/*	$OpenBSD: adb.c,v 1.27 2007/04/23 16:27:20 deraadt Exp $	*/
/*	$NetBSD: adb.c,v 1.6 1999/08/16 06:28:09 tsubai Exp $	*/
/*	$NetBSD: adb_direct.c,v 1.14 2000/06/08 22:10:45 tsubai Exp $	*/

/*
 * Copyright (C) 1996, 1997 John P. Wittkoski
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *  This product includes software developed by John P. Wittkoski.
 * 4. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*-
 * Copyright (C) 1994	Bradley A. Grantham
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by Bradley A. Grantham.
 * 4. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * This code is rather messy, but I don't have time right now
 * to clean it up as much as I would like.
 * But it works, so I'm happy. :-) jpw
 */

/*
 * TO DO:
 *  - We could reduce the time spent in the adb_intr_* routines
 *    by having them save the incoming and outgoing data directly
 *    in the adbInbound and adbOutbound queues, as it would reduce
 *    the number of times we need to copy the data around. It
 *    would also make the code more readable and easier to follow.
 *  - (Related to above) Use the header part of adbCommand to
 *    reduce the number of copies we have to do of the data.
 *  - (Related to above) Actually implement the adbOutbound queue.
 *    This is fairly easy once you switch all the intr routines
 *    over to using adbCommand structs directly.
 *  - There is a bug in the state machine of adb_intr_cuda
 *    code that causes hangs, especially on 030 machines, probably
 *    because of some timing issues. Because I have been unable to
 *    determine the exact cause of this bug, I used the timeout function
 *    to check for and recover from this condition. If anyone finds
 *    the actual cause of this bug, the calls to timeout and the
 *    adb_cuda_tickle routine can be removed.
 */

#include <sys/param.h>
#include <sys/device.h>
#include <sys/fcntl.h>
#include <sys/poll.h>
#include <sys/selinfo.h>
#include <sys/proc.h>
#include <sys/signalvar.h>
#include <sys/timeout.h>
#include <sys/systm.h>

#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <dev/ofw/openfirm.h>

#include <dev/adb/adb.h>
#include <macppc/dev/adbvar.h>
#include <macppc/dev/pm_direct.h>
#include <macppc/dev/viareg.h>

#include "apm.h"

#define printf_intr printf

#ifdef DEBUG
#ifndef ADB_DEBUG
#define ADB_DEBUG
#endif
#endif

int	adb_polling;		/* Are we polling?  (Debugger mode) */
#ifdef ADB_DEBUG
int	adb_debug;		/* Output debugging messages */
#endif /* ADB_DEBUG */

/* some misc. leftovers */
#define vPB		0x0000
#define vPB3		0x08
#define vPB4		0x10
#define vPB5		0x20
#define vSR_INT		0x04
#define vSR_OUT		0x10

/* the type of ADB action that we are currently performing */
#define ADB_ACTION_NOTREADY	0x1	/* has not been initialized yet */
#define ADB_ACTION_IDLE		0x2	/* the bus is currently idle */
#define ADB_ACTION_OUT		0x3	/* sending out a command */
#define ADB_ACTION_IN		0x4	/* receiving data */

/*
 * Shortcuts for setting or testing the VIA bit states.
 * Not all shortcuts are used for every type of ADB hardware.
 */
#define ADB_SET_STATE_IDLE_CUDA()   via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
#define ADB_SET_STATE_TIP()	    via_reg_and(VIA1, vBufB, ~vPB5)
#define ADB_CLR_STATE_TIP() 	    via_reg_or(VIA1, vBufB, vPB5)
#define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
#define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
#define ADB_SET_SR_INPUT()	    via_reg_and(VIA1, vACR, ~vSR_OUT)
#define ADB_SET_SR_OUTPUT()	    via_reg_or(VIA1, vACR, vSR_OUT)
#define ADB_SR()		    read_via_reg(VIA1, vSR)
#define ADB_VIA_INTR_ENABLE()	    write_via_reg(VIA1, vIER, 0x84)
#define ADB_VIA_INTR_DISABLE()	    write_via_reg(VIA1, vIER, 0x04)
#define ADB_VIA_CLR_INTR()	    write_via_reg(VIA1, vIFR, 0x04)
#define ADB_INTR_IS_OFF		   (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
#define ADB_INTR_IS_ON		   (0 == (read_via_reg(VIA1, vBufB) & vPB3))
#define ADB_SR_INTR_IS_ON	   (vSR_INT == (read_via_reg(VIA1, \
						vIFR) & vSR_INT))

/*
 * This is the delay that is required (in uS) between certain
 * ADB transactions. The actual timing delay for for each uS is
 * calculated at boot time to account for differences in machine speed.
 */
#define ADB_DELAY	150

/*
 * Maximum ADB message length; includes space for data, result, and
 * device code - plus a little for safety.
 */
#define ADB_MAX_MSG_LENGTH	16
#define ADB_MAX_HDR_LENGTH	8

#define ADB_QUEUE		32
#define ADB_TICKLE_TICKS	4

/*
 * A structure for storing information about each ADB device.
 */
struct ADBDevEntry {
	void	(*ServiceRtPtr)(void);
	void	*DataAreaAddr;
	int	devType;
	int	origAddr;
	int	currentAddr;
};

/*
 * Used to hold ADB commands that are waiting to be sent out.
 */
struct adbCmdHoldEntry {
	u_char	outBuf[ADB_MAX_MSG_LENGTH];	/* our message */
	u_char	*saveBuf;	/* buffer to know where to save result */
	u_char	*compRout;	/* completion routine pointer */
	u_char	*data;		/* completion routine data pointer */
};

/*
 * Eventually used for two separate queues, the queue between
 * the upper and lower halves, and the outgoing packet queue.
 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
 */
struct adbCommand {
	u_char	header[ADB_MAX_HDR_LENGTH];	/* not used yet */
	u_char	data[ADB_MAX_MSG_LENGTH];	/* packet data only */
	u_char	*saveBuf;	/* where to save result */
	u_char	*compRout;	/* completion routine pointer */
	u_char	*compData;	/* completion routine data pointer */
	u_int	cmd;		/* the original command for this data */
	u_int	unsol;		/* 1 if packet was unsolicited */
	u_int	ack_only;	/* 1 for no special processing */
};

/*
 * A few variables that we need and their initial values.
 */
int	adbHardware = ADB_HW_UNKNOWN;
int	adbActionState = ADB_ACTION_NOTREADY;
int	adbWaiting;		/* waiting for return data from the device */
int	adbWriteDelay;		/* working on (or waiting to do) a write */
int	adbSoftPower;		/* machine supports soft power */

int	adbWaitingCmd;		/* ADB command we are waiting for */
u_char	*adbBuffer;		/* pointer to user data area */
void	*adbCompRout;		/* pointer to the completion routine */
void	*adbCompData;		/* pointer to the completion routine data */
int	adbStarting = 1;	/* doing adb_reinit so do polling differently */

u_char	adbInputBuffer[ADB_MAX_MSG_LENGTH];	/* data input buffer */
u_char	adbOutputBuffer[ADB_MAX_MSG_LENGTH];	/* data output buffer */
struct	adbCmdHoldEntry adbOutQueue;		/* our 1 entry output queue */

int	adbSentChars;		/* how many characters we have sent */

struct	ADBDevEntry ADBDevTable[16];	/* our ADB device table */
int	ADBNumDevices;		/* num. of ADB devices found with adb_reinit */

struct	adbCommand adbInbound[ADB_QUEUE];	/* incoming queue */
int	adbInCount;			/* how many packets in in queue */
int	adbInHead;			/* head of in queue */
int	adbInTail;			/* tail of in queue */
struct	adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
int	adbOutCount;			/* how many packets in out queue */
int	adbOutHead;			/* head of out queue */
int	adbOutTail;			/* tail of out queue */

int	tickle_count;			/* how many tickles seen for this packet? */
int	tickle_serial;			/* the last packet tickled */
int	adb_cuda_serial;		/* the current packet */
struct	timeout adb_cuda_timeout;
struct	timeout adb_softintr_timeout;
int	adbempty;			/* nonzero if no adb devices */

volatile u_char *Via1Base;

/*
 * The following are private routines.
 */
#ifdef ADB_DEBUG
void	print_single(u_char *);
#endif
void	adb_intr_cuda(void);
void	adb_soft_intr(void);
int	send_adb_cuda(u_char *, u_char *, void *, void *, int);
void	adb_cuda_tickle(void);
void	adb_pass_up(struct adbCommand *);
void	adb_op_comprout(caddr_t, caddr_t, int);
void	adb_reinit(void);
int	count_adbs(void);
int	get_ind_adb_info(ADBDataBlock *, int);
int	get_adb_info(ADBDataBlock *, int);
void	adb_setup_hw_type(void);
int	adb_op(Ptr, Ptr, Ptr, short);
void	adb_hw_setup(void);
int	adb_cmd_result(u_char *);
void	setsoftadb(void);

int	adb_intr(void *arg);
void	adb_cuda_autopoll(void);
void 	adb_cuda_fileserver_mode(void);

#ifdef ADB_DEBUG
/*
 * print_single
 * Diagnostic display routine. Displays the hex values of the
 * specified elements of the u_char. The length of the "string"
 * is in [0].
 */
void
print_single(str)
	u_char *str;
{
	int x;

	if (str == NULL) {
		printf_intr("no data - null pointer\n");
		return;
	}
	if (*str == '\0') {
		printf_intr("nothing returned\n");
		return;
	}
	if (*str > 20) {
		printf_intr("ADB: ACK > 20 no way!\n");
		*str = 20;
	}
	printf_intr("(length=0x%x):", *str);
	for (x = 1; x <= *str; x++)
		printf_intr("  0x%02x", str[x]);
	printf_intr("\n");
}
#endif

void
adb_cuda_tickle(void)
{
	volatile int s;

	if (adbActionState == ADB_ACTION_IN) {
		if (tickle_serial == adb_cuda_serial) {
			if (++tickle_count > 0) {
				s = splhigh();
				adbActionState = ADB_ACTION_IDLE;
				adbInputBuffer[0] = 0;
				ADB_SET_STATE_IDLE_CUDA();
				splx(s);
			}
		} else {
			tickle_serial = adb_cuda_serial;
			tickle_count = 0;
		}
	} else {
		tickle_serial = adb_cuda_serial;
		tickle_count = 0;
	}

	timeout_add(&adb_cuda_timeout, ADB_TICKLE_TICKS);
}

/*
 * called when when an adb interrupt happens
 *
 * Cuda version of adb_intr
 * TO DO: do we want to add some calls to intr_dispatch() here to
 * grab serial interrupts?
 */
void
adb_intr_cuda(void)
{
	volatile int i, ending;
	volatile unsigned int s;
	struct adbCommand packet;

	s = splhigh();		/* can't be too careful - might be called */
				/* from a routine, NOT an interrupt */

	ADB_VIA_CLR_INTR();	/* clear interrupt */
	ADB_VIA_INTR_DISABLE();	/* disable ADB interrupt on IIs. */

switch_start:
	switch (adbActionState) {
	case ADB_ACTION_IDLE:
		/*
		 * This is an unexpected packet, so grab the first (dummy)
		 * byte, set up the proper vars, and tell the chip we are
		 * starting to receive the packet by setting the TIP bit.
		 */
		adbInputBuffer[1] = ADB_SR();
		adb_cuda_serial++;
		if (ADB_INTR_IS_OFF)	/* must have been a fake start */
			break;

		ADB_SET_SR_INPUT();
		ADB_SET_STATE_TIP();

		adbInputBuffer[0] = 1;
		adbActionState = ADB_ACTION_IN;
#ifdef ADB_DEBUG
		if (adb_debug)
			printf_intr("idle 0x%02x ", adbInputBuffer[1]);
#endif
		break;

	case ADB_ACTION_IN:
		adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
		/* intr off means this is the last byte (end of frame) */
		if (ADB_INTR_IS_OFF)
			ending = 1;
		else
			ending = 0;

		if (1 == ending) {	/* end of message? */
#ifdef ADB_DEBUG
			if (adb_debug) {
				printf_intr("in end 0x%02x ",
				    adbInputBuffer[adbInputBuffer[0]]);
				print_single(adbInputBuffer);
			}
#endif

			/*
			 * Are we waiting AND does this packet match what we
			 * are waiting for AND is it coming from either the
			 * ADB or RTC/PRAM sub-device? This section _should_
			 * recognize all ADB and RTC/PRAM type commands, but
			 * there may be more... NOTE: commands are always at
			 * [4], even for RTC/PRAM commands.
			 */
			/* set up data for adb_pass_up */
			memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);

			if ((adbWaiting == 1) &&
			    (adbInputBuffer[4] == adbWaitingCmd) &&
			    ((adbInputBuffer[2] == 0x00) ||
			    (adbInputBuffer[2] == 0x01))) {
				packet.saveBuf = adbBuffer;
				packet.compRout = adbCompRout;
				packet.compData = adbCompData;
				packet.unsol = 0;
				packet.ack_only = 0;
				adb_pass_up(&packet);

				adbWaitingCmd = 0;	/* reset "waiting" vars */
				adbWaiting = 0;
				adbBuffer = NULL;
				adbCompRout = NULL;
				adbCompData = NULL;
			} else {
				packet.unsol = 1;
				packet.ack_only = 0;
				adb_pass_up(&packet);
			}


			/* reset vars and signal the end of this frame */
			adbActionState = ADB_ACTION_IDLE;
			adbInputBuffer[0] = 0;
			ADB_SET_STATE_IDLE_CUDA();
			/*ADB_SET_SR_INPUT();*/

			/*
			 * If there is something waiting to be sent out,
			 * the set everything up and send the first byte.
			 */
			if (adbWriteDelay == 1) {
				delay(ADB_DELAY);	/* required */
				adbSentChars = 0;
				adbActionState = ADB_ACTION_OUT;
				/*
				 * If the interrupt is on, we were too slow
				 * and the chip has already started to send
				 * something to us, so back out of the write
				 * and start a read cycle.
				 */
				if (ADB_INTR_IS_ON) {
					ADB_SET_SR_INPUT();
					ADB_SET_STATE_IDLE_CUDA();
					adbSentChars = 0;
					adbActionState = ADB_ACTION_IDLE;
					adbInputBuffer[0] = 0;
					break;
				}
				/*
				 * If we got here, it's ok to start sending
				 * so load the first byte and tell the chip
				 * we want to send.
				 */
				ADB_SET_STATE_TIP();
				ADB_SET_SR_OUTPUT();
				write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
			}
		} else {
			ADB_TOGGLE_STATE_ACK_CUDA();
#ifdef ADB_DEBUG
			if (adb_debug)
				printf_intr("in 0x%02x ",
				    adbInputBuffer[adbInputBuffer[0]]);
#endif
		}
		break;

	case ADB_ACTION_OUT:
		i = ADB_SR();	/* reset SR-intr in IFR */
#ifdef ADB_DEBUG
		if (adb_debug)
			printf_intr("intr out 0x%02x ", i);
#endif

		adbSentChars++;
		if (ADB_INTR_IS_ON) {	/* ADB intr low during write */
#ifdef ADB_DEBUG
			if (adb_debug)
				printf_intr("intr was on ");
#endif
			ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
			ADB_SET_STATE_IDLE_CUDA();
			adbSentChars = 0;	/* must start all over */
			adbActionState = ADB_ACTION_IDLE;	/* new state */
			adbInputBuffer[0] = 0;
			adbWriteDelay = 1;	/* must retry when done with
						 * read */
			delay(ADB_DELAY);
			goto switch_start;	/* process next state right
						 * now */
			break;
		}
		if (adbOutputBuffer[0] == adbSentChars) {	/* check for done */
			if (0 == adb_cmd_result(adbOutputBuffer)) {	/* do we expect data
									 * back? */
				adbWaiting = 1;	/* signal waiting for return */
				adbWaitingCmd = adbOutputBuffer[2];	/* save waiting command */
			} else {	/* no talk, so done */
				/* set up stuff for adb_pass_up */
				memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
				packet.saveBuf = adbBuffer;
				packet.compRout = adbCompRout;
				packet.compData = adbCompData;
				packet.cmd = adbWaitingCmd;
				packet.unsol = 0;
				packet.ack_only = 1;
				adb_pass_up(&packet);

				/* reset "waiting" vars, just in case */
				adbWaitingCmd = 0;
				adbBuffer = NULL;
				adbCompRout = NULL;
				adbCompData = NULL;
			}

			adbWriteDelay = 0;	/* done writing */
			adbActionState = ADB_ACTION_IDLE;	/* signal bus is idle */
			ADB_SET_SR_INPUT();
			ADB_SET_STATE_IDLE_CUDA();
#ifdef ADB_DEBUG
			if (adb_debug)
				printf_intr("write done ");
#endif
		} else {
			write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);	/* send next byte */
			ADB_TOGGLE_STATE_ACK_CUDA();	/* signal byte ready to
							 * shift */
#ifdef ADB_DEBUG
			if (adb_debug)
				printf_intr("toggle ");
#endif
		}
		break;

	case ADB_ACTION_NOTREADY:
#ifdef ADB_DEBUG
		if (adb_debug)
			printf_intr("adb: not yet initialized\n");
#endif
		break;

	default:
		;
#ifdef ADB_DEBUG
		if (adb_debug)
			printf_intr("intr: unknown ADB state\n");
#endif
	}

	ADB_VIA_INTR_ENABLE();	/* enable ADB interrupt on IIs. */

	splx(s);		/* restore */
}


int
send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
	command)
{
	int s, len;

#ifdef ADB_DEBUG
	if (adb_debug)
		printf_intr("SEND\n");
#endif

	if (adbActionState == ADB_ACTION_NOTREADY)
		return 1;

	/* Don't interrupt while we are messing with the ADB */
	s = splhigh();

	if ((adbActionState == ADB_ACTION_IDLE) &&	/* ADB available? */
	    (ADB_INTR_IS_OFF)) {	/* and no incoming interrupt? */
	} else
		if (adbWriteDelay == 0)	/* it's busy, but is anything waiting? */
			adbWriteDelay = 1;	/* if no, then we'll "queue"
						 * it up */
		else {
			splx(s);
			return 1;	/* really busy! */
		}

#ifdef ADB_DEBUG
	if (adb_debug)
		printf_intr("QUEUE\n");
#endif
	if ((long)in == (long)0) {	/* need to convert? */
		if ((command & 0x0c) == 0x08)	/* copy addl data ONLY if
						 * doing a listen! */
			len = buffer[0];	/* length of additional data */
		else
			len = 0;/* no additional data */

		adbOutputBuffer[0] = 2 + len;	/* dev. type + command + addl.
						 * data */
		adbOutputBuffer[1] = 0x00;	/* mark as an ADB command */
		adbOutputBuffer[2] = (u_char)command;	/* load command */

		/* copy additional output data, if any */
		memcpy(adbOutputBuffer + 3, buffer + 1, len);
	} else
		/* if data ready, just copy over */
		memcpy(adbOutputBuffer, in, in[0] + 2);

	adbSentChars = 0;	/* nothing sent yet */
	adbBuffer = buffer;	/* save buffer to know where to save result */
	adbCompRout = compRout;	/* save completion routine pointer */
	adbCompData = data;	/* save completion routine data pointer */
	adbWaitingCmd = adbOutputBuffer[2];	/* save wait command */

	if (adbWriteDelay != 1) {	/* start command now? */
#ifdef ADB_DEBUG
		if (adb_debug)
			printf_intr("out start NOW");
#endif
		delay(ADB_DELAY);
		adbActionState = ADB_ACTION_OUT;	/* set next state */
		ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
		write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);	/* load byte for output */
		ADB_SET_STATE_ACKOFF_CUDA();
		ADB_SET_STATE_TIP();	/* tell ADB that we want to send */
	}
	adbWriteDelay = 1;	/* something in the write "queue" */

	splx(s);

	if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
		/* poll until byte done */
		while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
		    || (adbWaiting == 1))
			if (ADB_SR_INTR_IS_ON) {	/* wait for "interrupt" */
				adb_intr_cuda();	/* process it */
				if (cold)
					delay(ADB_DELAY);
				adb_soft_intr();
			}

	return 0;
}

/*
 * Called when when an adb interrupt happens.
 * This routine simply transfers control over to the appropriate
 * code for the machine we are running on.
 */
int
adb_intr(void *arg)
{
	switch (adbHardware) {
	case ADB_HW_PMU:
		pm_intr();
		break;

	case ADB_HW_CUDA:
		adb_intr_cuda();
		break;
	}
	return 1;
}


/*
 * adb_pass_up is called by the interrupt-time routines.
 * It takes the raw packet data that was received from the
 * device and puts it into the queue that the upper half
 * processes. It then signals for a soft ADB interrupt which
 * will eventually call the upper half routine (adb_soft_intr).
 *
 * If in->unsol is 0, then this is either the notification
 * that the packet was sent (on a LISTEN, for example), or the
 * response from the device (on a TALK). The completion routine
 * is called only if the user specified one.
 *
 * If in->unsol is 1, then this packet was unsolicited and
 * so we look up the device in the ADB device table to determine
 * what its default service routine is.
 *
 * If in->ack_only is 1, then we really only need to call
 * the completion routine, so don't do any other stuff.
 *
 * Note that in->data contains the packet header AND data,
 * while adbInbound[]->data contains ONLY data.
 *
 * Note: Called only at interrupt time. Assumes this.
 */
void
adb_pass_up(struct adbCommand *in)
{
	int start = 0, len = 0, cmd = 0;
	ADBDataBlock block;

	if (adbInCount >= ADB_QUEUE) {
#ifdef ADB_DEBUG
		if (adb_debug)
			printf_intr("adb: ring buffer overflow\n");
#endif
		return;
	}

	if (in->ack_only) {
		len = in->data[0];
		cmd = in->cmd;
		start = 0;
	} else {
		switch (adbHardware) {
		case ADB_HW_CUDA:
			/* If it's unsolicited, accept only ADB data for now */
			if (in->unsol)
				if (0 != in->data[2])
					return;
			cmd = in->data[4];
			if (in->data[0] < 5)
				len = 0;
			else
				len = in->data[0]-4;
			start = 4;
			break;

		case ADB_HW_PMU:
			cmd = in->data[1];
			if (in->data[0] < 2)
				len = 0;
			else
				len = in->data[0]-1;
			start = 1;
			break;

		case ADB_HW_UNKNOWN:
			return;
		}

		/* Make sure there is a valid device entry for this device */
		if (in->unsol) {
			/* ignore unsolicited data during adbreinit */
			if (adbStarting)
				return;
			/* get device's comp. routine and data area */
			if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
				return;
		}
	}

	/*
 	 * If this is an unsolicited packet, we need to fill in
 	 * some info so adb_soft_intr can process this packet
 	 * properly. If it's not unsolicited, then use what
 	 * the caller sent us.
 	 */
	if (in->unsol) {
		adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
		adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
		adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
	} else {
		adbInbound[adbInTail].compRout = (void *)in->compRout;
		adbInbound[adbInTail].compData = (void *)in->compData;
		adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
	}

#ifdef ADB_DEBUG
	if (adb_debug && in->data[1] == 2)
		printf_intr("adb: caught error\n");
#endif

	/* copy the packet data over */
	/*
	 * TO DO: If the *_intr routines fed their incoming data
	 * directly into an adbCommand struct, which is passed to
	 * this routine, then we could eliminate this copy.
	 */
	memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
	adbInbound[adbInTail].data[0] = len;
	adbInbound[adbInTail].cmd = cmd;

	adbInCount++;
	if (++adbInTail >= ADB_QUEUE)
		adbInTail = 0;

	/*
	 * If the debugger is running, call upper half manually.
	 * Otherwise, trigger a soft interrupt to handle the rest later.
	 */
	if (adb_polling)
		adb_soft_intr();
	else
		setsoftadb();
}


/*
 * Called to process the packets after they have been
 * placed in the incoming queue.
 *
 */
void
adb_soft_intr(void)
{
	int s;
	int cmd = 0;
	u_char *buffer;
	u_char *comprout;
	u_char *compdata;

/*delay(2*ADB_DELAY);*/

	while (adbInCount) {
#ifdef ADB_DEBUG
		if (adb_debug & 0x80)
			printf_intr("%x %x %x ",
			    adbInCount, adbInHead, adbInTail);
#endif
		/* get the data we need from the queue */
		buffer = adbInbound[adbInHead].saveBuf;
		comprout = adbInbound[adbInHead].compRout;
		compdata = adbInbound[adbInHead].compData;
		cmd = adbInbound[adbInHead].cmd;

		/* copy over data to data area if it's valid */
		/*
		 * Note that for unsol packets we don't want to copy the
		 * data anywhere, so buffer was already set to 0.
		 * For ack_only buffer was set to 0, so don't copy.
		 */
		if (buffer)
			memcpy(buffer, adbInbound[adbInHead].data,
			    adbInbound[adbInHead].data[0] + 1);

#ifdef ADB_DEBUG
			if (adb_debug & 0x80) {
				printf_intr("%p %p %p %x ",
				    buffer, comprout, compdata, (short)cmd);
				printf_intr("buf: ");
				print_single(adbInbound[adbInHead].data);
			}
#endif
		/*
		 * Remove the packet from the queue before calling
                 * the completion routine, so that the completion
                 * routine can reentrantly process the queue.  For
                 * example, this happens when polling is turned on
                 * by entering the debuger by keystroke.
                 */
		s = splhigh();
		adbInCount--;
		if (++adbInHead >= ADB_QUEUE)
			adbInHead = 0;
		splx(s);

		/* call default completion routine if it's valid */
		if (comprout) {
			((int (*)(u_char *, u_char *, int)) comprout)
			    (buffer, compdata, cmd);
		}

	}
}


/*
 * This is my version of the ADBOp routine. It mainly just calls the
 * hardware-specific routine.
 *
 *   data 	: pointer to data area to be used by compRout
 *   compRout	: completion routine
 *   buffer	: for LISTEN: points to data to send - MAX 8 data bytes,
 *		  byte 0 = # of bytes
 *		: for TALK: points to place to save return data
 *   command	: the adb command to send
 *   result	: 0 = success
 *		: -1 = could not complete
 */
int
adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
{
	int result;

	switch (adbHardware) {
	case ADB_HW_PMU:
		result = pm_adb_op((u_char *)buffer, (void *)compRout,
		    (void *)data, (int)command);

		if (result == 0)
			return 0;
		else
			return -1;
		break;

	case ADB_HW_CUDA:
		result = send_adb_cuda((u_char *)0, (u_char *)buffer,
		    (void *)compRout, (void *)data, (int)command);
		if (result == 0)
			return 0;
		else
			return -1;
		break;

	default:
		return -1;
	}
}


/*
 * adb_hw_setup
 * This routine sets up the possible machine specific hardware
 * config (mainly VIA settings) for the various models.
 */
void
adb_hw_setup(void)
{
	volatile int i;

	switch (adbHardware) {

	case ADB_HW_PMU:
		/*
		 * XXX - really PM_VIA_CLR_INTR - should we put it in
		 * pm_direct.h?
		 */
		write_via_reg(VIA1, vIFR, 0x90);	/* clear interrupt */
		break;

	case ADB_HW_CUDA:
		via_reg_or(VIA1, vDirB, 0x30);	/* register B bits 4 and 5:
						 * outputs */
		via_reg_and(VIA1, vDirB, 0xf7);	/* register B bit 3: input */
		via_reg_and(VIA1, vACR, ~vSR_OUT);	/* make sure SR is set
							 * to IN */
		write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
							 * hardware */
		write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
						 * are on */
		ADB_SET_STATE_IDLE_CUDA();	/* set ADB bus state to idle */

		/* sort of a device reset */
		i = ADB_SR();	/* clear interrupt */
		ADB_VIA_INTR_DISABLE();	/* no interrupts while clearing */
		ADB_SET_STATE_IDLE_CUDA();	/* reset state to idle */
		delay(ADB_DELAY);
		ADB_SET_STATE_TIP();	/* signal start of frame */
		delay(ADB_DELAY);
		ADB_TOGGLE_STATE_ACK_CUDA();
		delay(ADB_DELAY);
		ADB_CLR_STATE_TIP();
		delay(ADB_DELAY);
		ADB_SET_STATE_IDLE_CUDA();	/* back to idle state */
		i = ADB_SR();	/* clear interrupt */
		ADB_VIA_INTR_ENABLE();	/* ints ok now */
		break;

	case ADB_HW_UNKNOWN:
	default:
		write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
						 * DO: turn PB ints off? */
		break;
	}
}

/*
 * adb_reinit sets up the adb stuff
 *
 */
void
adb_reinit(void)
{
	u_char send_string[ADB_MAX_MSG_LENGTH];
	ADBDataBlock data;	/* temp. holder for getting device info */
	volatile int i, x;
	int s;
	int command;
	int result;
	int saveptr;		/* point to next free relocation address */
	int device;
	int nonewtimes;		/* times thru loop w/o any new devices */

	/* Make sure we are not interrupted while building the table. */
	if (adbHardware != ADB_HW_PMU)	/* ints must be on for PB? */
		s = splhigh();

	ADBNumDevices = 0;	/* no devices yet */

	/* Let intr routines know we are running reinit */
	adbStarting = 1;

	/*
	 * Initialize the ADB table.  For now, we'll always use the same table
	 * that is defined at the beginning of this file - no mallocs.
	 */
	for (i = 0; i < 16; i++)
		ADBDevTable[i].devType = 0;

	adb_setup_hw_type();	/* setup hardware type */

	adb_hw_setup();		/* init the VIA bits and hard reset ADB */

	delay(1000);

	/* send an ADB reset first */
	adb_op_sync((Ptr)0, (short)0x00);
	delay(200000);

	/*
	 * Probe for ADB devices. Probe devices 1-15 quickly to determine
	 * which device addresses are in use and which are free. For each
	 * address that is in use, move the device at that address to a higher
	 * free address. Continue doing this at that address until no device
	 * responds at that address. Then move the last device that was moved
	 * back to the original address. Do this for the remaining addresses
	 * that we determined were in use.
	 *
	 * When finished, do this entire process over again with the updated
	 * list of in use addresses. Do this until no new devices have been
	 * found in 20 passes though the in use address list. (This probably
	 * seems long and complicated, but it's the best way to detect multiple
	 * devices at the same address - sometimes it takes a couple of tries
	 * before the collision is detected.)
	 */

	/* initial scan through the devices */
	for (i = 1; i < 16; i++) {
		send_string[0] = 0;
		command = ADBTALK(i, 3);
		result = adb_op_sync((Ptr)send_string, (short)command);

		if (send_string[0] != 0) {
			/* check for valid device handler */
			switch (send_string[2]) {
			case 0:
			case 0xfd:
			case 0xfe:
			case 0xff:
				continue;	/* invalid, skip */
			}

			/* found a device */
			++ADBNumDevices;
			KASSERT(ADBNumDevices < 16);
			ADBDevTable[ADBNumDevices].devType =
				(int)send_string[2];
			ADBDevTable[ADBNumDevices].origAddr = i;
			ADBDevTable[ADBNumDevices].currentAddr = i;
			ADBDevTable[ADBNumDevices].DataAreaAddr = NULL;
			ADBDevTable[ADBNumDevices].ServiceRtPtr = NULL;
		}
	}

	/* find highest unused address */
	for (saveptr = 15; saveptr > 0; saveptr--)
		if (-1 == get_adb_info(&data, saveptr))
			break;

#ifdef ADB_DEBUG
	if (adb_debug & 0x80) {
		printf_intr("first free is: 0x%02x\n", saveptr);
		printf_intr("devices: %i\n", ADBNumDevices);
	}
#endif

	nonewtimes = 0;		/* no loops w/o new devices */
	while (saveptr > 0 && nonewtimes++ < 11) {
		for (i = 1; i <= ADBNumDevices; i++) {
			device = ADBDevTable[i].currentAddr;
#ifdef ADB_DEBUG
			if (adb_debug & 0x80)
				printf_intr("moving device 0x%02x to 0x%02x "
				    "(index 0x%02x)  ", device, saveptr, i);
#endif

			/* send TALK R3 to address */
			command = ADBTALK(device, 3);
			adb_op_sync((Ptr)send_string, (short)command);

			/* move device to higher address */
			command = ADBLISTEN(device, 3);
			send_string[0] = 2;
			send_string[1] = (u_char)(saveptr | 0x60);
			send_string[2] = 0xfe;
			adb_op_sync((Ptr)send_string, (short)command);
			delay(500);

			/* send TALK R3 - anything at new address? */
			command = ADBTALK(saveptr, 3);
			adb_op_sync((Ptr)send_string, (short)command);
			delay(500);

			if (send_string[0] == 0) {
#ifdef ADB_DEBUG
				if (adb_debug & 0x80)
					printf_intr("failed, continuing\n");
#endif
				continue;
			}

			/* send TALK R3 - anything at old address? */
			command = ADBTALK(device, 3);
			result = adb_op_sync((Ptr)send_string, (short)command);
			if (send_string[0] != 0) {
				/* check for valid device handler */
				switch (send_string[2]) {
				case 0:
				case 0xfd:
				case 0xfe:
				case 0xff:
					continue;	/* invalid, skip */
				}

				/* new device found */
				/* update data for previously moved device */
				ADBDevTable[i].currentAddr = saveptr;
#ifdef ADB_DEBUG
				if (adb_debug & 0x80)
					printf_intr("old device at index %i\n",i);
#endif
				/* add new device in table */
#ifdef ADB_DEBUG
				if (adb_debug & 0x80)
					printf_intr("new device found\n");
#endif
				if (saveptr > ADBNumDevices) {
					++ADBNumDevices;
					KASSERT(ADBNumDevices < 16);
				}
				ADBDevTable[ADBNumDevices].devType =
					(int)send_string[2];
				ADBDevTable[ADBNumDevices].origAddr = device;
				ADBDevTable[ADBNumDevices].currentAddr = device;
				/* These will be set correctly in adbsys.c */
				/* Until then, unsol. data will be ignored. */
				ADBDevTable[ADBNumDevices].DataAreaAddr = NULL;
				ADBDevTable[ADBNumDevices].ServiceRtPtr = NULL;
				/* find next unused address */
				for (x = saveptr; x > 0; x--) {
					if (-1 == get_adb_info(&data, x)) {
						saveptr = x;
						break;
					}
				}
				if (x == 0)
					saveptr = 0;
#ifdef ADB_DEBUG
				if (adb_debug & 0x80)
					printf_intr("new free is 0x%02x\n",
					    saveptr);
#endif
				nonewtimes = 0;
			} else {
#ifdef ADB_DEBUG
				if (adb_debug & 0x80)
					printf_intr("moving back...\n");
#endif
				/* move old device back */
				command = ADBLISTEN(saveptr, 3);
				send_string[0] = 2;
				send_string[1] = (u_char)(device | 0x60);
				send_string[2] = 0xfe;
				adb_op_sync((Ptr)send_string, (short)command);
				delay(1000);
			}
		}
	}

#ifdef ADB_DEBUG
	if (adb_debug) {
		for (i = 1; i <= ADBNumDevices; i++) {
			x = get_ind_adb_info(&data, i);
			if (x != -1)
				printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
				    i, x, data.devType);
		}
	}
#endif

#ifdef ADB_DEBUG
	if (adb_debug) {
		if (0 == ADBNumDevices)	/* tell user if no devices found */
			printf_intr("adb: no devices found\n");
	}
#endif

	adbStarting = 0;	/* not starting anymore */
#ifdef ADB_DEBUG
	if (adb_debug)
		printf_intr("adb: adb_reinit complete\n");
#endif

	if (adbHardware == ADB_HW_CUDA) {
		timeout_set(&adb_cuda_timeout, (void *)adb_cuda_tickle, NULL);
		timeout_add(&adb_cuda_timeout, ADB_TICKLE_TICKS);
	}

	if (adbHardware != ADB_HW_PMU)	/* ints must be on for PB? */
		splx(s);
}


/*
 * adb_cmd_result
 *
 * This routine lets the caller know whether the specified adb command string
 * should expect a returned result, such as a TALK command.
 *
 * returns: 0 if a result should be expected
 *          1 if a result should NOT be expected
 */
int
adb_cmd_result(u_char *in)
{
	switch (adbHardware) {
	case ADB_HW_CUDA:
		/* was it an ADB talk command? */
		if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
			return 0;
		/* was it an RTC/PRAM read date/time? */
		if ((in[1] == 0x01) && (in[2] == 0x03))
			return 0;
		return 1;

	case ADB_HW_PMU:
		return 1;

	default:
		return 1;
	}
}


/*
 * adb_op_sync
 *
 * This routine does exactly what the adb_op routine does, except that after
 * the adb_op is called, it waits until the return value is present before
 * returning.
 */
int
adb_op_sync(Ptr buffer, short command)
{
	int tmout;
	int result;
	volatile int flag = 0;

	result = adb_op(buffer, (void *)adb_op_comprout,
	    (void *)&flag, command);	/* send command */
	if (result == 0) {		/* send ok? */
		/*
		 * Total time to wait is calculated as follows:
		 *  - Tlt (stop to start time): 260 usec
		 *  - start bit: 100 usec
		 *  - up to 8 data bytes: 64 * 100 usec = 6400 usec
		 *  - stop bit (with SRQ): 140 usec
		 * Total: 6900 usec
		 *
		 * This is the total time allowed by the specification.  Any
		 * device that doesn't conform to this will fail to operate
		 * properly on some Apple systems.  In spite of this we
		 * double the time to wait; some Cuda-based apparently
		 * queues some commands and allows the main CPU to continue
		 * processing (radical concept, eh?).  To be safe, allow
		 * time for two complete ADB transactions to occur.
		 */
		for (tmout = 13800; !flag && tmout >= 10; tmout -= 10)
			delay(10);
		if (!flag && tmout > 0)
			delay(tmout);

		if (!flag)
			result = -2;
	}

	return result;
}


/*
 * adb_op_comprout
 *
 * This function is used by the adb_op_sync routine so it knows when the
 * function is done.
 */
void
adb_op_comprout(caddr_t buffer, caddr_t compdata, int cmd)
{
	*(int *)compdata = 0x01;		/* update flag value */
}

void
adb_setup_hw_type(void)
{
	switch (adbHardware) {
	case ADB_HW_CUDA:
		adbSoftPower = 1;
		return;

	case ADB_HW_PMU:
		adbSoftPower = 1;
		pm_setup_adb();
		return;

	default:
		panic("unknown adb hardware");
	}
}

int
count_adbs(void)
{
	int i;
	int found;

	found = 0;

	for (i = 1; i < 16; i++)
		if (0 != ADBDevTable[i].devType)
			found++;

	return found;
}

int
get_ind_adb_info(ADBDataBlock * info, int index)
{
	if ((index < 1) || (index > 15))	/* check range 1-15 */
		return (-1);

#ifdef ADB_DEBUG
	if (adb_debug & 0x80)
		printf_intr("index 0x%x devType is: 0x%x\n", index,
		    ADBDevTable[index].devType);
#endif
	if (0 == ADBDevTable[index].devType)	/* make sure it's a valid entry */
		return (-1);

	info->devType = ADBDevTable[index].devType;
	info->origADBAddr = ADBDevTable[index].origAddr;
	info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
	info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;

	return (ADBDevTable[index].currentAddr);
}

int
get_adb_info(ADBDataBlock * info, int adbAddr)
{
	int i;

	if ((adbAddr < 1) || (adbAddr > 15))	/* check range 1-15 */
		return (-1);

	for (i = 1; i < 15; i++)
		if (ADBDevTable[i].currentAddr == adbAddr) {
			info->devType = ADBDevTable[i].devType;
			info->origADBAddr = ADBDevTable[i].origAddr;
			info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
			info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
			return 0;	/* found */
		}

	return (-1);		/* not found */
}

int
set_adb_info(ADBSetInfoBlock * info, int adbAddr)
{
	int i;

	if ((adbAddr < 1) || (adbAddr > 15))	/* check range 1-15 */
		return (-1);

	for (i = 1; i < 15; i++)
		if (ADBDevTable[i].currentAddr == adbAddr) {
			ADBDevTable[i].ServiceRtPtr =
			    (void *)(info->siServiceRtPtr);
			ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
			return 0;	/* found */
		}

	return (-1);		/* not found */

}

/* caller should really use machine-independent version: getPramTime */
/* this version does pseudo-adb access only */
int
adb_read_date_time(time_t *time)
{
	u_char output[ADB_MAX_MSG_LENGTH];
	int result;
	int retcode;
	volatile int flag = 0;

	switch (adbHardware) {
	case ADB_HW_PMU:
		pm_read_date_time(time);
		retcode = 0;
		break;

	case ADB_HW_CUDA:
		output[0] = 0x02;	/* 2 byte message */
		output[1] = 0x01;	/* to pram/rtc device */
		output[2] = 0x03;	/* read date/time */
		result = send_adb_cuda((u_char *)output, (u_char *)output,
		    (void *)adb_op_comprout, (void *)&flag, (int)0);
		if (result != 0) {	/* exit if not sent */
			retcode = -1;
			break;
		}

		while (0 == flag)	/* wait for result */
			;

		delay(20); /* completion occurs too soon? */
		memcpy(time, output + 1, 4);
		retcode = 0;
		break;

	case ADB_HW_UNKNOWN:
	default:
		retcode = -1;
		break;
	}
	if (retcode == 0) {
#define DIFF19041970 2082844800
		*time -= DIFF19041970;

	} else {
		*time = 0;
	}
	return retcode;
}

/* caller should really use machine-independent version: setPramTime */
/* this version does pseudo-adb access only */
int
adb_set_date_time(time_t time)
{
	u_char output[ADB_MAX_MSG_LENGTH];
	int result;
	volatile int flag = 0;

	time += DIFF19041970;
	switch (adbHardware) {

	case ADB_HW_CUDA:
		output[0] = 0x06;	/* 6 byte message */
		output[1] = 0x01;	/* to pram/rtc device */
		output[2] = 0x09;	/* set date/time */
		output[3] = (u_char)(time >> 24);
		output[4] = (u_char)(time >> 16);
		output[5] = (u_char)(time >> 8);
		output[6] = (u_char)(time);
		result = send_adb_cuda((u_char *)output, (u_char *)0,
		    (void *)adb_op_comprout, (void *)&flag, (int)0);
		if (result != 0)	/* exit if not sent */
			return -1;

		while (0 == flag)	/* wait for send to finish */
			;

		return 0;

	case ADB_HW_PMU:
		pm_set_date_time(time);
		return 0;

	default:
		return -1;
	}
}


int
adb_poweroff(void)
{
	u_char output[ADB_MAX_MSG_LENGTH];
	int result;

	if (!adbSoftPower)
		return -1;

	adb_polling = 1;

	switch (adbHardware) {
	case ADB_HW_PMU:
		/* Clear the wake on AC loss event */
		pmu_fileserver_mode(0);
		pm_adb_poweroff();

		for (;;);		/* wait for power off */

		return 0;

	case ADB_HW_CUDA:
		output[0] = 0x02;	/* 2 byte message */
		output[1] = 0x01;	/* to pram/rtc/soft-power device */
		output[2] = 0x0a;	/* set poweroff */
		result = send_adb_cuda((u_char *)output, (u_char *)0,
		    (void *)0, (void *)0, (int)0);
		if (result != 0)	/* exit if not sent */
			return -1;

		for (;;);		/* wait for power off */

		return 0;

	default:
		return -1;
	}
}

void
setsoftadb()
{
	if (!timeout_initialized(&adb_softintr_timeout))
		timeout_set(&adb_softintr_timeout, (void *)adb_soft_intr, NULL);
	timeout_add(&adb_softintr_timeout, 1);
}

void
adb_cuda_autopoll()
{
	volatile int flag = 0;
	int result;
	u_char output[16];

	output[0] = 0x03;	/* 3-byte message */
	output[1] = 0x01;	/* to pram/rtc/soft-power device */
	output[2] = 0x01;	/* cuda autopoll */
	output[3] = 0x01;
	result = send_adb_cuda(output, output, adb_op_comprout,
	    (void *)&flag, 0);
	if (result != 0)	/* exit if not sent */
		return;

	while (flag == 0);	/* wait for result */
}

void
adb_cuda_fileserver_mode()
{
	volatile int flag = 0;
	int result;
	u_char output[16];

	output[0] = 0x03;	/* 3-byte message */
	output[1] = 0x01; 	/* to pram/rtc device/soft-power device */
	output[2] = 0x13;	/* cuda file server mode */
	output[3] = 0x01;	/* True - Turn on after AC loss */

	result = send_adb_cuda(output, output, adb_op_comprout,
	    (void *)&flag, 0);
	if (result != 0)
		return;

	while (flag == 0);
}

void
adb_restart()
{
	int result;
	u_char output[16];

	adb_polling = 1;

	switch (adbHardware) {
	case ADB_HW_CUDA:
		output[0] = 0x02;	/* 2 byte message */
		output[1] = 0x01;	/* to pram/rtc/soft-power device */
		output[2] = 0x11;	/* restart */
		result = send_adb_cuda((u_char *)output, (u_char *)0,
				       (void *)0, (void *)0, (int)0);
		if (result != 0)	/* exit if not sent */
			return;
		while (1);		/* not return */

	case ADB_HW_PMU:
		pm_adb_restart();
		while (1);		/* not return */
	}
}

/*
 * Driver definition.
 */

int	adbmatch(struct device *, void *, void *);
void	adbattach(struct device *, struct device *, void *);

struct cfattach adb_ca = {
	sizeof(struct adb_softc), adbmatch, adbattach
};

int
adbmatch(struct device *parent, void *cf, void *aux)
{
	struct confargs *ca = aux;

	if (ca->ca_nreg < 8)
		return 0;

	if (ca->ca_nintr < 4)
		return 0;

	if (strcmp(ca->ca_name, "via-cuda") == 0)
		return 1;

	if (strcmp(ca->ca_name, "via-pmu") == 0)
		return 1;

	return 0;
}

void
adbattach(struct device *parent, struct device *self, void *aux)
{
	struct adb_softc *sc = (struct adb_softc *)self;
	struct confargs *ca = aux;
	struct confargs nca;
	char name[32];
	int node;

	ADBDataBlock adbdata;
	struct adb_attach_args aa_args;
	int totaladbs;
	int adbindex, adbaddr;

	ca->ca_reg[0] += ca->ca_baseaddr;

	sc->sc_regbase = mapiodev(ca->ca_reg[0], ca->ca_reg[1]);
	Via1Base = sc->sc_regbase;

	if (strcmp(ca->ca_name, "via-cuda") == 0)
		adbHardware = ADB_HW_CUDA;
	else if (strcmp(ca->ca_name, "via-pmu") == 0) {
		adbHardware = ADB_HW_PMU;

		/*
		 * Bus reset can take a long time if no adb devices are
		 * connected, e.g. on a Mac Mini; so check for an adb
		 * child in the OF tree to speed up pm_adb_op().
		 */
		adbempty = 1;
		for (node = OF_child(ca->ca_node); node; node = OF_peer(node)) {
			if (OF_getprop(node, "name", name, sizeof name) <= 0)
				continue;
			if (strcmp(name, "adb") == 0) {
				adbempty = 0;
				break;
			}
		}
	}

	adb_polling = 1;
	adb_reinit();

	mac_intr_establish(parent, ca->ca_intr[0], IST_LEVEL, IPL_HIGH,
	    adb_intr, sc, sc->sc_dev.dv_xname);

	/* init powerpc globals which control RTC functionality */
	time_read = adb_read_date_time;
	time_write = adb_set_date_time;

#ifdef ADB_DEBUG
	if (adb_debug)
		printf("adb: done with adb_reinit\n");
#endif
	totaladbs = count_adbs();

	printf(" irq %d: %s, %d target%s\n", ca->ca_intr[0], ca->ca_name,
	    totaladbs, (totaladbs == 1) ? "" : "s");

	/* for each ADB device */
	for (adbindex = 1; adbindex <= totaladbs; adbindex++) {
		/* Get the ADB information */
		adbaddr = get_ind_adb_info(&adbdata, adbindex);

		aa_args.origaddr = adbdata.origADBAddr;
		aa_args.adbaddr = adbaddr;
		aa_args.handler_id = adbdata.devType;

		(void)config_found(self, &aa_args, adbprint);
	}

#if NAPM > 0
	/* Magic for signalling the apm driver to match. */
	aa_args.origaddr = ADBADDR_APM;
	aa_args.adbaddr = ADBADDR_APM;
	aa_args.handler_id = ADBADDR_APM;

	(void)config_found(self, &aa_args, NULL);
#endif

	/* Attach I2C controller. */
	for (node = OF_child(ca->ca_node); node; node = OF_peer(node)) {
		if (OF_getprop(node, "name", name, sizeof name) <= 0)
			continue;
		if (strcmp(name, "pmu-i2c") == 0) {
			nca.ca_name = "piic";
			nca.ca_node = node;
			config_found(self, &nca, NULL);
		}
	}

	if (adbHardware == ADB_HW_CUDA)
		adb_cuda_fileserver_mode();
	if (adbHardware == ADB_HW_PMU)
		pmu_fileserver_mode(1);

	if (adbHardware == ADB_HW_CUDA)
		adb_cuda_autopoll();
	adb_polling = 0;
}