/* $OpenBSD: pmap.h,v 1.1 1998/01/28 11:14:51 pefo Exp $ */ /* * Copyright (c) 1987 Carnegie-Mellon University * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Ralph Campbell. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)pmap.h 8.1 (Berkeley) 6/10/93 */ #ifndef _MACHINE_PMAP_H_ #define _MACHINE_PMAP_H_ /* * The user address space is 2Gb (0x0 - 0x80000000). * User programs are laid out in memory as follows: * address * USRTEXT 0x00400000 * USRDATA 0x10000000 * USRSTACK 0x7FFFFFFF * * The user address space is mapped using a two level structure where * virtual address bits 30..22 are used to index into a segment table which * points to a page worth of PTEs (4096 page can hold 1024 PTEs). * Bits 21..12 are then used to index a PTE which describes a page within * a segment. * * The wired entries in the TLB will contain the following: * 0-1 (UPAGES) for curproc user struct and kernel stack. * * Note: The kernel doesn't use the same data structures as user programs. * All the PTE entries are stored in a single array in Sysmap which is * dynamically allocated at boot time. */ #define mips_trunc_seg(x) ((vm_offset_t)(x) & ~SEGOFSET) #define mips_round_seg(x) (((vm_offset_t)(x) + SEGOFSET) & ~SEGOFSET) #define pmap_segmap(m, v) ((m)->pm_segtab->seg_tab[((v) >> SEGSHIFT)]) #define PMAP_SEGTABSIZE 512 union pt_entry; struct segtab { union pt_entry *seg_tab[PMAP_SEGTABSIZE]; }; /* * Machine dependent pmap structure. */ typedef struct pmap { int pm_count; /* pmap reference count */ simple_lock_data_t pm_lock; /* lock on pmap */ struct pmap_statistics pm_stats; /* pmap statistics */ int pm_tlbpid; /* address space tag */ u_int pm_tlbgen; /* TLB PID generation number */ struct segtab *pm_segtab; /* pointers to pages of PTEs */ } *pmap_t; /* * Defines for pmap_attributes[phys_mach_page]; */ #define PMAP_ATTR_MOD 0x01 /* page has been modified */ #define PMAP_ATTR_REF 0x02 /* page has been referenced */ #ifdef _KERNEL extern char *pmap_attributes; /* reference and modify bits */ extern struct pmap kernel_pmap_store; #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) #define pmap_kernel() (&kernel_pmap_store) #define PMAP_PREFER(pa, va) pmap_prefer((pa), (va)) void pmap_prefer __P((vm_offset_t, vm_offset_t *)); void pmap_bootstrap __P((vm_offset_t)); void pmap_zero_page __P((vm_offset_t)); int pmap_is_page_ro __P(( pmap_t, vm_offset_t, int)); int pmap_alloc_tlbpid __P((struct proc *)); int pmap_remove_pv __P((pmap_t, vm_offset_t, vm_offset_t)); int pmap_is_pa_mapped __P((vm_offset_t)); vm_offset_t pmap_pa_to_va __P((vm_offset_t)); void pmap_page_cache __P((vm_offset_t, int));; #endif /* _KERNEL */ #endif /* _MACHINE_PMAP_H_ */