/* $OpenBSD: wdc_obio.c,v 1.6 2002/03/26 16:50:12 drahn Exp $ */ /* $NetBSD: wdc_obio.c,v 1.15 2001/07/25 20:26:33 bouyer Exp $ */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum and by Onno van der Linden. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #define WDC_REG_NPORTS 8 #define WDC_AUXREG_OFFSET 0x16 #define WDC_DEFAULT_PIO_IRQ 13 /* XXX */ #define WDC_DEFAULT_DMA_IRQ 2 /* XXX */ #define WDC_OPTIONS_DMA 0x01 #define WDC_DMALIST_MAX 32 struct wdc_obio_softc { struct wdc_softc sc_wdcdev; struct channel_softc *wdc_chanptr; struct channel_softc wdc_channel; bus_dma_tag_t sc_dmat; bus_dmamap_t sc_dmamap; dbdma_regmap_t *sc_dmareg; dbdma_command_t *sc_dmacmd; dbdma_t sc_dbdma; }; u_int8_t wdc_obio_read_reg(struct channel_softc *, enum wdc_regs); void wdc_obio_write_reg(struct channel_softc *, enum wdc_regs, u_int8_t); void wdc_default_read_raw_multi_2(struct channel_softc *, void *, unsigned int); void wdc_default_write_raw_multi_2(struct channel_softc *, void *, unsigned int); void wdc_default_read_raw_multi_4(struct channel_softc *, void *, unsigned int); void wdc_default_write_raw_multi_4(struct channel_softc *, void *, unsigned int); struct channel_softc_vtbl wdc_obio_vtbl = { wdc_obio_read_reg, wdc_obio_write_reg, wdc_default_read_raw_multi_2, wdc_default_write_raw_multi_2, wdc_default_read_raw_multi_4, wdc_default_write_raw_multi_4 }; int wdc_obio_probe(struct device *, void *, void *); void wdc_obio_attach(struct device *, struct device *, void *); struct cfattach wdc_obio_ca = { sizeof(struct wdc_obio_softc), wdc_obio_probe, wdc_obio_attach }; int wdc_obio_dma_init(void *, int, int, void *, size_t, int); void wdc_obio_dma_start(void *, int, int); int wdc_obio_dma_finish(void *, int, int); void wdc_obio_adjust_timing(struct channel_softc *); void wdc_obio_ata4_adjust_timing(struct channel_softc *); int wdc_obio_probe(parent, match, aux) struct device *parent; void *match; void *aux; { struct confargs *ca = aux; char compat[32]; /* XXX should not use name */ if (strcmp(ca->ca_name, "ATA") == 0 || strncmp(ca->ca_name, "ata", 3) == 0 || strcmp(ca->ca_name, "ide") == 0) return 1; bzero(compat, sizeof(compat)); OF_getprop(ca->ca_node, "compatible", compat, sizeof(compat)); if (strcmp(compat, "heathrow-ata") == 0 || strcmp(compat, "keylargo-ata") == 0) return 1; return 0; } void wdc_obio_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct wdc_obio_softc *sc = (void *)self; struct confargs *ca = aux; struct channel_softc *chp = &sc->wdc_channel; int intr, error, use_dma = 0; bus_addr_t cmdbase; bus_size_t cmdsize; if (sc->sc_wdcdev.sc_dev.dv_cfdata->cf_flags & WDC_OPTIONS_DMA) { if (ca->ca_nreg >= 16 || ca->ca_nintr == -1) use_dma = 1; /* XXX Don't work yet. */ } sc->sc_dmat = ca->ca_dmat; if ((error = bus_dmamap_create(sc->sc_dmat, WDC_DMALIST_MAX * DBDMA_COUNT_MAX, WDC_DMALIST_MAX, DBDMA_COUNT_MAX, NBPG, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { printf(": cannot create dma map, error = %d\n", error); return; } if (ca->ca_nintr >= 4 && ca->ca_nreg >= 8) { intr = ca->ca_intr[0]; printf(" irq %d", intr); } else if (ca->ca_nintr == -1) { intr = WDC_DEFAULT_PIO_IRQ; printf(" irq property not found; using %d", intr); } else { printf(": couldn't get irq property\n"); return; } if (use_dma) printf(": DMA transfer"); printf("\n"); chp->cmd_iot = chp->ctl_iot = ca->ca_iot; chp->_vtbl = &wdc_obio_vtbl; cmdbase = ca->ca_reg[0]; cmdsize = ca->ca_reg[1]; if (bus_space_map(chp->cmd_iot, cmdbase, cmdsize, 0, &chp->cmd_ioh) || bus_space_subregion(chp->cmd_iot, chp->cmd_ioh, /* WDC_AUXREG_OFFSET<<4 */ 0x160, 1, &chp->ctl_ioh)) { printf("%s: couldn't map registers\n", sc->sc_wdcdev.sc_dev.dv_xname); return; } chp->data32iot = chp->cmd_iot; chp->data32ioh = chp->cmd_ioh; mac_intr_establish(parent, intr, IST_LEVEL, IPL_BIO, wdcintr, chp, "wdc_obio"); sc->sc_wdcdev.set_modes = wdc_obio_adjust_timing; if (use_dma) { sc->sc_dbdma = dbdma_alloc(sc->sc_dmat, WDC_DMALIST_MAX + 1); sc->sc_dmacmd = sc->sc_dbdma->d_addr; sc->sc_dmareg = mapiodev(ca->ca_baseaddr + ca->ca_reg[2], ca->ca_reg[3]); sc->sc_wdcdev.cap |= WDC_CAPABILITY_DMA; sc->sc_wdcdev.DMA_cap = 2; if (strcmp(ca->ca_name, "ata-4") == 0) { sc->sc_wdcdev.cap |= WDC_CAPABILITY_UDMA | WDC_CAPABILITY_MODE; sc->sc_wdcdev.UDMA_cap = 4; sc->sc_wdcdev.set_modes = wdc_obio_ata4_adjust_timing; } } sc->sc_wdcdev.cap |= WDC_CAPABILITY_DATA16; sc->sc_wdcdev.PIO_cap = 4; sc->wdc_chanptr = chp; sc->sc_wdcdev.channels = &sc->wdc_chanptr; sc->sc_wdcdev.nchannels = 1; sc->sc_wdcdev.dma_arg = sc; sc->sc_wdcdev.dma_init = wdc_obio_dma_init; sc->sc_wdcdev.dma_start = wdc_obio_dma_start; sc->sc_wdcdev.dma_finish = wdc_obio_dma_finish; chp->channel = 0; chp->wdc = &sc->sc_wdcdev; chp->ch_queue = malloc(sizeof(struct channel_queue), M_DEVBUF, M_NOWAIT); if (chp->ch_queue == NULL) { printf("%s: can't allocate memory for command queue", sc->sc_wdcdev.sc_dev.dv_xname); return; } wdcattach(chp); sc->sc_wdcdev.set_modes(chp); wdc_print_current_modes(chp); } /* Multiword DMA transfer timings */ struct ide_timings { int cycle; /* minimum cycle time [ns] */ int active; /* minimum command active time [ns] */ }; static const struct ide_timings pio_timing[] = { { 600, 165 }, /* Mode 0 */ { 383, 125 }, /* 1 */ { 240, 100 }, /* 2 */ { 180, 80 }, /* 3 */ { 120, 70 } /* 4 */ }; static const struct ide_timings dma_timing[] = { { 480, 215 }, /* Mode 0 */ { 150, 80 }, /* Mode 1 */ { 120, 70 }, /* Mode 2 */ }; static const struct ide_timings udma_timing[] = { {114, 0}, /* Mode 0 */ { 75, 0}, /* Mode 1 */ { 55, 0}, /* Mode 2 */ { 45, 100}, /* Mode 3 */ { 25, 100} /* Mode 4 */ }; #define TIME_TO_TICK(time) howmany((time), 30) #define PIO_REC_OFFSET 4 #define PIO_REC_MIN 1 #define PIO_ACT_MIN 1 #define DMA_REC_OFFSET 1 #define DMA_REC_MIN 1 #define DMA_ACT_MIN 1 #define ATA4_TIME_TO_TICK(time) howmany((time) * 1000, 7500) #define CONFIG_REG (0x200) /* IDE access timing register */ void wdc_obio_adjust_timing(chp) struct channel_softc *chp; { struct ata_drive_datas *drvp; u_int conf; int drive; int piomode = -1, dmamode = -1; int min_cycle, min_active; int cycle_tick, act_tick, inact_tick, half_tick; for (drive = 0; drive < 2; drive++) { drvp = &chp->ch_drive[drive]; if ((drvp->drive_flags & DRIVE) == 0) continue; if (piomode == -1 || piomode > drvp->PIO_mode) piomode = drvp->PIO_mode; if (drvp->drive_flags & DRIVE_DMA) { if (dmamode == -1 || dmamode > drvp->DMA_mode) dmamode = drvp->DMA_mode; } } if (piomode == -1) return; /* No drive */ for (drive = 0; drive < 2; drive++) { drvp = &chp->ch_drive[drive]; if (drvp->drive_flags & DRIVE) { drvp->PIO_mode = piomode; if (drvp->drive_flags & DRIVE_DMA) drvp->DMA_mode = dmamode; } } min_cycle = pio_timing[piomode].cycle; min_active = pio_timing[piomode].active; cycle_tick = TIME_TO_TICK(min_cycle); act_tick = TIME_TO_TICK(min_active); if (act_tick < PIO_ACT_MIN) act_tick = PIO_ACT_MIN; inact_tick = cycle_tick - act_tick - PIO_REC_OFFSET; if (inact_tick < PIO_REC_MIN) inact_tick = PIO_REC_MIN; /* mask: 0x000007ff */ conf = (inact_tick << 5) | act_tick; if (dmamode != -1) { /* there are active DMA mode */ min_cycle = dma_timing[dmamode].cycle; min_active = dma_timing[dmamode].active; cycle_tick = TIME_TO_TICK(min_cycle); act_tick = TIME_TO_TICK(min_active); inact_tick = cycle_tick - act_tick - DMA_REC_OFFSET; if (inact_tick < DMA_REC_MIN) inact_tick = DMA_REC_MIN; half_tick = 0; /* XXX */ /* mask: 0xfffff800 */ conf |= (half_tick << 21) | (inact_tick << 16) | (act_tick << 11); } bus_space_write_4(chp->cmd_iot, chp->cmd_ioh, CONFIG_REG, conf); #if 0 printf("conf = 0x%x, cyc = %d (%d ns), act = %d (%d ns), inact = %d\n", conf, cycle_tick, min_cycle, act_tick, min_active, inact_tick); #endif } void wdc_obio_ata4_adjust_timing(chp) struct channel_softc *chp; { struct ata_drive_datas *drvp; u_int conf; int drive; int piomode = -1, dmamode = -1; int min_cycle, min_active; int cycle_tick, act_tick, inact_tick; int udmamode = -1; for (drive = 0; drive < 2; drive++) { drvp = &chp->ch_drive[drive]; if ((drvp->drive_flags & DRIVE) == 0) continue; if (piomode == -1 || piomode > drvp->PIO_mode) piomode = drvp->PIO_mode; if (drvp->drive_flags & DRIVE_DMA) { if (dmamode == -1 || dmamode > drvp->DMA_mode) dmamode = drvp->DMA_mode; } if (drvp->drive_flags & DRIVE_UDMA) { if (udmamode == -1 || udmamode > drvp->UDMA_mode) udmamode = drvp->UDMA_mode; } else { udmamode = -2; } } if (piomode == -1) return; /* No drive */ for (drive = 0; drive < 2; drive++) { drvp = &chp->ch_drive[drive]; if (drvp->drive_flags & DRIVE) { drvp->PIO_mode = piomode; if (drvp->drive_flags & DRIVE_DMA) drvp->DMA_mode = dmamode; if (drvp->drive_flags & DRIVE_UDMA) { if (udmamode == -2) { drvp->drive_flags &= ~DRIVE_UDMA; } else { drvp->UDMA_mode = udmamode; } } } } if (udmamode == -2) udmamode = -1; min_cycle = pio_timing[piomode].cycle; min_active = pio_timing[piomode].active; cycle_tick = ATA4_TIME_TO_TICK(min_cycle); act_tick = ATA4_TIME_TO_TICK(min_active); inact_tick = cycle_tick - act_tick; /* mask: 0x000003ff */ conf = (inact_tick << 5) | act_tick; if (dmamode != -1) { /* there are active DMA mode */ min_cycle = dma_timing[dmamode].cycle; min_active = dma_timing[dmamode].active; cycle_tick = ATA4_TIME_TO_TICK(min_cycle); act_tick = ATA4_TIME_TO_TICK(min_active); inact_tick = cycle_tick - act_tick; /* mask: 0x001ffc00 */ conf |= (act_tick << 10) | (inact_tick << 15); } if (udmamode != -1) { min_cycle = udma_timing[udmamode].cycle; min_active = udma_timing[udmamode].active; act_tick = ATA4_TIME_TO_TICK(min_active); cycle_tick = ATA4_TIME_TO_TICK(min_cycle); /* mask: 0x1ff00000 */ conf |= (cycle_tick << 21) | (act_tick << 25) | 0x100000; } bus_space_write_4(chp->cmd_iot, chp->cmd_ioh, CONFIG_REG, conf); #if 0 printf("ata4 conf = 0x%x, cyc = %d (%d ns), act = %d (%d ns), inact = %d\n", conf, cycle_tick, min_cycle, act_tick, min_active, inact_tick); #endif } int wdc_obio_dma_init(v, channel, drive, databuf, datalen, read) void *v; void *databuf; size_t datalen; int read; { struct wdc_obio_softc *sc = v; dbdma_command_t *cmdp; u_int cmd; int i, error; if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, databuf, datalen, NULL, BUS_DMA_NOWAIT)) != 0) return (error); cmdp = sc->sc_dmacmd; cmd = read ? DBDMA_CMD_IN_MORE : DBDMA_CMD_OUT_MORE; for (i = 0; i < sc->sc_dmamap->dm_nsegs; i++, cmdp++) { if (i + 1 == sc->sc_dmamap->dm_nsegs) cmd = read ? DBDMA_CMD_IN_LAST : DBDMA_CMD_OUT_LAST; DBDMA_BUILD(cmdp, cmd, 0, sc->sc_dmamap->dm_segs[i].ds_len, sc->sc_dmamap->dm_segs[i].ds_addr, DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); } DBDMA_BUILD(cmdp, DBDMA_CMD_STOP, 0, 0, 0, DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); return 0; } void wdc_obio_dma_start(v, channel, drive) void *v; int channel, drive; { struct wdc_obio_softc *sc = v; dbdma_start(sc->sc_dmareg, sc->sc_dbdma); } int wdc_obio_dma_finish(v, channel, drive) void *v; int channel, drive; { struct wdc_obio_softc *sc = v; dbdma_stop(sc->sc_dmareg); bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap); return 0; } /* read register code * this allows the registers to be spaced by 0x10, instead of 0x1. * mac hardware (obio) requires this. */ u_int8_t wdc_obio_read_reg(chp, reg) struct channel_softc *chp; enum wdc_regs reg; { #ifdef DIAGNOSTIC if (reg & _WDC_WRONLY) { printf ("wdc_obio_read_reg: reading from a write-only register %d\n", reg); } #endif if (reg & _WDC_AUX) return (bus_space_read_1(chp->ctl_iot, chp->ctl_ioh, (reg & _WDC_REGMASK) << 4)); else return (bus_space_read_1(chp->cmd_iot, chp->cmd_ioh, (reg & _WDC_REGMASK) << 4)); } void wdc_obio_write_reg(chp, reg, val) struct channel_softc *chp; enum wdc_regs reg; u_int8_t val; { #ifdef DIAGNOSTIC if (reg & _WDC_RDONLY) { printf ("wdc_obio_write_reg: writing to a read-only register %d\n", reg); } #endif if (reg & _WDC_AUX) bus_space_write_1(chp->ctl_iot, chp->ctl_ioh, (reg & _WDC_REGMASK) << 4, val); else bus_space_write_1(chp->cmd_iot, chp->cmd_ioh, (reg & _WDC_REGMASK) << 4, val); }