/* $NetBSD: bus.h,v 1.1 2001/06/06 17:37:37 matt Exp $ */ /* $OpenBSD: bus_mi.h,v 1.3 2001/11/05 17:25:58 art Exp $ */ /*- * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1996 Charles M. Hannum. All rights reserved. * Copyright (c) 1996 Jason R. Thorpe. All rights reserved. * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1997 Per Fogelstrom. All rights reserved. * Copyright (c) 1996 Niklas Hallqvist. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _POWERPC_BUS_H_ #define _POWERPC_BUS_H_ #include /* * Bus access types. */ typedef u_int32_t bus_addr_t; typedef u_int32_t bus_size_t; typedef u_int32_t bus_space_handle_t; typedef const struct ppc_bus_space *bus_space_tag_t; struct ppc_bus_space { u_int32_t pbs_type; bus_addr_t pbs_offset; bus_addr_t pbs_base; bus_addr_t pbs_limit; int (*pbs_map) __P((bus_space_tag_t, bus_addr_t, bus_size_t, int, bus_space_handle_t *)); void (*pbs_unmap) __P((bus_space_tag_t, bus_space_handle_t, bus_size_t)); int (*pbs_alloc) __P((bus_space_tag_t, bus_addr_t, bus_addr_t, bus_size_t, bus_size_t align, bus_size_t, int, bus_addr_t *, bus_space_handle_t *)); void (*pbs_free) __P((bus_space_tag_t, bus_space_handle_t, bus_size_t)); }; #define BUS_SPACE_MAP_CACHEABLE 0x01 #define BUS_SPACE_MAP_LINEAR 0x02 #define BUS_SPACE_MAP_PREFETCHABLE 0x04 #ifdef __STDC__ #define CAT(a,b) a##b #define CAT3(a,b,c) a##b##c #else #define CAT(a,b) a/**/b #define CAT3(a,b,c) a/**/b/**/c #endif /* * Access methods for bus resources */ #define __BUS_SPACE_HAS_STREAM_METHODS /* * int bus_space_map __P((bus_space_tag_t t, bus_addr_t addr, * bus_size_t size, int flags, bus_space_handle_t *bshp)); * * Map a region of bus space. */ #define bus_space_map(t, a, s, f, hp) \ ((*(t)->pbs_map)((t), (a), (s), (f), (hp))) /* * int bus_space_unmap __P((bus_space_tag_t t, * bus_space_handle_t bsh, bus_size_t size)); * * Unmap a region of bus space. */ #define bus_space_unmap(t, h, s) \ ((void)(*(t)->pbs_unmap)((t), (h), (s))) /* * int bus_space_subregion __P((bus_space_tag_t t, * bus_space_handle_t bsh, bus_size_t offset, bus_size_t size, * bus_space_handle_t *nbshp)); * * Get a new handle for a subregion of an already-mapped area of bus space. */ #define bus_space_subregion(t, h, o, s, hp) \ ((*(hp) = (h) + (o)), 0) /* * int bus_space_alloc __P((bus_space_tag_t t, bus_addr_t rstart, * bus_addr_t rend, bus_size_t size, bus_size_t align, * bus_size_t boundary, int flags, bus_addr_t *bpap, * bus_space_handle_t *bshp)); * * Allocate a region of bus space. */ #define bus_space_alloc(t, rs, re, s, a, b, f, ap, hp) \ ((*(t)->pbs_alloc)((t), (rs), (re), (s), (a), (b), (f), (ap), (hp))) /* * int bus_space_free __P((bus_space_tag_t t, * bus_space_handle_t bsh, bus_size_t size)); * * Free a region of bus space. */ #define bus_space_free(t, h, s) \ ((void)(*(t)->pbs_free)((t), (h), (s))) /* * u_intN_t bus_space_read_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset)); * * Read a 1, 2, 4, or 8 byte quantity from bus space * described by tag/handle/offset. */ #define bus_space_read(n,m) \ static __inline CAT3(u_int,m,_t) \ CAT(bus_space_read_,n)(bus_space_tag_t tag, bus_space_handle_t bsh, \ bus_size_t offset) \ { \ return CAT3(in,m,rb)((volatile CAT3(u_int,m,_t) *)(bsh + (offset))); \ } bus_space_read(1,8) bus_space_read(2,16) bus_space_read(4,32) #define bus_space_read_8 !!! bus_space_read_8 unimplemented !!! /* * u_intN_t bus_space_read_stream_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset)); * * Read a 2, 4, or 8 byte stream quantity from bus space * described by tag/handle/offset. */ #define bus_space_read_stream(n,m) \ static __inline CAT3(u_int,m,_t) \ CAT(bus_space_read_stream_,n)(bus_space_tag_t tag, bus_space_handle_t bsh, \ bus_size_t offset) \ { \ return CAT(in,m)((volatile CAT3(u_int,m,_t) *)(bsh + (offset))); \ } bus_space_read_stream(2,16) bus_space_read_stream(4,32) #define bus_space_read_stream_8 !!! bus_space_read_stream_8 unimplemented !!! /* * void bus_space_read_multi_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t *addr, size_t count)); * * Read `count' 1, 2, 4, or 8 byte quantities from bus space * described by tag/handle/offset and copy into buffer provided. */ #define bus_space_read_multi(n,m) \ static __inline void \ CAT(bus_space_read_multi_,n)(bus_space_tag_t tag, bus_space_handle_t bsh, \ bus_size_t offset, CAT3(u_int,m,_t) *addr, size_t count) \ { \ CAT3(ins,m,rb)((volatile CAT3(u_int,m,_t) *)(bsh + (offset)), \ (CAT3(u_int,m,_t) *)addr, (size_t)count); \ } bus_space_read_multi(1,8) bus_space_read_multi(2,16) bus_space_read_multi(4,32) #define bus_space_read_multi_8 !!! bus_space_read_multi_8 not implemented !!! /* * void bus_space_read_multi_stream_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t *addr, size_t count)); * * Read `count' 2, 4, or 8 byte stream quantities from bus space * described by tag/handle/offset and copy into buffer provided. */ #define bus_space_read_multi_stream(n,m) \ static __inline void \ CAT(bus_space_read_multi_stream_,n)(bus_space_tag_t tag, \ bus_space_handle_t bsh, \ bus_size_t offset, CAT3(u_int,m,_t) *addr, size_t count) \ { \ CAT(ins,m)((volatile CAT3(u_int,m,_t) *)(bsh + (offset)), \ (CAT3(u_int,m,_t) *)addr, (size_t)count); \ } bus_space_read_multi_stream(2,16) bus_space_read_multi_stream(4,32) #define bus_space_read_multi_stream_8 \ !!! bus_space_read_multi_stream_8 not implemented !!! /* * void bus_space_write_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t value)); * * Write the 1, 2, 4, or 8 byte value `value' to bus space * described by tag/handle/offset. */ #define bus_space_write(n,m) \ static __inline void \ CAT(bus_space_write_,n)(bus_space_tag_t tag, bus_space_handle_t bsh, \ bus_size_t offset, CAT3(u_int,m,_t) x) \ { \ CAT3(out,m,rb)((volatile CAT3(u_int,m,_t) *)(bsh + (offset)), x); \ } bus_space_write(1,8) bus_space_write(2,16) bus_space_write(4,32) #define bus_space_write_8 !!! bus_space_write_8 unimplemented !!! /* * void bus_space_write_stream_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t value)); * * Write the 2, 4, or 8 byte stream value `value' to bus space * described by tag/handle/offset. */ #define bus_space_write_stream(n,m) \ static __inline void \ CAT(bus_space_write_stream_,n)(bus_space_tag_t tag, bus_space_handle_t bsh, \ bus_size_t offset, CAT3(u_int,m,_t) x) \ { \ CAT(out,m)((volatile CAT3(u_int,m,_t) *)(bsh + (offset)), x); \ } bus_space_write_stream(2,16) bus_space_write_stream(4,32) #define bus_space_write_stream_8 !!! bus_space_write_stream_8 unimplemented !!! /* * void bus_space_write_multi_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * const u_intN_t *addr, size_t count)); * * Write `count' 1, 2, 4, or 8 byte quantities from the buffer * provided to bus space described by tag/handle/offset. */ #define bus_space_write_multi(n,m) \ static __inline void \ CAT(bus_space_write_multi_,n)(bus_space_tag_t tag, bus_space_handle_t bsh, \ bus_size_t offset, const CAT3(u_int,m,_t) *addr, size_t count) \ { \ CAT3(outs,m,rb)((volatile CAT3(u_int,m,_t) *)(bsh + (offset)), \ (CAT3(u_int,m,_t) *)addr, (size_t)count); \ } bus_space_write_multi(1,8) bus_space_write_multi(2,16) bus_space_write_multi(4,32) #define bus_space_write_multi_8 !!! bus_space_write_multi_8 not implemented !!! /* * void bus_space_write_multi_stream_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * const u_intN_t *addr, size_t count)); * * Write `count' 2, 4, or 8 byte stream quantities from the buffer * provided to bus space described by tag/handle/offset. */ #define bus_space_write_multi_stream(n,m) \ static __inline void \ CAT(bus_space_write_multi_stream_,n)(bus_space_tag_t tag, \ bus_space_handle_t bsh, \ bus_size_t offset, const CAT3(u_int,m,_t) *addr, size_t count) \ { \ CAT(outs,m)((volatile CAT3(u_int,m,_t) *)(bsh + (offset)), \ (CAT3(u_int,m,_t) *)addr, (size_t)count); \ } bus_space_write_multi_stream(2,16) bus_space_write_multi_stream(4,32) #define bus_space_write_multi_stream_8 \ !!! bus_space_write_multi_stream_8 not implemented !!! /* * void bus_space_read_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t *addr, size_t count)); * * Read `count' 1, 2, 4, or 8 byte quantities from bus space * described by tag/handle and starting at `offset' and copy into * buffer provided. */ static __inline void bus_space_read_region_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int8_t *, size_t)); static __inline void bus_space_read_region_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int16_t *, size_t)); static __inline void bus_space_read_region_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int32_t *, size_t)); static __inline void bus_space_read_region_1(tag, bsh, offset, addr, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int8_t *addr; size_t count; { volatile u_int8_t *s; s = (volatile u_int8_t *)(bsh + offset); while (count--) *addr++ = *s++; __asm__ volatile("eieio; sync"); } static __inline void bus_space_read_region_2(tag, bsh, offset, addr, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int16_t *addr; size_t count; { volatile u_int16_t *s; s = (volatile u_int16_t *)(bsh + offset); while (count--) __asm__ volatile("lhbrx %0, 0, %1" : "=r"(*addr++) : "r"(s++)); __asm__ volatile("eieio; sync"); } static __inline void bus_space_read_region_4(tag, bsh, offset, addr, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int32_t *addr; size_t count; { volatile u_int32_t *s; s = (volatile u_int32_t *)(bsh + offset); while (count--) __asm__ volatile("lwbrx %0, 0, %1" : "=r"(*addr++) : "r"(s++)); __asm__ volatile("eieio; sync"); } #define bus_space_read_region_8 !!! bus_space_read_region_8 unimplemented !!! /* * void bus_space_read_region_stream_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t *addr, size_t count)); * * Read `count' 2, 4, or 8 byte stream quantities from bus space * described by tag/handle and starting at `offset' and copy into * buffer provided. */ static __inline void bus_space_read_region_stream_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int16_t *, size_t)); static __inline void bus_space_read_region_stream_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int32_t *, size_t)); static __inline void bus_space_read_region_stream_2(tag, bsh, offset, addr, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int16_t *addr; size_t count; { volatile u_int16_t *s; s = (volatile u_int16_t *)(bsh + offset); while (count--) *addr++ = *s++; __asm__ volatile("eieio; sync"); } static __inline void bus_space_read_region_stream_4(tag, bsh, offset, addr, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int32_t *addr; size_t count; { volatile u_int32_t *s; s = (volatile u_int32_t *)(bsh + offset); while (count--) *addr++ = *s++; __asm__ volatile("eieio; sync"); } #define bus_space_read_region_stream_8 \ !!! bus_space_read_region_stream_8 unimplemented !!! /* * void bus_space_write_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * const u_intN_t *addr, size_t count)); * * Write `count' 1, 2, 4, or 8 byte quantities from the buffer provided * to bus space described by tag/handle starting at `offset'. */ static __inline void bus_space_write_region_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int8_t *, size_t)); static __inline void bus_space_write_region_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int16_t *, size_t)); static __inline void bus_space_write_region_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int32_t *, size_t)); static __inline void bus_space_write_region_1(tag, bsh, offset, addr, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; const u_int8_t *addr; size_t count; { volatile u_int8_t *d; d = (volatile u_int8_t *)(bsh + offset); while (count--) *d++ = *addr++; __asm__ volatile("eieio; sync"); } static __inline void bus_space_write_region_2(tag, bsh, offset, addr, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; const u_int16_t *addr; size_t count; { volatile u_int16_t *d; d = (volatile u_int16_t *)(bsh + offset); while (count--) __asm__ volatile("sthbrx %0, 0, %1" :: "r"(*addr++), "r"(d++)); __asm__ volatile("eieio; sync"); } static __inline void bus_space_write_region_4(tag, bsh, offset, addr, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; const u_int32_t *addr; size_t count; { volatile u_int32_t *d; d = (volatile u_int32_t *)(bsh + offset); while (count--) __asm__ volatile("stwbrx %0, 0, %1" :: "r"(*addr++), "r"(d++)); __asm__ volatile("eieio; sync"); } #define bus_space_write_region_8 !!! bus_space_write_region_8 unimplemented !!! /* * void bus_space_write_region_stream_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * const u_intN_t *addr, size_t count)); * * Write `count' 2, 4, or 8 byte stream quantities from the buffer provided * to bus space described by tag/handle starting at `offset'. */ static __inline void bus_space_write_region_stream_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int16_t *, size_t)); static __inline void bus_space_write_region_stream_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int32_t *, size_t)); static __inline void bus_space_write_region_stream_2(tag, bsh, offset, addr, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; const u_int16_t *addr; size_t count; { volatile u_int16_t *d; d = (volatile u_int16_t *)(bsh + offset); while (count--) *d++ = *addr++; __asm__ volatile("eieio; sync"); } static __inline void bus_space_write_region_stream_4(tag, bsh, offset, addr, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; const u_int32_t *addr; size_t count; { volatile u_int32_t *d; d = (volatile u_int32_t *)(bsh + offset); while (count--) *d++ = *addr++; __asm__ volatile("eieio; sync"); } #define bus_space_write_region_stream_8 \ !!! bus_space_write_region_stream_8 unimplemented !!! /* * void bus_space_set_multi_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, u_intN_t val, * size_t count)); * * Write the 1, 2, 4, or 8 byte value `val' to bus space described * by tag/handle/offset `count' times. */ static __inline void bus_space_set_multi_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int8_t, size_t)); static __inline void bus_space_set_multi_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int16_t, size_t)); static __inline void bus_space_set_multi_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int32_t, size_t)); static __inline void bus_space_set_multi_1(tag, bsh, offset, val, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int8_t val; size_t count; { volatile u_int8_t *d; d = (volatile u_int8_t *)(bsh + offset); while (count--) *d = val; __asm__ volatile("eieio; sync"); } static __inline void bus_space_set_multi_2(tag, bsh, offset, val, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int16_t val; size_t count; { volatile u_int16_t *d; d = (volatile u_int16_t *)(bsh + offset); while (count--) __asm__ volatile("sthbrx %0, 0, %1" :: "r"(val), "r"(d)); __asm__ volatile("eieio; sync"); } static __inline void bus_space_set_multi_4(tag, bsh, offset, val, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int32_t val; size_t count; { volatile u_int32_t *d; d = (volatile u_int32_t *)(bsh + offset); while (count--) __asm__ volatile("stwbrx %0, 0, %1" :: "r"(val), "r"(d)); __asm__ volatile("eieio; sync"); } #define bus_space_set_multi_8 !!! bus_space_set_multi_8 unimplemented !!! /* * void bus_space_set_multi_stream_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, u_intN_t val, * size_t count)); * * Write the 2, 4, or 8 byte stream value `val' to bus space described * by tag/handle/offset `count' times. */ static __inline void bus_space_set_multi_stream_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int16_t, size_t)); static __inline void bus_space_set_multi_stream_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int32_t, size_t)); static __inline void bus_space_set_multi_stream_2(tag, bsh, offset, val, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int16_t val; size_t count; { volatile u_int16_t *d; d = (volatile u_int16_t *)(bsh + offset); while (count--) *d = val; __asm__ volatile("eieio; sync"); } static __inline void bus_space_set_multi_stream_4(tag, bsh, offset, val, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int32_t val; size_t count; { volatile u_int32_t *d; d = (volatile u_int32_t *)(bsh + offset); while (count--) *d = val; __asm__ volatile("eieio; sync"); } #define bus_space_set_multi_stream_8 \ !!! bus_space_set_multi_stream_8 unimplemented !!! /* * void bus_space_set_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, u_intN_t val, * size_t count)); * * Write `count' 1, 2, 4, or 8 byte value `val' to bus space described * by tag/handle starting at `offset'. */ static __inline void bus_space_set_region_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int8_t, size_t)); static __inline void bus_space_set_region_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int16_t, size_t)); static __inline void bus_space_set_region_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int32_t, size_t)); static __inline void bus_space_set_region_1(tag, bsh, offset, val, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int8_t val; size_t count; { volatile u_int8_t *d; d = (volatile u_int8_t *)(bsh + offset); while (count--) *d++ = val; __asm__ volatile("eieio; sync"); } static __inline void bus_space_set_region_2(tag, bsh, offset, val, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int16_t val; size_t count; { volatile u_int16_t *d; d = (volatile u_int16_t *)(bsh + offset); while (count--) __asm__ volatile("sthbrx %0, 0, %1" :: "r"(val), "r"(d++)); __asm__ volatile("eieio; sync"); } static __inline void bus_space_set_region_4(tag, bsh, offset, val, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int32_t val; size_t count; { volatile u_int32_t *d; d = (volatile u_int32_t *)(bsh + offset); while (count--) __asm__ volatile("stwbrx %0, 0, %1" :: "r"(val), "r"(d++)); __asm__ volatile("eieio; sync"); } #define bus_space_set_region_8 !!! bus_space_set_region_8 unimplemented !!! /* * void bus_space_set_region_stream_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, u_intN_t val, * size_t count)); * * Write `count' 2, 4, or 8 byte stream value `val' to bus space described * by tag/handle starting at `offset'. */ static __inline void bus_space_set_region_stream_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int16_t, size_t)); static __inline void bus_space_set_region_stream_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int32_t, size_t)); static __inline void bus_space_set_region_stream_2(tag, bsh, offset, val, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int16_t val; size_t count; { volatile u_int16_t *d; d = (volatile u_int16_t *)(bsh + offset); while (count--) *d++ = val; __asm__ volatile("eieio; sync"); } static __inline void bus_space_set_region_stream_4(tag, bsh, offset, val, count) bus_space_tag_t tag; bus_space_handle_t bsh; bus_size_t offset; u_int32_t val; size_t count; { volatile u_int32_t *d; d = (volatile u_int32_t *)(bsh + offset); while (count--) *d++ = val; __asm__ volatile("eieio; sync"); } #define bus_space_set_region_stream_8 \ !!! bus_space_set_region_stream_8 unimplemented !!! /* * void bus_space_copy_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh1, bus_size_t off1, * bus_space_handle_t bsh2, bus_size_t off2, * size_t count)); * * Copy `count' 1, 2, 4, or 8 byte values from bus space starting * at tag/bsh1/off1 to bus space starting at tag/bsh2/off2. */ static __inline void bus_space_copy_region_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, size_t)); static __inline void bus_space_copy_region_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, size_t)); static __inline void bus_space_copy_region_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, size_t)); static __inline void bus_space_copy_region_1(t, h1, o1, h2, o2, c) bus_space_tag_t t; bus_space_handle_t h1; bus_size_t o1; bus_space_handle_t h2; bus_size_t o2; size_t c; { bus_addr_t addr1 = h1 + o1; bus_addr_t addr2 = h2 + o2; if (addr1 >= addr2) { /* src after dest: copy forward */ for (; c != 0; c--, addr1++, addr2++) *(volatile u_int8_t *)(addr2) = *(volatile u_int8_t *)(addr1); } else { /* dest after src: copy backwards */ for (addr1 += (c - 1), addr2 += (c - 1); c != 0; c--, addr1--, addr2--) *(volatile u_int8_t *)(addr2) = *(volatile u_int8_t *)(addr1); } } static __inline void bus_space_copy_region_2(t, h1, o1, h2, o2, c) bus_space_tag_t t; bus_space_handle_t h1; bus_size_t o1; bus_space_handle_t h2; bus_size_t o2; size_t c; { bus_addr_t addr1 = h1 + o1; bus_addr_t addr2 = h2 + o2; if (addr1 >= addr2) { /* src after dest: copy forward */ for (; c != 0; c--, addr1 += 2, addr2 += 2) *(volatile u_int16_t *)(addr2) = *(volatile u_int16_t *)(addr1); } else { /* dest after src: copy backwards */ for (addr1 += 2 * (c - 1), addr2 += 2 * (c - 1); c != 0; c--, addr1 -= 2, addr2 -= 2) *(volatile u_int16_t *)(addr2) = *(volatile u_int16_t *)(addr1); } } static __inline void bus_space_copy_region_4(t, h1, o1, h2, o2, c) bus_space_tag_t t; bus_space_handle_t h1; bus_size_t o1; bus_space_handle_t h2; bus_size_t o2; size_t c; { bus_addr_t addr1 = h1 + o1; bus_addr_t addr2 = h2 + o2; if (addr1 >= addr2) { /* src after dest: copy forward */ for (; c != 0; c--, addr1 += 4, addr2 += 4) *(volatile u_int32_t *)(addr2) = *(volatile u_int32_t *)(addr1); } else { /* dest after src: copy backwards */ for (addr1 += 4 * (c - 1), addr2 += 4 * (c - 1); c != 0; c--, addr1 -= 4, addr2 -= 4) *(volatile u_int32_t *)(addr2) = *(volatile u_int32_t *)(addr1); } } #define bus_space_copy_region_8 !!! bus_space_copy_region_8 unimplemented !!! /* * Bus read/write barrier methods. * * void bus_space_barrier __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * bus_size_t len, int flags)); * */ #define bus_space_barrier(t, h, o, l, f) \ ((void)((void)(t), (void)(h), (void)(o), (void)(l), (void)(f))) #define BUS_SPACE_BARRIER_READ 0x01 /* force read barrier */ #define BUS_SPACE_BARRIER_WRITE 0x02 /* force write barrier */ #define BUS_SPACE_ALIGNED_POINTER(p, t) ALIGNED_POINTER(p, t) /* * Bus DMA methods. */ /* * Flags used in various bus DMA methods. */ #define BUS_DMA_WAITOK 0x00 /* safe to sleep (pseudo-flag) */ #define BUS_DMA_NOWAIT 0x01 /* not safe to sleep */ #define BUS_DMA_ALLOCNOW 0x02 /* perform resource allocation now */ #define BUS_DMA_COHERENT 0x04 /* hint: map memory DMA coherent */ #define BUS_DMA_STREAMING 0x08 /* hint: sequential, unidirectional */ #define BUS_DMA_BUS1 0x10 /* placeholders for bus functions... */ #define BUS_DMA_BUS2 0x20 #define BUS_DMA_BUS3 0x40 #define BUS_DMA_BUS4 0x80 /* Forwards needed by prototypes below. */ struct mbuf; struct uio; #define BUS_DMASYNC_PREREAD 0x01 #define BUS_DMASYNC_POSTREAD 0x02 #define BUS_DMASYNC_PREWRITE 0x04 #define BUS_DMASYNC_POSTWRITE 0x08 typedef struct powerpc_bus_dma_tag *bus_dma_tag_t; typedef struct powerpc_bus_dmamap *bus_dmamap_t; /* * bus_dma_segment_t * * Describes a single contiguous DMA transaction. Values * are suitable for programming into DMA registers. */ struct powerpc_bus_dma_segment { bus_addr_t ds_addr; /* DMA address */ bus_size_t ds_len; /* length of transfer */ }; typedef struct powerpc_bus_dma_segment bus_dma_segment_t; /* * bus_dma_tag_t * * A machine-dependent opaque type describing the implementation of * DMA for a given bus. */ struct powerpc_bus_dma_tag { /* * The `bounce threshold' is checked while we are loading * the DMA map. If the physical address of the segment * exceeds the threshold, an error will be returned. The * caller can then take whatever action is necessary to * bounce the transfer. If this value is 0, it will be * ignored. */ bus_addr_t _bounce_thresh; /* * DMA mapping methods. */ int (*_dmamap_create) __P((bus_dma_tag_t, bus_size_t, int, bus_size_t, bus_size_t, int, bus_dmamap_t *)); void (*_dmamap_destroy) __P((bus_dma_tag_t, bus_dmamap_t)); int (*_dmamap_load) __P((bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t, struct proc *, int)); int (*_dmamap_load_mbuf) __P((bus_dma_tag_t, bus_dmamap_t, struct mbuf *, int)); int (*_dmamap_load_uio) __P((bus_dma_tag_t, bus_dmamap_t, struct uio *, int)); int (*_dmamap_load_raw) __P((bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *, int, bus_size_t, int)); void (*_dmamap_unload) __P((bus_dma_tag_t, bus_dmamap_t)); void (*_dmamap_sync) __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t, int)); /* * DMA memory utility functions. */ int (*_dmamem_alloc) __P((bus_dma_tag_t, bus_size_t, bus_size_t, bus_size_t, bus_dma_segment_t *, int, int *, int)); void (*_dmamem_free) __P((bus_dma_tag_t, bus_dma_segment_t *, int)); int (*_dmamem_map) __P((bus_dma_tag_t, bus_dma_segment_t *, int, size_t, caddr_t *, int)); void (*_dmamem_unmap) __P((bus_dma_tag_t, caddr_t, size_t)); paddr_t (*_dmamem_mmap) __P((bus_dma_tag_t, bus_dma_segment_t *, int, off_t, int, int)); }; #define bus_dmamap_create(t, s, n, m, b, f, p) \ (*(t)->_dmamap_create)((t), (s), (n), (m), (b), (f), (p)) #define bus_dmamap_destroy(t, p) \ (*(t)->_dmamap_destroy)((t), (p)) #define bus_dmamap_load(t, m, b, s, p, f) \ (*(t)->_dmamap_load)((t), (m), (b), (s), (p), (f)) #define bus_dmamap_load_mbuf(t, m, b, f) \ (*(t)->_dmamap_load_mbuf)((t), (m), (b), (f)) #define bus_dmamap_load_uio(t, m, u, f) \ (*(t)->_dmamap_load_uio)((t), (m), (u), (f)) #define bus_dmamap_load_raw(t, m, sg, n, s, f) \ (*(t)->_dmamap_load_raw)((t), (m), (sg), (n), (s), (f)) #define bus_dmamap_unload(t, p) \ (*(t)->_dmamap_unload)((t), (p)) #define bus_dmamap_sync(t, p, a, l, o) \ (void)((t)->_dmamap_sync ? \ (*(t)->_dmamap_sync)((t), (p), (a), (l), (o)) : (void)0) #define bus_dmamem_alloc(t, s, a, b, sg, n, r, f) \ (*(t)->_dmamem_alloc)((t), (s), (a), (b), (sg), (n), (r), (f)) #define bus_dmamem_free(t, sg, n) \ (*(t)->_dmamem_free)((t), (sg), (n)) #define bus_dmamem_map(t, sg, n, s, k, f) \ (*(t)->_dmamem_map)((t), (sg), (n), (s), (k), (f)) #define bus_dmamem_unmap(t, k, s) \ (*(t)->_dmamem_unmap)((t), (k), (s)) #define bus_dmamem_mmap(t, sg, n, o, p, f) \ (*(t)->_dmamem_mmap)((t), (sg), (n), (o), (p), (f)) /* * bus_dmamap_t * * Describes a DMA mapping. */ struct powerpc_bus_dmamap { /* * PRIVATE MEMBERS: not for use my machine-independent code. */ bus_size_t _dm_size; /* largest DMA transfer mappable */ int _dm_segcnt; /* number of segs this map can map */ bus_size_t _dm_maxsegsz; /* largest possible segment */ bus_size_t _dm_boundary; /* don't cross this */ bus_addr_t _dm_bounce_thresh; /* bounce threshold; see tag */ int _dm_flags; /* misc. flags */ void *_dm_cookie; /* cookie for bus-specific functions */ /* * PUBLIC MEMBERS: these are used by machine-independent code. */ bus_size_t dm_mapsize; /* size of the mapping */ int dm_nsegs; /* # valid segments in mapping */ bus_dma_segment_t dm_segs[1]; /* segments; variable length */ }; #ifdef _POWERPC_BUS_DMA_PRIVATE int _bus_dmamap_create __P((bus_dma_tag_t, bus_size_t, int, bus_size_t, bus_size_t, int, bus_dmamap_t *)); void _bus_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t)); int _bus_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t, struct proc *, int)); int _bus_dmamap_load_mbuf __P((bus_dma_tag_t, bus_dmamap_t, struct mbuf *, int)); int _bus_dmamap_load_uio __P((bus_dma_tag_t, bus_dmamap_t, struct uio *, int)); int _bus_dmamap_load_raw __P((bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *, int, bus_size_t, int)); void _bus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t)); void _bus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t, int)); int _bus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags)); void _bus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs)); int _bus_dmamem_map __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs, size_t size, caddr_t *kvap, int flags)); void _bus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva, size_t size)); paddr_t _bus_dmamem_mmap __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs, off_t off, int prot, int flags)); int _bus_dmamem_alloc_range __P((bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags, paddr_t low, paddr_t high)); #endif /* _POWERPC_BUS_DMA_PRIVATE */ #endif /* _POWERPC_BUS_H_ */