/* $OpenBSD: z8530tty.c,v 1.18 2009/03/15 20:40:25 miod Exp $ */ /* $NetBSD: z8530tty.c,v 1.14 1996/12/17 20:42:43 gwr Exp $ */ /* * Copyright (c) 1994 Gordon W. Ross * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)zs.c 8.1 (Berkeley) 7/19/93 */ /* * Zilog Z8530 Dual UART driver (tty interface) * * This is the "slave" driver that will be attached to * the "zsc" driver for plain "tty" async. serial lines. * * Credits, history: * * The original version of this code was the sparc/dev/zs.c driver * as distributed with the Berkeley 4.4 Lite release. Since then, * Gordon Ross reorganized the code into the current parent/child * driver scheme, separating the Sun keyboard and mouse support * into independent child drivers. * * RTS/CTS flow-control support was a collaboration of: * Gordon Ross , * Bill Studenmund * Ian Dall */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KGDB extern int zs_check_kgdb(); #endif /* * How many input characters we can buffer. * The port-specific var.h may override this. * Note: must be a power of two! */ #ifndef ZSTTY_RING_SIZE #define ZSTTY_RING_SIZE 2048 #endif /* * Make this an option variable one can patch. * But be warned: this must be a power of 2! */ int zstty_rbuf_size = ZSTTY_RING_SIZE; /* This should usually be 3/4 of ZSTTY_RING_SIZE */ int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE - (ZSTTY_RING_SIZE >> 2)); struct zstty_softc { struct device zst_dev; /* required first: base device */ struct tty *zst_tty; struct zs_chanstate *zst_cs; int zst_hwflags; /* see z8530var.h */ int zst_swflags; /* TIOCFLAG_SOFTCAR, ... */ /* * Printing an overrun error message often takes long enough to * cause another overrun, so we only print one per second. */ long zst_rotime; /* time of last ring overrun */ long zst_fotime; /* time of last fifo overrun */ /* * The receive ring buffer. */ int zst_rbget; /* ring buffer `get' index */ volatile int zst_rbput; /* ring buffer `put' index */ int zst_ringmask; int zst_rbhiwat; u_short *zst_rbuf; /* rr1, data pairs */ /* * The transmit byte count and address are used for pseudo-DMA * output in the hardware interrupt code. PDMA can be suspended * to get pending changes done; heldtbc is used for this. It can * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state. */ int zst_tbc; /* transmit byte count */ caddr_t zst_tba; /* transmit buffer address */ int zst_heldtbc; /* held tbc while xmission stopped */ /* Flags to communicate with zstty_softint() */ volatile char zst_rx_blocked; /* input block at ring */ volatile char zst_rx_overrun; /* ring overrun */ volatile char zst_tx_busy; /* working on an output chunk */ volatile char zst_tx_done; /* done with one output chunk */ volatile char zst_tx_stopped; /* H/W level stop (lost CTS) */ volatile char zst_st_check; /* got a status interrupt */ char pad[2]; }; /* Definition of the driver for autoconfig. */ static int zstty_match(struct device *, void *, void *); static void zstty_attach(struct device *, struct device *, void *); struct cfattach zstty_ca = { sizeof(struct zstty_softc), zstty_match, zstty_attach }; struct cfdriver zstty_cd = { NULL, "zstty", DV_TTY }; struct zsops zsops_tty; /* Routines called from other code. */ cdev_decl(zs); /* open, close, read, write, ioctl, stop, ... */ void zsstart(struct tty *); int zsparam(struct tty *, struct termios *); void zs_modem(struct zstty_softc *zst, int onoff); int zshwiflow(struct tty *, int); void zs_hwiflow(struct zstty_softc *, int); void zstty_rxint(register struct zs_chanstate *); void zstty_txint(register struct zs_chanstate *); void zstty_stint(register struct zs_chanstate *); void zstty_softint(struct zs_chanstate *); void zsoverrun(struct zstty_softc *, long *, char *); /* * zstty_match: how is this zs channel configured? */ static int zstty_match(parent, match, aux) struct device *parent; void *match, *aux; { struct cfdata *cf = match; struct zsc_attach_args *args = aux; /* Exact match is better than wildcard. */ if (cf->cf_loc[0] == args->channel) return 2; /* This driver accepts wildcard. */ if (cf->cf_loc[0] == -1) return 1; return 0; } static void zstty_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct zsc_softc *zsc = (void *) parent; struct zstty_softc *zst = (void *) self; struct zsc_attach_args *args = aux; struct zs_chanstate *cs; struct cfdata *cf; struct tty *tp; int channel, tty_unit; dev_t dev; tty_unit = zst->zst_dev.dv_unit; channel = args->channel; cs = zsc->zsc_cs[channel]; cs->cs_private = zst; cs->cs_ops = &zsops_tty; zst->zst_cs = cs; zst->zst_swflags = cf->cf_flags; /* softcar, etc. */ zst->zst_hwflags = args->hwflags; dev = makedev(zs_major, tty_unit); if (zst->zst_swflags) printf(" flags 0x%x", zst->zst_swflags); if (zst->zst_hwflags & ZS_HWFLAG_CONSOLE) printf(": console"); else { #ifdef KGDB /* * Allow kgdb to "take over" this port. If this port is * NOT the kgdb port, zs_check_kgdb() will return zero. * If it IS the kgdb port, it will print "kgdb,...\n" * and then return non-zero. */ if (zs_check_kgdb(cs, dev)) { /* * This is the kgdb port (exclusive use) * so skip the normal attach code. */ return; } #endif } printf("\n"); tp = ttymalloc(); tp->t_dev = dev; tp->t_oproc = zsstart; tp->t_param = zsparam; tp->t_hwiflow = zshwiflow; zst->zst_tty = tp; zst->zst_rbhiwat = zstty_rbuf_size; /* impossible value */ zst->zst_ringmask = zstty_rbuf_size - 1; zst->zst_rbuf = malloc(zstty_rbuf_size * sizeof(zst->zst_rbuf[0]), M_DEVBUF, M_WAITOK); /* XXX - Do we need an MD hook here? */ /* * Hardware init */ if (zst->zst_hwflags & ZS_HWFLAG_CONSOLE) { /* Call zsparam similar to open. */ struct termios t; /* Make console output work while closed. */ zst->zst_swflags |= TIOCFLAG_SOFTCAR; /* Setup the "new" parameters in t. */ bzero((void*)&t, sizeof(t)); t.c_cflag = cs->cs_defcflag; t.c_ospeed = cs->cs_defspeed; /* Enable interrupts. */ cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_SIE; /* Make sure zsparam will see changes. */ tp->t_ospeed = 0; (void) zsparam(tp, &t); } else { /* Not the console; may need reset. */ int reset, s; reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splzs(); zs_write_reg(cs, 9, reset); splx(s); } /* * Initialize state of modem control lines (DTR). * If softcar is set, turn on DTR now and leave it. * otherwise, turn off DTR now, and raise in open. * (Keeps modem from answering too early.) */ zs_modem(zst, (zst->zst_swflags & TIOCFLAG_SOFTCAR) ? 1 : 0); } /* * Return pointer to our tty. */ struct tty * zstty(dev) dev_t dev; { struct zstty_softc *zst; int unit = minor(dev); #ifdef DIAGNOSTIC if (unit >= zstty_cd.cd_ndevs) panic("zstty"); #endif zst = zstty_cd.cd_devs[unit]; return (zst->zst_tty); } /* * Open a zs serial (tty) port. */ int zsopen(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { register struct tty *tp; register struct zs_chanstate *cs; struct zstty_softc *zst; int error, s, unit; unit = minor(dev); if (unit >= zstty_cd.cd_ndevs) return (ENXIO); zst = zstty_cd.cd_devs[unit]; if (zst == NULL) return (ENXIO); tp = zst->zst_tty; cs = zst->zst_cs; /* If KGDB took the line, then tp==NULL */ if (tp == NULL) return (EBUSY); /* It's simpler to do this up here. */ if (((tp->t_state & (TS_ISOPEN | TS_XCLUDE)) == (TS_ISOPEN | TS_XCLUDE)) && (p->p_ucred->cr_uid != 0) ) { return (EBUSY); } s = spltty(); if ((tp->t_state & TS_ISOPEN) == 0) { /* First open. */ struct termios t; /* * Setup the "new" parameters in t. * Can not use tp->t because zsparam * deals only with what has changed. */ bzero((void*)&t, sizeof(t)); t.c_cflag = cs->cs_defcflag; if (zst->zst_swflags & TIOCFLAG_CLOCAL) t.c_cflag |= CLOCAL; if (zst->zst_swflags & TIOCFLAG_CRTSCTS) t.c_cflag |= CRTSCTS; if (zst->zst_swflags & TIOCFLAG_MDMBUF) t.c_cflag |= MDMBUF; t.c_ospeed = cs->cs_defspeed; /* Enable interrupts. */ cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_SIE; /* Make sure zsparam will see changes. */ tp->t_ospeed = 0; (void) zsparam(tp, &t); /* * Note: zsparam has done: cflag, ispeed, ospeed * so we just need to do: iflag, oflag, lflag, cc * For "raw" mode, just leave all zeros. */ if ((zst->zst_hwflags & ZS_HWFLAG_RAW) == 0) { tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_lflag = TTYDEF_LFLAG; ttychars(tp); } ttsetwater(tp); /* Flush any pending input. */ zst->zst_rbget = zst->zst_rbput; zs_iflush(cs); /* XXX */ /* DTR was turned on by zsparam. */ if (zst->zst_swflags & TIOCFLAG_SOFTCAR) { tp->t_state |= TS_CARR_ON; } /* XXX - The MD code could just force CLOCAL instead. */ if (zst->zst_hwflags & ZS_HWFLAG_NO_DCD) { tp->t_state |= TS_CARR_ON; } } error = 0; /* In this section, we may touch the chip. */ (void)splzs(); /* * Get initial value of RR0. This is done after we * raise DTR in case the cable loops DTR back to CTS. */ cs->cs_rr0 = zs_read_csr(cs); /* * Wait for DCD (if necessary). Note that we might * never get status interrupt if DCD is already on. */ for (;;) { /* Check the DCD bit (if we have one). */ if (cs->cs_rr0 & cs->cs_rr0_dcd) tp->t_state |= TS_CARR_ON; if ((tp->t_state & TS_CARR_ON) || (tp->t_cflag & CLOCAL) || (flags & O_NONBLOCK) ) break; /* Sleep waiting for a status interrupt. */ tp->t_state |= TS_WOPEN; error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH, ttopen, 0); if (error) { if ((tp->t_state & TS_ISOPEN) == 0) { /* Never get here with softcar */ zs_modem(zst, 0); tp->t_state &= ~TS_WOPEN; ttwakeup(tp); } break; } /* The status interrupt changed cs->cs_rr0 */ } splx(s); if (error == 0) error = linesw[tp->t_line].l_open(dev, tp); return (error); } /* * Close a zs serial port. */ int zsclose(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { struct zstty_softc *zst; register struct zs_chanstate *cs; register struct tty *tp; int hup, s; zst = zstty_cd.cd_devs[minor(dev)]; cs = zst->zst_cs; tp = zst->zst_tty; /* XXX This is for cons.c. */ if ((tp->t_state & TS_ISOPEN) == 0) return 0; (*linesw[tp->t_line].l_close)(tp, flags); /* Disable interrupts. */ s = splzs(); cs->cs_creg[1] = cs->cs_preg[1] = 0; zs_write_reg(cs, 1, cs->cs_creg[1]); splx(s); /* Maybe do "hangup" (drop DTR). */ hup = tp->t_cflag & HUPCL; if (zst->zst_swflags & TIOCFLAG_SOFTCAR) hup = 0; if (hup) { zs_modem(zst, 0); /* hold low for 1 second */ (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz); } if (cs->cs_creg[5] & ZSWR5_BREAK) { zs_break(cs, 0); } ttyclose(tp); return (0); } /* * Read/write zs serial port. */ int zsread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { register struct zstty_softc *zst; register struct tty *tp; zst = zstty_cd.cd_devs[minor(dev)]; tp = zst->zst_tty; return (linesw[tp->t_line].l_read(tp, uio, flags)); } int zswrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { register struct zstty_softc *zst; register struct tty *tp; zst = zstty_cd.cd_devs[minor(dev)]; tp = zst->zst_tty; return (linesw[tp->t_line].l_write(tp, uio, flags)); } #define TIOCFLAG_ALL (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL | \ TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF ) int zsioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; caddr_t data; int flag; struct proc *p; { register struct zstty_softc *zst; register struct zs_chanstate *cs; register struct tty *tp; register int error, tmp; zst = zstty_cd.cd_devs[minor(dev)]; cs = zst->zst_cs; tp = zst->zst_tty; error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p); if (error >= 0) return (error); error = ttioctl(tp, cmd, data, flag, p); if (error >= 0) return (error); #ifdef ZS_MD_IOCTL error = ZS_MD_IOCTL; if (error >= 0) return (error); #endif /* ZS_MD_IOCTL */ switch (cmd) { case TIOCSBRK: zs_break(cs, 1); break; case TIOCCBRK: zs_break(cs, 0); break; case TIOCGFLAGS: *(int *)data = zst->zst_swflags; break; case TIOCSFLAGS: error = suser(p, 0); if (error != 0) return (EPERM); tmp = *(int *)data; /* Check for random bits... */ if (tmp & ~TIOCFLAG_ALL) return(EINVAL); /* Silently enforce softcar on the console. */ if (zst->zst_hwflags & ZS_HWFLAG_CONSOLE) tmp |= TIOCFLAG_SOFTCAR; /* These flags take effect during open. */ zst->zst_swflags = tmp; break; case TIOCSDTR: zs_modem(zst, 1); break; case TIOCCDTR: zs_modem(zst, 0); break; case TIOCMSET: case TIOCMBIS: case TIOCMBIC: case TIOCMGET: default: return (ENOTTY); } return (0); } /* * Start or restart transmission. */ void zsstart(tp) register struct tty *tp; { register struct zstty_softc *zst; register struct zs_chanstate *cs; register int s, nch; zst = zstty_cd.cd_devs[minor(tp->t_dev)]; cs = zst->zst_cs; s = spltty(); /* * If currently active or delaying, no need to do anything. */ if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) goto out; /* * If under CRTSCTS hfc and halted, do nothing * This flag can only be set with CRTSCTS. */ if (zst->zst_tx_stopped) goto out; /* * If there are sleepers, and output has drained below low * water mark, awaken. */ if (tp->t_outq.c_cc <= tp->t_lowat) { if (tp->t_state & TS_ASLEEP) { tp->t_state &= ~TS_ASLEEP; wakeup((caddr_t)&tp->t_outq); } selwakeup(&tp->t_wsel); } nch = ndqb(&tp->t_outq, 0); /* XXX */ (void) splzs(); if (nch) { register char *p = tp->t_outq.c_cf; /* mark busy, enable tx done interrupts, & send first byte */ tp->t_state |= TS_BUSY; zst->zst_tx_busy = 1; cs->cs_preg[1] |= ZSWR1_TIE; cs->cs_creg[1] = cs->cs_preg[1]; zs_write_reg(cs, 1, cs->cs_creg[1]); zs_write_data(cs, *p); zst->zst_tba = p + 1; zst->zst_tbc = nch - 1; } else { /* * Nothing to send, turn off transmit done interrupts. * This is useful if something is doing polled output. */ cs->cs_preg[1] &= ~ZSWR1_TIE; cs->cs_creg[1] = cs->cs_preg[1]; zs_write_reg(cs, 1, cs->cs_creg[1]); } out: splx(s); } /* * Stop output, e.g., for ^S or output flush. */ int zsstop(tp, flag) struct tty *tp; int flag; { register struct zstty_softc *zst; register struct zs_chanstate *cs; register int s; zst = zstty_cd.cd_devs[minor(tp->t_dev)]; cs = zst->zst_cs; s = splzs(); if (tp->t_state & TS_BUSY) { /* * Device is transmitting; must stop it. * Also clear _heldtbc to prevent any * flow-control event from resuming. */ zst->zst_tbc = 0; zst->zst_heldtbc = 0; if ((tp->t_state & TS_TTSTOP) == 0) tp->t_state |= TS_FLUSH; } splx(s); return (0); } /* * Set ZS tty parameters from termios. * XXX - Should just copy the whole termios after * making sure all the changes could be done. */ int zsparam(tp, t) register struct tty *tp; register struct termios *t; { struct zstty_softc *zst; struct zs_chanstate *cs; int s, bps, cflag, error; u_char tmp3, tmp4, tmp5; zst = zstty_cd.cd_devs[minor(tp->t_dev)]; cs = zst->zst_cs; bps = t->c_ospeed; cflag = t->c_cflag; if (bps < 0 || (t->c_ispeed && t->c_ispeed != bps)) return (EINVAL); /* * Only whack the UART when params change. * Some callers need to clear tp->t_ospee * to make sure initialization gets done. */ if ((tp->t_ospeed == bps) && (tp->t_cflag == cflag) ) return (0); /* * Call MD functions to deal with changed * clock modes or H/W flow control modes. * The BRG divisor is set now. (reg 12,13 */ error = zs_set_speed(cs, bps); if (error) return (error); error = zs_set_modes(cs, cflag); if (error) return (error); /* OK, we are now committed to do it. */ tp->t_cflag = cflag; tp->t_ospeed = bps; tp->t_ispeed = bps; /* * Block interrupts so that state will not * be altered until we are done setting it up. * * Initial values in cs_preg are set before * our attach routine is called. The master * interrupt enable is handled by zsc.c */ s = splzs(); /* Recompute character size bits. */ tmp3 = cs->cs_preg[3] & ~ZSWR3_RXSIZE; tmp5 = cs->cs_preg[5] & ~ZSWR5_TXSIZE; switch (cflag & CSIZE) { case CS5: /* These are |= 0 but let the optimizer deal with it. */ tmp3 |= ZSWR3_RX_5; tmp5 |= ZSWR5_TX_5; break; case CS6: tmp3 |= ZSWR3_RX_6; tmp5 |= ZSWR5_TX_6; break; case CS7: tmp3 |= ZSWR3_RX_7; tmp5 |= ZSWR5_TX_7; break; case CS8: default: tmp3 |= ZSWR3_RX_8; tmp5 |= ZSWR5_TX_8; break; } /* Raise or lower DTR and RTS as appropriate. */ if (bps) { /* Raise DTR and RTS */ tmp5 |= cs->cs_wr5_dtr; } else { /* Drop DTR and RTS */ /* XXX: Should SOFTCAR prevent this? */ tmp5 &= ~(cs->cs_wr5_dtr); } cs->cs_preg[3] = tmp3; cs->cs_preg[5] = tmp5; /* * Recompute the stop bits and parity bits. Note that * zs_set_speed() may have set clock selection bits etc. * in wr4, so those must preserved. */ tmp4 = cs->cs_preg[4]; /* Recompute stop bits. */ tmp4 &= ~ZSWR4_SBMASK; tmp4 |= (cflag & CSTOPB) ? ZSWR4_TWOSB : ZSWR4_ONESB; /* Recompute parity bits. */ tmp4 &= ~ZSWR4_PARMASK; if ((cflag & PARODD) == 0) tmp4 |= ZSWR4_EVENP; if (cflag & PARENB) tmp4 |= ZSWR4_PARENB; cs->cs_preg[4] = tmp4; /* The MD function zs_set_modes handled CRTSCTS, etc. */ /* * If nothing is being transmitted, set up new current values, * else mark them as pending. */ if (cs->cs_heldchange == 0) { if (zst->zst_tx_busy) { zst->zst_heldtbc = zst->zst_tbc; zst->zst_tbc = 0; cs->cs_heldchange = 0xFFFF; } else { zs_loadchannelregs(cs); } } splx(s); /* If we can throttle input, enable "high water" detection. */ if (cflag & CHWFLOW) { zst->zst_rbhiwat = zstty_rbuf_hiwat; } else { /* This impossible value prevents a "high water" trigger. */ zst->zst_rbhiwat = zstty_rbuf_size; /* XXX: Lost hwi ability, so unblock and restart. */ zst->zst_rx_blocked = 0; if (zst->zst_tx_stopped) { zst->zst_tx_stopped = 0; zsstart(tp); } } return (0); } /* * Raise or lower modem control (DTR/RTS) signals. If a character is * in transmission, the change is deferred. */ void zs_modem(zst, onoff) struct zstty_softc *zst; int onoff; { struct zs_chanstate *cs; int s, clr, set; cs = zst->zst_cs; if (cs->cs_wr5_dtr == 0) return; if (onoff) { clr = 0; set = cs->cs_wr5_dtr; } else { clr = cs->cs_wr5_dtr; set = 0; } s = splzs(); cs->cs_preg[5] &= ~clr; cs->cs_preg[5] |= set; if (cs->cs_heldchange == 0) { if (zst->zst_tx_busy) { zst->zst_heldtbc = zst->zst_tbc; zst->zst_tbc = 0; cs->cs_heldchange = (1<<5); } else { cs->cs_creg[5] = cs->cs_preg[5]; zs_write_reg(cs, 5, cs->cs_creg[5]); } } splx(s); } /* * Try to block or unblock input using hardware flow-control. * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and * if this function returns non-zero, the TS_TBLOCK flag will * be set or cleared according to the "stop" arg passed. */ int zshwiflow(tp, stop) struct tty *tp; int stop; { register struct zstty_softc *zst; register struct zs_chanstate *cs; int s; zst = zstty_cd.cd_devs[minor(tp->t_dev)]; cs = zst->zst_cs; /* Can not do this without some bit assigned as RTS. */ if (cs->cs_wr5_rts == 0) return (0); s = splzs(); if (stop) { /* * The tty layer is asking us to block input. * If we already did it, just return TRUE. */ if (zst->zst_rx_blocked) goto out; zst->zst_rx_blocked = 1; } else { /* * The tty layer is asking us to resume input. * The input ring is always empty by now. */ zst->zst_rx_blocked = 0; } zs_hwiflow(zst, stop); out: splx(s); return 1; } /* * Internal version of zshwiflow * called at splzs */ void zs_hwiflow(zst, stop) register struct zstty_softc *zst; int stop; { register struct zs_chanstate *cs; register int clr, set; cs = zst->zst_cs; if (cs->cs_wr5_rts == 0) return; if (stop) { /* Block input (Lower RTS) */ clr = cs->cs_wr5_rts; set = 0; } else { /* Unblock input (Raise RTS) */ clr = 0; set = cs->cs_wr5_rts; } cs->cs_preg[5] &= ~clr; cs->cs_preg[5] |= set; if (cs->cs_heldchange == 0) { if (zst->zst_tx_busy) { zst->zst_heldtbc = zst->zst_tbc; zst->zst_tbc = 0; cs->cs_heldchange = (1<<5); } else { cs->cs_creg[5] = cs->cs_preg[5]; zs_write_reg(cs, 5, cs->cs_creg[5]); } } } /**************************************************************** * Interface to the lower layer (zscc) ****************************************************************/ void zstty_rxint(struct zs_chanstate *); void zstty_txint(struct zs_chanstate *); void zstty_stint(struct zs_chanstate *); /* * receiver ready interrupt. * called at splzs */ void zstty_rxint(cs) register struct zs_chanstate *cs; { register struct zstty_softc *zst; register int cc, put, put_next, ringmask; register u_char c, rr0, rr1; register u_short ch_rr1; zst = cs->cs_private; put = zst->zst_rbput; ringmask = zst->zst_ringmask; nextchar: /* * First read the status, because reading the received char * destroys the status of this char. */ rr1 = zs_read_reg(cs, 1); c = zs_read_data(cs); ch_rr1 = (c << 8) | rr1; if (ch_rr1 & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) { /* Clear the receive error. */ zs_write_csr(cs, ZSWR0_RESET_ERRORS); } /* XXX: Check for the stop character? */ zst->zst_rbuf[put] = ch_rr1; put_next = (put + 1) & ringmask; /* Would overrun if increment makes (put==get). */ if (put_next == zst->zst_rbget) { zst->zst_rx_overrun = 1; } else { /* OK, really increment. */ put = put_next; } /* Keep reading until the FIFO is empty. */ rr0 = zs_read_csr(cs); if (rr0 & ZSRR0_RX_READY) goto nextchar; /* Done reading. */ zst->zst_rbput = put; /* * If ring is getting too full, try to block input. */ cc = put - zst->zst_rbget; if (cc < 0) cc += zstty_rbuf_size; if ((cc > zst->zst_rbhiwat) && (zst->zst_rx_blocked == 0)) { zst->zst_rx_blocked = 1; zs_hwiflow(zst, 1); } /* Ask for softint() call. */ cs->cs_softreq = 1; } /* * transmitter ready interrupt. (splzs) */ void zstty_txint(cs) register struct zs_chanstate *cs; { register struct zstty_softc *zst; register int count; zst = cs->cs_private; /* * If we suspended output for a "held" change, * then handle that now and resume. * Do flow-control changes ASAP. * When the only change is for flow control, * avoid hitting other registers, because that * often makes the stupid zs drop input... */ if (cs->cs_heldchange) { if (cs->cs_heldchange == (1<<5)) { /* Avoid whacking the chip... */ cs->cs_creg[5] = cs->cs_preg[5]; zs_write_reg(cs, 5, cs->cs_creg[5]); } else zs_loadchannelregs(cs); cs->cs_heldchange = 0; count = zst->zst_heldtbc; } else count = zst->zst_tbc; /* * If our transmit buffer still has data, * just send the next character. */ if (count > 0) { /* Send the next char. */ zst->zst_tbc = --count; zs_write_data(cs, *zst->zst_tba); zst->zst_tba++; return; } zs_write_csr(cs, ZSWR0_RESET_TXINT); /* Ask the softint routine for more output. */ zst->zst_tx_busy = 0; zst->zst_tx_done = 1; cs->cs_softreq = 1; } /* * status change interrupt. (splzs) */ void zstty_stint(cs) register struct zs_chanstate *cs; { register struct zstty_softc *zst; register u_char rr0, delta; zst = cs->cs_private; rr0 = zs_read_csr(cs); zs_write_csr(cs, ZSWR0_RESET_STATUS); /* * Check here for console break, so that we can abort * even when interrupts are locking up the machine. */ if ((rr0 & ZSRR0_BREAK) && (zst->zst_hwflags & ZS_HWFLAG_CONSOLE)) { zs_abort(cs); return; } /* * We have to accumulate status line changes here. * Otherwise, if we get multiple status interrupts * before the softint runs, we could fail to notice * some status line changes in the softint routine. * Fix from Bill Studenmund, October 1996. */ delta = (cs->cs_rr0 ^ rr0); cs->cs_rr0_delta |= delta; cs->cs_rr0 = rr0; /* * Need to handle CTS output flow control here. * Output remains stopped as long as either the * zst_tx_stopped or TS_TTSTOP flag is set. * Never restart here; the softint routine will * do that after things are ready to move. */ if ((delta & cs->cs_rr0_cts) && ((rr0 & cs->cs_rr0_cts) == 0)) { zst->zst_tbc = 0; zst->zst_heldtbc = 0; zst->zst_tx_stopped = 1; } zst->zst_st_check = 1; /* Ask for softint() call. */ cs->cs_softreq = 1; } /* * Print out a ring or fifo overrun error message. */ void zsoverrun(zst, ptime, what) struct zstty_softc *zst; long *ptime; char *what; { if (*ptime != time_second) { *ptime = time_second; log(LOG_WARNING, "%s: %s overrun\n", zst->zst_dev.dv_xname, what); } } /* * Software interrupt. Called at zssoft * * The main job to be done here is to empty the input ring * by passing its contents up to the tty layer. The ring is * always emptied during this operation, therefore the ring * must not be larger than the space after "high water" in * the tty layer, or the tty layer might drop our input. * * Note: an "input blockage" condition is assumed to exist if * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set. */ void zstty_softint(cs) struct zs_chanstate *cs; { register struct zstty_softc *zst; register struct linesw *line; register struct tty *tp; register int get, c, s; int ringmask, overrun; register u_short ring_data; register u_char rr0, delta; zst = cs->cs_private; tp = zst->zst_tty; line = &linesw[tp->t_line]; ringmask = zst->zst_ringmask; overrun = 0; /* * Raise to tty priority while servicing the ring. */ s = spltty(); if (zst->zst_rx_overrun) { zst->zst_rx_overrun = 0; zsoverrun(zst, &zst->zst_rotime, "ring"); } /* * Copy data from the receive ring into the tty layer. */ get = zst->zst_rbget; while (get != zst->zst_rbput) { ring_data = zst->zst_rbuf[get]; get = (get + 1) & ringmask; if (ring_data & ZSRR1_DO) overrun++; /* low byte of ring_data is rr1 */ c = (ring_data >> 8) & 0xff; if (ring_data & ZSRR1_FE) c |= TTY_FE; if (ring_data & ZSRR1_PE) c |= TTY_PE; line->l_rint(c, tp); } zst->zst_rbget = get; /* * If the overrun flag is set now, it was set while * copying char/status pairs from the ring, which * means this was a hardware (fifo) overrun. */ if (overrun) { zsoverrun(zst, &zst->zst_fotime, "fifo"); } /* * We have emptied the input ring. Maybe unblock input. * Note: an "input blockage" condition is assumed to exist * when EITHER zst_rx_blocked or the TS_TBLOCK flag is set, * so unblock here ONLY if TS_TBLOCK has not been set. */ if (zst->zst_rx_blocked && ((tp->t_state & TS_TBLOCK) == 0)) { (void) splzs(); zst->zst_rx_blocked = 0; zs_hwiflow(zst, 0); /* unblock input */ (void) spltty(); } /* * Do any deferred work for status interrupts. * The rr0 was saved in the h/w interrupt to * avoid another splzs in here. */ if (zst->zst_st_check) { zst->zst_st_check = 0; (void) splzs(); rr0 = cs->cs_rr0; delta = cs->cs_rr0_delta; cs->cs_rr0_delta = 0; (void) spltty(); /* Note, the MD code may use DCD for something else. */ if (delta & cs->cs_rr0_dcd) { c = ((rr0 & cs->cs_rr0_dcd) != 0); if (line->l_modem(tp, c) == 0) zs_modem(zst, c); } /* Note, cs_rr0_cts is set only with H/W flow control. */ if (delta & cs->cs_rr0_cts) { /* * Only do restart here. Stop is handled * at the h/w interrupt level. */ if (rr0 & cs->cs_rr0_cts) { zst->zst_tx_stopped = 0; /* tp->t_state &= ~TS_TTSTOP; */ (*line->l_start)(tp); } } } if (zst->zst_tx_done) { zst->zst_tx_done = 0; tp->t_state &= ~TS_BUSY; if (tp->t_state & TS_FLUSH) tp->t_state &= ~TS_FLUSH; else ndflush(&tp->t_outq, zst->zst_tba - (caddr_t) tp->t_outq.c_cf); line->l_start(tp); } splx(s); } struct zsops zsops_tty = { zstty_rxint, /* receive char available */ zstty_stint, /* external/status */ zstty_txint, /* xmit buffer empty */ zstty_softint, /* process software interrupt */ };