 0; /* printf_intr("idle "); */ adbInputBuffer[0] = 1; adbInputBuffer[1] = ADB_SR(); /* get first byte */ /* printf_intr("0x%02x ", adbInputBuffer[1]); */ ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ adbActionState = ADB_ACTION_IN; /* set next state */ ADB_SET_STATE_EVEN(); /* set bus state to even */ adbBusState = ADB_BUS_EVEN; break; case ADB_ACTION_IN: adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */ /* printf_intr("in 0x%02x ", * adbInputBuffer[adbInputBuffer[0]]); */ ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ /* * Check for an unsolicited Service Request (SRQ). * An empty SRQ packet NEVER ends, so we must manually * check for the following condition. */ if (adbInputBuffer[0] == 4 && adbInputBuffer[2] == 0xff && adbInputBuffer[3] == 0xff && adbInputBuffer[4] == 0xff && intr_on && !adbNextEnd) do_srq = 1; if (adbNextEnd == 1) { /* process last byte of packet */ adbNextEnd = 0; /* printf_intr("done: "); */ /* If the following conditions are true (4 byte * message, last 3 bytes are 0xff) then we basically * got a "no response" from the ADB chip, so change * the message to an empty one. We also clear intr_on * to stop the SRQ send later on because these packets * normally have the SRQ bit set even when there is * NOT a pending SRQ. */ if (adbInputBuffer[0] == 4 && adbInputBuffer[2] == 0xff && adbInputBuffer[3] == 0xff && adbInputBuffer[4] == 0xff) { /* printf_intr("NO RESP "); */ intr_on = 0; adbInputBuffer[0] = 0; } adbLastDevice = (adbInputBuffer[1] & 0xf0) >> 4; if ((!adbWaiting || adbPolling) && (adbInputBuffer[0] != 0)) { /* unsolicided - ignore if starting */ if (!adbStarting) adb_handle_unsol(adbInputBuffer); } else if (!adbPolling) { /* someone asked for it */ /* printf_intr("SOL: "); */ /* print_single(adbInputBuffer); */ if (adbBuffer != (long) 0) { /* if valid return data * pointer */ /* get return length minus * extras */ len = adbInputBuffer[0] - 1; /* if adb_op is ever made to * be called from a user * routine, we should use a * copyout or copyin here to * be sure we're in the * correct context. */ for (i = 1; i <= len; i++) adbBuffer[i] = adbInputBuffer[i + 1]; if (len < 0) len = 0; adbBuffer[0] = len; } adb_comp_exec(); } adbWaiting = 0; adbPolling = 0; adbInputBuffer[0] = 0; adbBuffer = (long) 0; adbCompRout = (long) 0; adbCompData = (long) 0; /* * Since we are done, check whether there is any data * waiting to do out. If so, start the sending the data. */ if (adbOutQueueHasData == 1) { /* printf_intr("XXX: DOING OUT QUEUE\n"); */ /* copy over data */ for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++) adbOutputBuffer[i] = adbOutQueue.outBuf[i]; adbBuffer = adbOutQueue.saveBuf; /* user data area */ adbCompRout = adbOutQueue.compRout; /* completion routine */ adbCompData = adbOutQueue.data; /* comp. rout. data */ adbOutQueueHasData = 0; /* currently processing * "queue" entry */ adbPolling = 0; send = 1; /* if intr_on is true, then it's a SRQ so poll * other devices. */ } else if (intr_on) { /* printf_intr("starting POLL "); */ do_srq = 1; adbPolling = 1; } else if ((adbInputBuffer[1] & 0x0f) != 0x0c) { /* printf_intr("xC HACK "); */ adbPolling = 1; send = 1; adbOutputBuffer[0] = 1; adbOutputBuffer[1] = (adbInputBuffer[1] & 0xf0) | 0x0c; } else { /* printf_intr("ending "); */ adbBusState = ADB_BUS_IDLE; adbActionState = ADB_ACTION_IDLE; ADB_SET_STATE_IDLE_II(); break; } } /* * If do_srq is true then something above determined that * the message has ended and some device is sending a * service request. So we need to determine the next device * and send a poll to it. (If the device we send to isn't the * one that sent the SRQ, that ok as it will be caught * the next time though.) */ if (do_srq) { /* printf_intr("SRQ! "); */ adbPolling = 1; adb_guess_next_device(); adbOutputBuffer[0] = 1; adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c; send = 1; } /* * If send is true then something above determined that * the message has ended and we need to start sending out * a new message immediately. This could be because there * is data waiting to go out or because an SRQ was seen. */ if (send) { adbNextEnd = 0; adbSentChars = 0; /* nothing sent yet */ adbActionState = ADB_ACTION_OUT; /* set next state */ ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ ADB_SET_STATE_CMD(); /* tell ADB that we want to * send */ break; } /* We only get this far if the message hasn't ended yet. */ if (!intr_on) /* if adb intr. on then the */ adbNextEnd = 1; /* NEXT byte is the last */ switch (adbBusState) { /* set to next state */ case ADB_BUS_EVEN: ADB_SET_STATE_ODD(); /* set state to odd */ adbBusState = ADB_BUS_ODD; break; case ADB_BUS_ODD: ADB_SET_STATE_EVEN(); /* set state to even */ adbBusState = ADB_BUS_EVEN; break; default: printf_intr("strange state!!!\n"); /* huh? */ break; } break; case ADB_ACTION_OUT: adbNextEnd = 0; if (!adbPolling) adbWaiting = 1; /* not unsolicited */ i = ADB_SR(); /* clear interrupt */ adbSentChars++; /* * If the outgoing data was a TALK, we must * switch to input mode to get the result. */ if ((adbOutputBuffer[1] & 0x0c) == 0x0c) { adbInputBuffer[0] = 1; adbInputBuffer[1] = i; adbActionState = ADB_ACTION_IN; ADB_SET_SR_INPUT(); adbBusState = ADB_BUS_EVEN; ADB_SET_STATE_EVEN(); /* printf_intr("talk out 0x%02x ", i); */ break; } /* If it's not a TALK, check whether all data has been sent. * If so, call the completion routine and clean up. If not, * advance to the next state. */ /* printf_intr("non-talk out 0x%0x ", i); */ ADB_SET_SR_OUTPUT(); if (adbOutputBuffer[0] == adbSentChars) { /* check for done */ /* printf_intr("done \n"); */ adb_comp_exec(); adbBuffer = (long) 0; adbCompRout = (long) 0; adbCompData = (long) 0; if (adbOutQueueHasData == 1) { /* copy over data */ for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++) adbOutputBuffer[i] = adbOutQueue.outBuf[i]; adbBuffer = adbOutQueue.saveBuf; /* user data area */ adbCompRout = adbOutQueue.compRout; /* completion routine */ adbCompData = adbOutQueue.data; /* comp. rout. data */ adbOutQueueHasData = 0; /* currently processing * "queue" entry */ adbPolling = 0; } else { adbOutputBuffer[0] = 1; adbOutputBuffer[1] = (adbOutputBuffer[1] & 0xf0) | 0x0c; adbPolling = 1; /* non-user poll */ } adbNextEnd = 0; adbSentChars = 0; /* nothing sent yet */ adbActionState = ADB_ACTION_OUT; /* set next state */ ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ ADB_SET_STATE_CMD(); /* tell ADB that we want to * send */ break; } ADB_SR() = adbOutputBuffer[adbSentChars + 1]; switch (adbBusState) { /* advance to next state */ case ADB_BUS_EVEN: ADB_SET_STATE_ODD(); /* set state to odd */ adbBusState = ADB_BUS_ODD; break; case ADB_BUS_CMD: case ADB_BUS_ODD: ADB_SET_STATE_EVEN(); /* set state to even */ adbBusState = ADB_BUS_EVEN; break; default: printf_intr("strange state!!! (0x%x)\n", adbBusState); break; } break; default: printf_intr("adb: unknown ADB state (during intr)\n"); } ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ splx(s); /* restore */ return; } /* * send_adb version for II series machines */ int send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command) { int i, s, len; if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not * available */ return 1; s = splhigh(); /* don't interrupt while we are messing with * the ADB */ if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */ splx(s); /* sorry, try again later */ return 1; } if ((long) in == (long) 0) { /* need to convert? */ /* * Don't need to use adb_cmd_extra here because this section * will be called ONLY when it is an ADB command (no RTC or * PRAM), especially on II series! */ if ((command & 0x0c) == 0x08) /* copy addl data ONLY if * doing a listen! */ len = buffer[0]; /* length of additional data */ else len = 0;/* no additional data */ adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */ adbOutQueue.outBuf[1] = (u_char) command; /* load command */ for (i = 1; i <= len; i++) /* copy additional output * data, if any */ adbOutQueue.outBuf[1 + i] = buffer[i]; } else /* if data ready, just copy over */ for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++) adbOutQueue.outBuf[i] = in[i]; adbOutQueue.saveBuf = buffer; /* save buffer to know where to save * result */ adbOutQueue.compRout = compRout; /* save completion routine * pointer */ adbOutQueue.data = data;/* save completion routine data pointer */ if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */ (ADB_INTR_IS_OFF) &&/* and no incoming interrupts? */ (adbPolling == 0)) {/* and we are not currently polling */ /* then start command now */ for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++) /* copy over data */ adbOutputBuffer[i] = adbOutQueue.outBuf[i]; adbBuffer = adbOutQueue.saveBuf; /* pointer to user data * area */ adbCompRout = adbOutQueue.compRout; /* pointer to the * completion routine */ adbCompData = adbOutQueue.data; /* pointer to the completion * routine data */ adbSentChars = 0; /* nothing sent yet */ adbActionState = ADB_ACTION_OUT; /* set next state */ adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */ ADB_SET_STATE_CMD(); /* tell ADB that we want to send */ adbOutQueueHasData = 0; /* currently processing "queue" entry */ } else adbOutQueueHasData = 1; /* something in the write "queue" */ splx(s); if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */ /* poll until message done */ while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON) || (adbWaiting == 1) || (adbPolling == 1)) if (ADB_SR_INTR_IS_ON) /* wait for "interrupt" */ adb_intr_II(); /* go process "interrupt" */ return 0; } /* * This routine is called from the II series interrupt routine * to determine what the "next" device is that should be polled. */ int adb_guess_next_device(void) { int last, i, dummy; if (adbStarting) { /* start polling EVERY device, since we can't be sure there is * anything in the device table yet */ if (adbLastDevice < 1 || adbLastDevice > 15) adbLastDevice = 1; if (++adbLastDevice > 15) /* point to next one */ adbLastDevice = 1; } else { /* find the next device using the device table */ if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */ adbLastDevice = 2; last = 1; /* default index location */ for (i = 1; i < 16; i++) /* find index entry */ if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */ last = i; /* found it */ break; } dummy = last; /* index to start at */ for (;;) { /* find next device in index */ if (++dummy > 15) /* wrap around if needed */ dummy = 1; if (dummy == last) { /* didn't find any other * device! This can happen if * there are no devices on the * bus */ dummy = 2; break; } /* found the next device */ if (ADBDevTable[dummy].devType != 0) break; } adbLastDevice = ADBDevTable[dummy].currentAddr; } return adbLastDevice; } /* * Called when when an adb interrupt happens. * This routine simply transfers control over to the appropriate * code for the machine we are running on. */ void adb_intr(void) { switch (adbHardware) { case ADB_HW_II: adb_intr_II(); break; case ADB_HW_IISI: adb_intr_IIsi(); break; case ADB_HW_PB: break; case ADB_HW_CUDA: adb_intr_cuda(); break; case ADB_HW_UNKNOWN: break; } } /* * called when when an adb interrupt happens * * IIsi version of adb_intr * */ void adb_intr_IIsi(void) { int i, ending, len; unsigned int s; s = splhigh(); /* can't be too careful - might be called */ /* from a routine, NOT an interrupt */ ADB_VIA_CLR_INTR(); /* clear interrupt */ ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ switch_start: switch (adbActionState) { case ADB_ACTION_IDLE: delay(ADB_DELAY); /* short delay is required before the * first byte */ ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ ADB_SET_STATE_ACTIVE(); /* signal start of data frame */ adbInputBuffer[1] = ADB_SR(); /* get byte */ adbInputBuffer[0] = 1; adbActionState = ADB_ACTION_IN; /* set next state */ ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */ delay(ADB_DELAY); /* delay */ ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */ zshard(0); /* grab any serial interrupts */ break; case ADB_ACTION_IN: ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */ if (ADB_INTR_IS_OFF) /* check for end of frame */ ending = 1; else ending = 0; ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */ delay(ADB_DELAY); /* delay */ ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */ zshard(0); /* grab any serial interrupts */ if (1 == ending) { /* end of message? */ ADB_SET_STATE_INACTIVE(); /* signal end of frame */ /* this section _should_ handle all ADB and RTC/PRAM * type commands, */ /* but there may be more... */ /* note: commands are always at [4], even for rtc/pram * commands */ if ((adbWaiting == 1) && /* are we waiting AND */ (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */ ((adbInputBuffer[2] == 0x00) || /* it's from the ADB * device OR */ (adbInputBuffer[2] == 0x01))) { /* it's from the * PRAM/RTC device */ /* is this data we are waiting for? */ if (adbBuffer != (long) 0) { /* if valid return data * pointer */ /* get return length minus extras */ len = adbInputBuffer[0] - 4; /* if adb_op is ever made to be called * from a user routine, we should use * a copyout or copyin here to be sure * we're in the correct context */ for (i = 1; i <= len; i++) adbBuffer[i] = adbInputBuffer[4 + i]; if (len < 0) len = 0; adbBuffer[0] = len; } adb_comp_exec(); /* call completion * routine */ adbWaitingCmd = 0; /* reset "waiting" vars */ adbWaiting = 0; adbBuffer = (long) 0; adbCompRout = (long) 0; adbCompData = (long) 0; } else { /* pass the data off to the handler */ /* This section IGNORES all data that is not * from the ADB sub-device. That is, not from * rtc or pram. Maybe we should fix later, * but do the other devices every send things * without being asked? */ if (adbStarting == 0) /* ignore if during * adbreinit */ if (adbInputBuffer[2] == 0x00) adb_handle_unsol(adbInputBuffer); } adbActionState = ADB_ACTION_IDLE; adbInputBuffer[0] = 0; /* reset length */ if (adbWriteDelay == 1) { /* were we waiting to * write? */ adbSentChars = 0; /* nothing sent yet */ adbActionState = ADB_ACTION_OUT; /* set next state */ delay(ADB_DELAY); /* delay */ zshard(0); /* grab any serial interrupts */ if (ADB_INTR_IS_ON) { /* ADB intr low during * write */ ADB_SET_STATE_IDLE_IISI(); /* reset */ ADB_SET_SR_INPUT(); /* make sure SR is set * to IN */ adbSentChars = 0; /* must start all over */ adbActionState = ADB_ACTION_IDLE; /* new state */ adbInputBuffer[0] = 0; /* may be able to take this out later */ delay(ADB_DELAY); /* delay */ break; } ADB_SET_STATE_ACTIVE(); /* tell ADB that we want * to send */ ADB_SET_STATE_ACKOFF(); /* make sure */ ADB_SET_SR_OUTPUT(); /* set shift register * for OUT */ ADB_SR() = adbOutputBuffer[adbSentChars + 1]; ADB_SET_STATE_ACKON(); /* tell ADB byte ready * to shift */ } } break; case ADB_ACTION_OUT: i = ADB_SR(); /* reset SR-intr in IFR */ ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ ADB_SET_STATE_ACKOFF(); /* finish ACK */ adbSentChars++; if (ADB_INTR_IS_ON) { /* ADB intr low during write */ ADB_SET_STATE_IDLE_IISI(); /* reset */ ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ adbSentChars = 0; /* must start all over */ adbActionState = ADB_ACTION_IDLE; /* new state */ adbInputBuffer[0] = 0; adbWriteDelay = 1; /* must retry when done with * read */ delay(ADB_DELAY); /* delay */ zshard(0); /* grab any serial interrupts */ goto switch_start; /* process next state right * now */ break; } delay(ADB_DELAY); /* required delay */ zshard(0); /* grab any serial interrupts */ if (adbOutputBuffer[0] == adbSentChars) { /* check for done */ if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data * back? */ adbWaiting = 1; /* signal waiting for return */ adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */ } else {/* no talk, so done */ adb_comp_exec(); /* call completion * routine */ adbWaitingCmd = 0; /* reset "waiting" vars, * just in case */ adbBuffer = (long) 0; adbCompRout = (long) 0; adbCompData = (long) 0; } adbWriteDelay = 0; /* done writing */ adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */ ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ ADB_SET_STATE_INACTIVE(); /* end of frame */ } else { ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */ ADB_SET_STATE_ACKON(); /* signal byte ready to shift */ } break; case ADB_ACTION_NOTREADY: printf_intr("adb: not yet initialized\n"); break; default: printf_intr("intr: unknown ADB state\n"); } ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ splx(s); /* restore */ return; } /* end adb_intr_IIsi */ /***************************************************************************** * if the device is currently busy, and there is no data waiting to go out, then * the data is "queued" in the outgoing buffer. If we are already waiting, then * we return. * in: if (in==0) then the command string is built from command and buffer * if (in!=0) then in is used as the command string * buffer: additional data to be sent (used only if in==0) * this is also where return data is stored * compRout: the completion routine that is called when then return value * is received (if a return value is expected) * data: a data pointer that can be used by the completion routine * command: an ADB command to be sent (used only if in==0) * */ int send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int command) { int i, s, len; if (adbActionState == ADB_ACTION_NOTREADY) return 1; s = splhigh(); /* don't interrupt while we are messing with * the ADB */ if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */ (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */ } else if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */ adbWriteDelay = 1; /* if no, then we'll "queue" * it up */ else { splx(s); return 1; /* really busy! */ } if ((long) in == (long) 0) { /* need to convert? */ /* don't need to use adb_cmd_extra here because this section * will be called */ /* ONLY when it is an ADB command (no RTC or PRAM) */ if ((command & 0x0c) == 0x08) /* copy addl data ONLY if * doing a listen! */ len = buffer[0]; /* length of additional data */ else len = 0;/* no additional data */ adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl. * data */ adbOutputBuffer[1] = 0x00; /* mark as an ADB command */ adbOutputBuffer[2] = (u_char) command; /* load command */ for (i = 1; i <= len; i++) /* copy additional output * data, if any */ adbOutputBuffer[2 + i] = buffer[i]; } else for (i = 0; i <= (adbOutputBuffer[0] + 1); i++) adbOutputBuffer[i] = in[i]; adbSentChars = 0; /* nothing sent yet */ adbBuffer = buffer; /* save buffer to know where to save result */ adbCompRout = compRout; /* save completion routine pointer */ adbCompData = data; /* save completion routine data pointer */ adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */ if (adbWriteDelay != 1) { /* start command now? */ adbActionState = ADB_ACTION_OUT; /* set next state */ ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */ ADB_SET_STATE_ACKOFF(); /* make sure */ ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */ ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */ } adbWriteDelay = 1; /* something in the write "queue" */ splx(s); if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */ /* poll until byte done */ while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON) || (adbWaiting == 1)) if (ADB_SR_INTR_IS_ON) /* wait for "interrupt" */ adb_intr_IIsi(); /* go process * "interrupt" */ return 0; } /* send_adb_IIsi */ /* * adb_comp_exec * This is a general routine that calls the completion routine if there is one. */ void adb_comp_exec(void) { if ((long) 0 != adbCompRout) /* don't call if empty return location */ #if defined(__NetBSD__) || defined(__OpenBSD__) asm(" movml #0xffff, sp@- | save all registers movl %0, a2 | adbCompData movl %1, a1 | adbCompRout movl %2, a0 | adbBuffer movl %3, d0 | adbWaitingCmd jbsr a1@ | go call the routine movml sp@+, #0xffff | restore all registers" : :"g"(adbCompData), "g"(adbCompRout), "g"(adbBuffer), "g"(adbWaitingCmd) :"d0", "a0", "a1", "a2"); #else /* for macos based testing */ asm { movem.l a0/a1/a2/d0, -(a7) move.l adbCompData, a2 move.l adbCompRout, a1 move.l adbBuffer, a0 move.w adbWaitingCmd, d0 jsr(a1) movem.l(a7) +, d0/a2/a1/a0 } #endif } /* * This routine handles what needs to be done after an unsolicited * message is read from the ADB device. 'in' points to the raw * data received from the device, including device number * (on IIsi) and result code. * * Note that the service (completion) routine for an unsolicited * message is whatever is set in the ADB device table. This is * different than for a device responding to a specific request, * where the completion routine is defined by the caller. */ void adb_handle_unsol(u_char * in) { int i, cmd = 0; u_char data[MAX_ADB_MSG_LENGTH]; u_char *buffer = 0; ADBDataBlock block; /* make local copy so we don't destroy the real one - it may be needed * later. */ for (i = 0; i <= (in[0] + 1); i++) data[i] = in[i]; switch (adbHardware) { case ADB_HW_II: /* adjust the "length" byte */ cmd = data[1]; if (data[0] < 2) data[1] = 0; else data[1] = data[0] - 1; buffer = (data + 1); break; case ADB_HW_IISI: case ADB_HW_CUDA: /* only handles ADB for now */ if (0 != *(data + 2)) return; /* adjust the "length" byte */ cmd = data[4]; if (data[0] < 5) data[4] = 0; else data[4] = data[0] - 4; buffer = (data + 4); break; case ADB_HW_PB: return; /* how does PM handle "unsolicited" messages? */ case ADB_HW_UNKNOWN: return; } if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4))) return; /* call default completion routine if it's valid */ /* TO DO: This section of code is somewhat redundant with * adb_comp_exec (above). Some day we may want to generalize it and * make it a single function. */ if ((long) 0 != (long) block.dbServiceRtPtr) { #if defined(__NetBSD__) || defined(__OpenBSD__) asm(" movml #0xffff, sp@- | save all registers movl %0, a2 | block.dbDataAreaAddr movl %1, a1 | block.dbServiceRtPtr movl %2, a0 | buffer movl %3, d0 | cmd jbsr a1@ | go call the routine movml sp@+, #0xffff | restore all registers" : : "g"(block.dbDataAreaAddr), "g"(block.dbServiceRtPtr), "g"(buffer), "g"(cmd) : "d0", "a0", "a1", "a2"); #else /* for macos based testing */ asm { movem.l a0/a1/a2/d0, -(a7) move.l block.dbDataAreaAddr, a2 move.l block.dbServiceRtPtr, a1 move.l buffer, a0 move.w cmd, d0 jsr(a1) movem.l(a7) +, d0/a2/a1/a0 } #endif } return; } /* * This is my version of the ADBOp routine. It mainly just calls the hardware-specific * routine. * * data : pointer to data area to be used by compRout * compRout : completion routine * buffer : for LISTEN: points to data to send - MAX 8 data bytes, * byte 0 = # of bytes * : for TALK: points to place to save return data * command : the adb command to send * result : 0 = success * : -1 = could not complete */ int adb_op(Ptr buffer, Ptr compRout, Ptr data, short command) { int result; switch (adbHardware) { case ADB_HW_II: result = send_adb_II((u_char *) 0, (u_char *) buffer, (void *) compRout, (void *) data, (int) command); if (result == 0) return 0; else return -1; break; case ADB_HW_IISI: result = send_adb_IIsi((u_char *) 0, (u_char *) buffer, (void *) compRout, (void *) data, (int) command); /* * I wish I knew why this delay is needed. It usually needs to * be here when several commands are sent in close succession, * especially early in device probes when doing collision * detection. It must be some race condition. Sigh. - jpw */ delay(100); if (result == 0) return 0; else return -1; break; case ADB_HW_PB: result = pm_adb_op((u_char *)buffer, (void *)compRout, (void *)data, (int)command); if (result == 0) return 0; else return -1; break; case ADB_HW_CUDA: result = send_adb_cuda((u_char *) 0, (u_char *) buffer, (void *) compRout, (void *) data, (int) command); if (result == 0) return 0; else return -1; break; case ADB_HW_UNKNOWN: default: return -1; } } /* * adb_cleanup * This routine simply calls the appropriate version of the adb_cleanup routine. */ void adb_cleanup(u_char * in) { volatile int i; switch (adbHardware) { case ADB_HW_II: ADB_VIA_CLR_INTR(); /* clear interrupt */ break; case ADB_HW_IISI: /* get those pesky clock ticks we missed while booting */ adb_cleanup_IIsi(in); break; case ADB_HW_PB: /* * XXX - really PM_VIA_CLR_INTR - should we put it in * pm_direct.h? */ via_reg(VIA1, vIFR) = 0x90; /* clear interrupt */ break; case ADB_HW_CUDA: i = ADB_SR(); /* clear interrupt */ ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */ ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */ delay(ADB_DELAY); ADB_SET_STATE_TIP(); /* signal start of frame */ delay(ADB_DELAY); ADB_TOGGLE_STATE_ACK_CUDA(); delay(ADB_DELAY); ADB_CLR_STATE_TIP(); delay(ADB_DELAY); ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */ i = ADB_SR(); /* clear interrupt */ ADB_VIA_INTR_ENABLE(); /* ints ok now */ break; case ADB_HW_UNKNOWN: return; } } /* * adb_cleanup_IIsi * This is sort of a "read" routine that forces the adb hardware through a read cycle * if there is something waiting. This helps "clean up" any commands that may have gotten * stuck or stopped during the boot process. * */ void adb_cleanup_IIsi(u_char * buffer) { int i; int dummy; int s; long my_time; int endofframe; delay(ADB_DELAY); i = 1; /* skip over [0] */ s = splhigh(); /* block ALL interrupts while we are working */ ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ /* this is required, especially on faster machines */ delay(ADB_DELAY); if (ADB_INTR_IS_ON) { ADB_SET_STATE_ACTIVE(); /* signal start of data frame */ endofframe = 0; while (0 == endofframe) { /* poll for ADB interrupt and watch for timeout */ /* if time out, keep going in hopes of not hanging the * ADB chip - I think */ my_time = ADB_DELAY * 5; while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0)) dummy = via_reg(VIA1, vBufB); buffer[i++] = ADB_SR(); /* reset interrupt flag by * reading vSR */ /* perhaps put in a check here that ignores all data * after the first MAX_ADB_MSG_LENGTH bytes ??? */ if (ADB_INTR_IS_OFF) /* check for end of frame */ endofframe = 1; ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */ delay(ADB_DELAY); /* delay */ ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */ } ADB_SET_STATE_INACTIVE(); /* signal end of frame and * delay */ /* probably don't need to delay this long */ delay(ADB_DELAY); } buffer[0] = --i; /* [0] is length of message */ ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ splx(s); /* restore interrupts */ return; } /* adb_cleanup_IIsi */ /* * adb_reinit sets up the adb stuff * */ void adb_reinit(void) { u_char send_string[MAX_ADB_MSG_LENGTH]; int s = 0; volatile int i, x; int command; int result; int saveptr; /* point to next free relocation address */ int device; int nonewtimes; /* times thru loop w/o any new devices */ ADBDataBlock data; /* temp. holder for getting device info */ (void)(&s); /* work around lame GCC bug */ /* Make sure we are not interrupted while building the table. */ if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */ s = splhigh(); ADBNumDevices = 0; /* no devices yet */ /* Let intr routines know we are running reinit */ adbStarting = 1; /* Initialize the ADB table. For now, we'll always use the same table * that is defined at the beginning of this file - no mallocs. */ for (i = 0; i < 16; i++) ADBDevTable[i].devType = 0; adb_setup_hw_type(); /* setup hardware type */ /* Set up all the VIA bits we need to do the ADB stuff. */ switch (adbHardware) { case ADB_HW_II: via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5: * outputs */ via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */ via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set * to IN (II, IIsi) */ adbActionState = ADB_ACTION_IDLE; /* used by all types of * hardware (II, IIsi) */ adbBusState = ADB_BUS_IDLE; /* this var. used in II-series * code only */ via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts * are on (II, IIsi) */ ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */ break; case ADB_HW_IISI: via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5: * outputs */ via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */ via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set * to IN (II, IIsi) */ adbActionState = ADB_ACTION_IDLE; /* used by all types of * hardware (II, IIsi) */ adbBusState = ADB_BUS_IDLE; /* this var. used in II-series * code only */ via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts * are on (II, IIsi) */ ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */ break; case ADB_HW_PB: break; /* there has to be more than this? */ case ADB_HW_CUDA: via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5: * outputs */ via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */ via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set * to IN */ via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10; adbActionState = ADB_ACTION_IDLE; /* used by all types of * hardware */ adbBusState = ADB_BUS_IDLE; /* this var. used in II-series * code only */ via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts * are on */ ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */ break; case ADB_HW_UNKNOWN: /* if type unknown then skip out */ default: via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO * DO: turn PB ints off? */ return; break; } /* * Clear out any "leftover" commands. Remember that up until this * point, the interrupt routine will be either off or it should be * able to ignore inputs until the device table is built. */ for (i = 0; i < 30; i++) { delay(ADB_DELAY); adb_cleanup(send_string); printf_intr("adb: cleanup: "); print_single(send_string); delay(ADB_DELAY); if (ADB_INTR_IS_OFF) break; } /* send an ADB reset first */ adb_op_sync((Ptr) 0, (Ptr) 0, (Ptr) 0, (short) 0x00); /* Probe for ADB devices. Probe devices 1-15 quickly to determine * which device addresses are in use and which are free. For each * address that is in use, move the device at that address to a higher * free address. Continue doing this at that address until no device * responds at that address. Then move the last device that was moved * back to the original address. Do this for the remaining addresses * that we determined were in use. * * When finished, do this entire process over again with the updated list * of in use addresses. Do this until no new devices have been found * in 20 passes though the in use address list. (This probably seems * long and complicated, but it's the best way to detect multiple * devices at the same address - sometimes it takes a couple of tries * before the collision is detected.) */ /* initial scan through the devices */ for (i = 1; i < 16; i++) { command = (int) (0x0f | ((int) (i & 0x000f) << 4)); /* talk R3 */ result = adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command); if (0x00 != send_string[0]) { /* anything come back ?? */ ADBDevTable[++ADBNumDevices].devType = (u_char) send_string[2]; ADBDevTable[ADBNumDevices].origAddr = i; ADBDevTable[ADBNumDevices].currentAddr = i; ADBDevTable[ADBNumDevices].DataAreaAddr = (long) 0; ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *) 0; /* printf_intr("initial device found (at index %i)\n", * ADBNumDevices); */ pm_check_adb_devices(i); /* tell pm driver device * is here */ } } /* find highest unused address */ for (saveptr = 15; saveptr > 0; saveptr--) if (-1 == get_adb_info(&data, saveptr)) break; if (saveptr == 0) /* no free addresses??? */ saveptr = 15; /* printf_intr("first free is: 0x%02x\n", saveptr); */ /* printf_intr("devices: %i\n", ADBNumDevices); */ nonewtimes = 0; /* no loops w/o new devices */ while (nonewtimes++ < 11) { for (i = 1; i <= ADBNumDevices; i++) { device = ADBDevTable[i].currentAddr; /* printf_intr("moving device 0x%02x to 0x%02x (index * 0x%02x) ", device, saveptr, i); */ /* send TALK R3 to address */ command = (int) (0x0f | ((int) (device & 0x000f) << 4)); adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command); /* move device to higher address */ command = (int) (0x0b | ((int) (device & 0x000f) << 4)); send_string[0] = 2; send_string[1] = (u_char) (saveptr | 0x60); send_string[2] = 0xfe; adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command); /* send TALK R3 - anything at old address? */ command = (int) (0x0f | ((int) (device & 0x000f) << 4)); result = adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command); if (send_string[0] != 0) { /* new device found */ /* update data for previously moved device */ ADBDevTable[i].currentAddr = saveptr; /* printf_intr("old device at index %i\n",i); */ /* add new device in table */ /* printf_intr("new device found\n"); */ ADBDevTable[++ADBNumDevices].devType = (u_char) send_string[2]; ADBDevTable[ADBNumDevices].origAddr = device; ADBDevTable[ADBNumDevices].currentAddr = device; /* These will be set correctly in adbsys.c */ /* Until then, unsol. data will be ignored. */ ADBDevTable[ADBNumDevices].DataAreaAddr = (long) 0; ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *) 0; /* find next unused address */ for (x = saveptr; x > 0; x--) if (-1 == get_adb_info(&data, x)) { saveptr = x; break; } /* printf_intr("new free is 0x%02x\n", * saveptr); */ nonewtimes = 0; /* tell pm driver device is here */ pm_check_adb_devices(device); } else { /* printf_intr("moving back...\n"); */ /* move old device back */ command = (int) (0x0b | ((int) (saveptr & 0x000f) << 4)); send_string[0] = 2; send_string[1] = (u_char) (device | 0x60); send_string[2] = 0xfe; adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command); } } } #ifdef DEBUG for (i = 1; i <= ADBNumDevices; i++) { x = get_ind_adb_info(&data, i); if (x != -1) printf_intr("index 0x%x, addr 0x%x, type 0x%x\n", i, x, data.devType); } #endif adb_prog_switch_enable(); /* enable the programmer's switch, if * we have one */ if (0 == ADBNumDevices) /* tell user if no devices found */ printf_intr("adb: no devices found\n"); adbStarting = 0; /* not starting anymore */ printf_intr("adb: ADBReInit complete\n"); if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */ splx(s); return; } /* adb_cmd_result * This routine lets the caller know whether the specified adb command string should * expect a returned result, such as a TALK command. * returns: 0 if a result should be expected * 1 if a result should NOT be expected */ int adb_cmd_result(u_char * in) { switch (adbHardware) { case ADB_HW_II: /* was it an ADB talk command? */ if ((in[1] & 0x0c) == 0x0c) return 0; else return 1; break; case ADB_HW_IISI: case ADB_HW_CUDA: /* was is an ADB talk command? */ if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c)) return 0; /* was is an RTC/PRAM read date/time? */ else if ((in[1] == 0x01) && (in[2] == 0x03)) return 0; else return 1; break; case ADB_HW_PB: return 1; break; case ADB_HW_UNKNOWN: default: return 1; } } /* adb_cmd_extra * This routine lets the caller know whether the specified adb command string may have * extra data appended to the end of it, such as a LISTEN command. * returns: 0 if extra data is allowed * 1 if extra data is NOT allowed */ int adb_cmd_extra(u_char * in) { switch (adbHardware) { case ADB_HW_II: if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */ return 0; else return 1; break; case ADB_HW_IISI: case ADB_HW_CUDA: /* TO DO: support needs to be added to recognize RTC and PRAM * commands */ if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */ return 0; else /* add others later */ return 1; break; case ADB_HW_PB: return 1; break; case ADB_HW_UNKNOWN: default: return 1; } } /* adb_op_sync * This routine does exactly what the adb_op routine does, except that after the * adb_op is called, it waits until the return value is present before returning */ int adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command) { int result; volatile int flag = 0; result = adb_op(buffer, (void *) adb_op_comprout, (void *) &flag, command); /* send command */ if (result == 0) { /* send ok? */ while (0 == flag); /* wait for compl. routine */ return 0; } else return result; } /* adb_op_comprout * This function is used by the adb_op_sync routine so it knows when the function is * done. */ void adb_op_comprout(void) { #if defined(__NetBSD__) || defined(__OpenBSD__) asm("movw #1,a2@ | update flag value"); #else /* for macos based testing */ asm { move.w #1,(a2) } /* update flag value */ #endif } void adb_setup_hw_type(void) { long response; response = mac68k_machine.machineid; switch (response) { case 6: /* II */ case 7: /* IIx */ case 8: /* IIcx */ case 9: /* SE/30 */ case 11: /* IIci */ case 22: /* Quadra 700 */ case 30: /* Centris 650 */ case 35: /* Quadra 800 */ case 36: /* Quadra 650 */ case 52: /* Centris 610 */ case 53: /* Quadra 610 */ adbHardware = ADB_HW_II; printf_intr("adb: using II series hardware support\n"); break; case 18: /* IIsi */ case 20: /* Quadra 900 - not sure if IIsi or not */ case 23: /* Classic II */ case 26: /* Quadra 950 - not sure if IIsi or not */ case 27: /* LC III, Performa 450 */ case 37: /* LC II, Performa 400/405/430 */ case 44: /* IIvi */ case 45: /* Performa 600 */ case 48: /* IIvx */ case 49: /* Color Classic - not sure if IIsi or not */ case 62: /* Performa 460/465/467 */ case 83: /* Color Classic II - not sure if IIsi or not */ adbHardware = ADB_HW_IISI; printf_intr("adb: using IIsi series hardware support\n"); break; case 21: /* PowerBook 170 */ case 25: /* PowerBook 140 */ case 54: /* PowerBook 145 */ case 34: /* PowerBook 160 */ case 84: /* PowerBook 165 */ case 50: /* PowerBook 165c */ case 33: /* PowerBook 180 */ case 71: /* PowerBook 180c */ case 115: /* PowerBook 150 */ adbHardware = ADB_HW_PB; pm_setup_adb(); printf_intr("adb: using PowerBook 100-series hardware support\n"); break; case 29: /* PowerBook Duo 210 */ case 32: /* PowerBook Duo 230 */ case 38: /* PowerBook Duo 250 */ case 72: /* PowerBook 500 series */ case 77: /* PowerBook Duo 270 */ case 102: /* PowerBook Duo 280 */ case 103: /* PowerBook Duo 280c */ adbHardware = ADB_HW_PB; pm_setup_adb(); printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n"); break; case 56: /* LC 520 */ case 60: /* Centris 660AV */ case 78: /* Quadra 840AV */ case 80: /* LC 550, Performa 550 */ case 89: /* LC 475, Performa 475/476 */ case 92: /* LC 575, Performa 575/577/578 */ case 94: /* Quadra 605 */ case 98: /* LC 630, Performa 630, Quadra 630 */ adbHardware = ADB_HW_CUDA; printf_intr("adb: using Cuda series hardware support\n"); break; default: adbHardware = ADB_HW_UNKNOWN; printf_intr("adb: hardware type unknown for this machine\n"); printf_intr("adb: ADB support is disabled\n"); break; } } int count_adbs(void) { int i; int found; found = 0; for (i = 1; i < 16; i++) if (0 != ADBDevTable[i].devType) found++; return found; } int get_ind_adb_info(ADBDataBlock * info, int index) { if ((index < 1) || (index > 15)) /* check range 1-15 */ return (-1); /* printf_intr("index 0x%x devType is: 0x%x\n", index, ADBDevTable[index].devType); */ if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */ return (-1); info->devType = ADBDevTable[index].devType; info->origADBAddr = ADBDevTable[index].origAddr; info->dbServiceRtPtr = (Ptr) ADBDevTable[index].ServiceRtPtr; info->dbDataAreaAddr = (Ptr) ADBDevTable[index].DataAreaAddr; return (ADBDevTable[index].currentAddr); } int get_adb_info(ADBDataBlock * info, int adbAddr) { int i; if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */ return (-1); for (i = 1; i < 15; i++) if (ADBDevTable[i].currentAddr == adbAddr) { info->devType = ADBDevTable[i].devType; info->origADBAddr = ADBDevTable[i].origAddr; info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr; info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr; return 0; /* found */ } return (-1); /* not found */ } int set_adb_info(ADBSetInfoBlock * info, int adbAddr) { int i; if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */ return (-1); for (i = 1; i < 15; i++) if (ADBDevTable[i].currentAddr == adbAddr) { ADBDevTable[i].ServiceRtPtr = (void *)(info->siServiceRtPtr); ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr; return 0; /* found */ } return (-1); /* not found */ } #ifndef MRG_ADB long mrg_adbintr(void) { adb_intr(); return 1; /* mimic mrg_adbintr in macrom.h just in case */ } long mrg_pmintr(void) /* we don't do this yet */ { pm_intr(); return 1; /* mimic mrg_pmintr in macrom.h just in case */ } #endif /* caller should really use machine-independant version: getPramTime */ /* this version does pseudo-adb access only */ int adb_read_date_time(unsigned long *time) { u_char output[MAX_ADB_MSG_LENGTH]; int result; volatile int flag = 0; switch (adbHardware) { case ADB_HW_II: return -1; case ADB_HW_IISI: output[0] = 0x02; /* 2 byte message */ output[1] = 0x01; /* to pram/rtc device */ output[2] = 0x03; /* read date/time */ result = send_adb_IIsi((u_char *) output, (u_char *) output, (void *) adb_op_comprout, (int *) &flag, (int) 0); if (result != 0) /* exit if not sent */ return -1; while (0 == flag) /* wait for result */ ; *time = (long) (*(long *) (output + 1)); return 0; case ADB_HW_PB: return -1; case ADB_HW_CUDA: output[0] = 0x02; /* 2 byte message */ output[1] = 0x01; /* to pram/rtc device */ output[2] = 0x03; /* read date/time */ result = send_adb_cuda((u_char *) output, (u_char *) output, (void *) adb_op_comprout, (void *) &flag, (int) 0); if (result != 0) /* exit if not sent */ return -1; while (0 == flag) /* wait for result */ ; *time = (long) (*(long *) (output + 1)); return 0; case ADB_HW_UNKNOWN: default: return -1; } } /* caller should really use machine-independant version: setPramTime */ /* this version does pseudo-adb access only */ int adb_set_date_time(unsigned long time) { u_char output[MAX_ADB_MSG_LENGTH]; int result; volatile int flag = 0; switch (adbHardware) { case ADB_HW_II: return -1; case ADB_HW_IISI: output[0] = 0x06; /* 6 byte message */ output[1] = 0x01; /* to pram/rtc device */ output[2] = 0x09; /* set date/time */ output[3] = (u_char) (time >> 24); output[4] = (u_char) (time >> 16); output[5] = (u_char) (time >> 8); output[6] = (u_char) (time); result = send_adb_IIsi((u_char *) output, (u_char *) 0, (void *) adb_op_comprout, (void *) &flag, (int) 0); if (result != 0) /* exit if not sent */ return -1; while (0 == flag) /* wait for send to finish */ ; return 0; case ADB_HW_PB: return -1; case ADB_HW_CUDA: output[0] = 0x06; /* 6 byte message */ output[1] = 0x01; /* to pram/rtc device */ output[2] = 0x09; /* set date/time */ output[3] = (u_char) (time >> 24); output[4] = (u_char) (time >> 16); output[5] = (u_char) (time >> 8); output[6] = (u_char) (time); result = send_adb_cuda((u_char *) output, (u_char *) 0, (void *) adb_op_comprout, (void *) &flag, (int) 0); if (result != 0) /* exit if not sent */ return -1; while (0 == flag) /* wait for send to finish */ ; return 0; case ADB_HW_UNKNOWN: default: return -1; } } int adb_poweroff(void) { u_char output[MAX_ADB_MSG_LENGTH]; int result; switch (adbHardware) { case ADB_HW_IISI: output[0] = 0x02; /* 2 byte message */ output[1] = 0x01; /* to pram/rtc/soft-power device */ output[2] = 0x0a; /* set date/time */ result = send_adb_IIsi((u_char *) output, (u_char *) 0, (void *) 0, (void *) 0, (int) 0); if (result != 0) /* exit if not sent */ return -1; for (;;); /* wait for power off */ return 0; case ADB_HW_PB: return -1; /* TO DO: some cuda models claim to do soft power - check out */ case ADB_HW_II: /* II models don't do soft power */ case ADB_HW_CUDA: /* cuda doesn't do soft power */ case ADB_HW_UNKNOWN: default: return -1; } } int adb_prog_switch_enable(void) { u_char output[MAX_ADB_MSG_LENGTH]; int result; volatile int flag = 0; switch (adbHardware) { case ADB_HW_IISI: output[0] = 0x03; /* 3 byte message */ output[1] = 0x01; /* to pram/rtc/soft-power device */ output[2] = 0x1c; /* prog. switch control */ output[3] = 0x01; /* enable */ result = send_adb_IIsi((u_char *) output, (u_char *) 0, (void *) adb_op_comprout, (void *) &flag, (int) 0); if (result != 0) /* exit if not sent */ return -1; while (0 == flag) /* wait for send to finish */ ; return 0; case ADB_HW_PB: return -1; case ADB_HW_II: /* II models don't do prog. switch */ case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */ case ADB_HW_UNKNOWN: default: return -1; } } int adb_prog_switch_disable(void) { u_char output[MAX_ADB_MSG_LENGTH]; int result; volatile int flag = 0; switch (adbHardware) { case ADB_HW_IISI: output[0] = 0x03; /* 3 byte message */ output[1] = 0x01; /* to pram/rtc/soft-power device */ output[2] = 0x1c; /* prog. switch control */ output[3] = 0x01; /* disable */ result = send_adb_IIsi((u_char *) output, (u_char *) 0, (void *) adb_op_comprout, (void *) &flag, (int) 0); if (result != 0) /* exit if not sent */ return -1; while (0 == flag) /* wait for send to finish */ ; return 0; case ADB_HW_PB: return -1; case ADB_HW_II: /* II models don't do prog. switch */ case ADB_HW_CUDA: /* cuda doesn't do prog. switch */ case ADB_HW_UNKNOWN: default: return -1; } } #ifndef MRG_ADB int CountADBs(void) { return (count_adbs()); } void ADBReInit(void) { adb_reinit(); } int GetIndADB(ADBDataBlock * info, int index) { return (get_ind_adb_info(info, index)); } int GetADBInfo(ADBDataBlock * info, int adbAddr) { return (get_adb_info(info, adbAddr)); } int SetADBInfo(ADBSetInfoBlock * info, int adbAddr) { return (set_adb_info(info, adbAddr)); } int ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum) { return (adb_op(buffer, compRout, data, commandNum)); } #endif