/* $OpenBSD: vm_machdep.c,v 1.38 2004/01/11 23:51:26 miod Exp $ */ /* * Copyright (c) 1988 University of Utah. * Copyright (c) 1982, 1986, 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: vm_machdep.c 1.21 91/04/06$ * * @(#)vm_machdep.c 8.6 (Berkeley) 1/12/94 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the kernel stack and pcb, making the child * ready to run, and marking it so that it can return differently * than the parent. Returns 1 in the child process, 0 in the parent. * We currently double-map the user area so that the stack is at the same * address in each process; in the future we will probably relocate * the frame pointers on the stack after copying. */ void cpu_fork(p1, p2, stack, stacksize, func, arg) struct proc *p1, *p2; void *stack; size_t stacksize; void (*func)(void *); void *arg; { struct pcb *pcb = &p2->p_addr->u_pcb; struct trapframe *tf; struct switchframe *sf; extern struct pcb *curpcb; p2->p_md.md_flags = p1->p_md.md_flags; /* Copy pcb from proc p1 to p2. */ if (p1 == curproc) { /* Sync the PCB before we copy it. */ savectx(curpcb); } #ifdef DIAGNOSTIC else if (p1 != &proc0) panic("cpu_fork: curproc"); #endif *pcb = p1->p_addr->u_pcb; /* * Copy the trap frame, and arrange for the child to return directly * through return_to_user(). */ tf = (struct trapframe *)((u_int)p2->p_addr + USPACE) - 1; p2->p_md.md_regs = (int *)tf; *tf = *(struct trapframe *)p1->p_md.md_regs; /* * If specified, give the child a different stack. */ if (stack != NULL) tf->tf_regs[15] = (u_int)stack + stacksize; sf = (struct switchframe *)tf - 1; sf->sf_pc = (u_int)proc_trampoline; pcb->pcb_regs[6] = (int)func; /* A2 */ pcb->pcb_regs[7] = (int)arg; /* A3 */ pcb->pcb_regs[11] = (int)sf; /* SSP */ } /* * cpu_exit is called as the last action during exit. * We release the address space and machine-dependent resources, * including the memory for the user structure and kernel stack. * Once finished, we call switch_exit, which switches to a temporary * pcb and stack and never returns. We block memory allocation * until switch_exit has made things safe again. */ void cpu_exit(p) struct proc *p; { splhigh(); uvmexp.swtch++; switch_exit(p); /* NOTREACHED */ } /* * Dump the machine specific header information at the start of a core dump. */ struct md_core { struct reg intreg; struct fpreg freg; }; int cpu_coredump(p, vp, cred, chdr) struct proc *p; struct vnode *vp; struct ucred *cred; struct core *chdr; { struct md_core md_core; struct coreseg cseg; int error; CORE_SETMAGIC(*chdr, COREMAGIC, MID_MACHINE, 0); chdr->c_hdrsize = ALIGN(sizeof(*chdr)); chdr->c_seghdrsize = ALIGN(sizeof(cseg)); chdr->c_cpusize = sizeof(md_core); /* Save integer registers. */ error = process_read_regs(p, &md_core.intreg); if (error) return error; if (fputype) { /* Save floating point registers. */ error = process_read_fpregs(p, &md_core.freg); if (error) return error; } else { /* Make sure these are clear. */ bzero((caddr_t)&md_core.freg, sizeof(md_core.freg)); } CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_MACHINE, CORE_CPU); cseg.c_addr = 0; cseg.c_size = chdr->c_cpusize; error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cseg, chdr->c_seghdrsize, (off_t)chdr->c_hdrsize, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, NULL, p); if (error) return error; error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&md_core, sizeof(md_core), (off_t)(chdr->c_hdrsize + chdr->c_seghdrsize), UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, NULL, p); if (error) return error; chdr->c_nseg++; return 0; } /* * Move pages from one kernel virtual address to another. * Both addresses are assumed to reside in the Sysmap. */ void pagemove(from, to, size) caddr_t from, to; size_t size; { vm_offset_t pa; boolean_t rv; #ifdef DEBUG if ((size & PAGE_MASK) != 0) panic("pagemove"); #endif while (size > 0) { rv = pmap_extract(pmap_kernel(), (vm_offset_t)from, &pa); #ifdef DEBUG if (rv == FALSE) panic("pagemove 2"); if (pmap_extract(pmap_kernel(), (vm_offset_t)to, NULL) == TRUE) panic("pagemove 3"); #endif pmap_kremove((vm_offset_t)from, PAGE_SIZE); pmap_kenter_pa((vm_offset_t)to, pa, VM_PROT_READ|VM_PROT_WRITE); from += PAGE_SIZE; to += PAGE_SIZE; size -= PAGE_SIZE; } pmap_update(pmap_kernel()); } /* * Map `size' bytes of physical memory starting at `paddr' into * kernel VA space at `vaddr'. Read/write and cache-inhibit status * are specified by `prot'. */ void physaccess(vaddr, paddr, size, prot) vaddr_t vaddr; paddr_t paddr; size_t size; int prot; { pt_entry_t *pte; u_int page; pte = kvtopte(vaddr); page = (u_int)paddr & PG_FRAME; for (size = btoc(size); size; size--) { *pte++ = PG_V | prot | page; page += NBPG; } TBIAS(); } void physunaccess(vaddr, size) vaddr_t vaddr; size_t size; { pt_entry_t *pte; pte = kvtopte(vaddr); for (size = btoc(size); size; size--) *pte++ = PG_NV; TBIAS(); } /* * Convert kernel VA to physical address */ paddr_t kvtop(addr) vaddr_t addr; { paddr_t pa; if (pmap_extract(pmap_kernel(), (vm_offset_t)addr, &pa) == FALSE) panic("kvtop: zero page frame"); return (pa); } /* * Map an IO request into kernel virtual address space. * * XXX we allocate KVA space by using kmem_alloc_wait which we know * allocates space without backing physical memory. This implementation * is a total crock, the multiple mappings of these physical pages should * be reflected in the higher-level VM structures to avoid problems. */ void vmapbuf(bp, siz) register struct buf *bp; vm_size_t siz; { register int npf; register caddr_t addr; struct proc *p; int off; vm_offset_t kva; vm_offset_t pa; #ifdef DIAGNOSTIC if ((bp->b_flags & B_PHYS) == 0) panic("vmapbuf"); #endif addr = bp->b_saveaddr = bp->b_data; off = (int)addr & PGOFSET; p = bp->b_proc; npf = btoc(round_page(bp->b_bcount + off)); kva = uvm_km_valloc_wait(phys_map, ctob(npf)); bp->b_data = (caddr_t)(kva + off); while (npf--) { if (pmap_extract(vm_map_pmap(&p->p_vmspace->vm_map), (vm_offset_t)addr, &pa) == FALSE) panic("vmapbuf: null page frame"); pmap_enter(vm_map_pmap(phys_map), kva, trunc_page(pa), VM_PROT_READ|VM_PROT_WRITE, VM_PROT_READ|VM_PROT_WRITE|PMAP_WIRED); addr += PAGE_SIZE; kva += PAGE_SIZE; } pmap_update(pmap_kernel()); } /* * Free the io map PTEs associated with this IO operation. */ void vunmapbuf(bp, siz) register struct buf *bp; vm_size_t siz; { register caddr_t addr; register int npf; vm_offset_t kva; #ifdef DIAGNOSTIC if ((bp->b_flags & B_PHYS) == 0) panic("vunmapbuf"); #endif addr = bp->b_data; npf = btoc(round_page(bp->b_bcount + ((int)addr & PGOFSET))); kva = (vm_offset_t)((int)addr & ~PGOFSET); uvm_km_free_wakeup(phys_map, kva, ctob(npf)); bp->b_data = bp->b_saveaddr; bp->b_saveaddr = NULL; }