/* * National Semiconductor SONIC Driver * Copyright (c) 1991 Algorithmics Ltd (http://www.algor.co.uk) * You may use, copy, and modify this program so long as you retain the * copyright line. * * This driver has been substantially modified since Algorithmics donated * it. */ #include "sn.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #ifdef NS #include #include #endif #ifdef RMP #include #include #endif #include #include "bpfilter.h" #if NBPFILTER > 0 #include #include #endif #include #define SONICDW 32 typedef unsigned char uchar; #include #define SWR(a, x) (a) = (x) #define SRD(a) ((a) & 0xffff) #include #define wbflush() MachEmptyWriteBuffer() /* * Statistics collected over time */ struct sn_stats { int ls_opacks; /* packets transmitted */ int ls_ipacks; /* packets received */ int ls_tdr; /* contents of tdr after collision */ int ls_tdef; /* packets where had to wait */ int ls_tone; /* packets with one retry */ int ls_tmore; /* packets with more than one retry */ int ls_tbuff; /* transmit buff errors */ int ls_tuflo; /* " uflo " */ int ls_tlcol; int ls_tlcar; int ls_trtry; int ls_rbuff; /* receive buff errors */ int ls_rfram; /* framing */ int ls_roflo; /* overflow */ int ls_rcrc; int ls_rrng; /* rx ring sequence error */ int ls_babl; /* chip babl error */ int ls_cerr; /* collision error */ int ls_miss; /* missed packet */ int ls_merr; /* memory error */ int ls_copies; /* copies due to out of range mbufs */ int ls_maxmbufs; /* max mbufs on transmit */ int ls_maxslots; /* max ring slots on transmit */ }; struct sn_softc { struct device sc_dev; struct arpcom sc_ac; #define sc_if sc_ac.ac_if /* network visible interface */ #define sc_enaddr sc_ac.ac_enaddr /* hardware ethernet address */ struct sonic_reg *sc_csr; /* hardware pointer */ dma_softc_t __dma; /* stupid macro ... */ dma_softc_t *dma; /* dma mapper control */ int sc_rxmark; /* position in rx ring for reading buffs */ int sc_rramark; /* index into rra of wp */ int sc_txhead; /* index of first TDA passed to chip */ int sc_missed; /* missed packet counter */ struct RXpkt *sc_lrxp; /* last RDA available to chip */ struct sn_stats sc_sum; short sc_iflags; } sn_softc; int snmatch __P((struct device *, void *, void *)); void snattach __P((struct device *, struct device *, void *)); struct cfdriver sncd = { NULL, "sn", snmatch, snattach, DV_IFNET, sizeof(struct sn_softc) }; #include void __assert(file, line, failedexpr) const char *file, *failedexpr; int line; { (void)printf( "assertion \"%s\" failed: file \"%s\", line %d\n", failedexpr, file, line); } void m_check(m) struct mbuf *m; { if (m->m_flags & M_EXT) { assert(m->m_len >= 0); assert(m->m_len <= m->m_ext.ext_size); assert(m->m_data >= &m->m_ext.ext_buf[0]); assert(m->m_data <= &m->m_ext.ext_buf[m->m_ext.ext_size]); assert(m->m_data + m->m_len <= &m->m_ext.ext_buf[m->m_ext.ext_size]); } else if (m->m_flags & M_PKTHDR) { assert(m->m_len >= 0); assert(m->m_len <= MHLEN); assert(m->m_data >= m->m_pktdat); assert(m->m_data <= &m->m_pktdat[MHLEN]); assert(m->m_data + m->m_len <= &m->m_pktdat[MHLEN]); } else { assert(m->m_len >= 0); assert(m->m_len <= MLEN); assert(m->m_data >= m->m_dat); assert(m->m_data <= &m->m_dat[MLEN]); assert(m->m_data + m->m_len <= &m->m_dat[MLEN]); } } void m_checkm(m) struct mbuf *m; { while (m) { m_check(m); m = m->m_next; } } int ethdebug = 0; int snintr __P((struct sn_softc *)); int snioctl __P((struct ifnet *ifp, u_long cmd, caddr_t data)); void snstart __P((struct ifnet *ifp)); void snwatchdog __P(( /*int unit */ )); void snreset __P((struct sn_softc *sc)); /* * SONIC buffers need to be aligned 16 or 32 bit aligned. * These macros calculate and verify alignment. */ #if SONICDW == 32 #define SONICALIGN 4 #else #define SONICALIGN 2 #endif #define SOALIGN(array) (((int)array+SONICALIGN-1) & ~(SONICALIGN-1)) #define SOALIGNED(p) (!(((uint)p)&(SONICALIGN-1))) #define UPPER(x) ((unsigned)(x) >> 16) #define LOWER(x) ((unsigned)(x) & 0xffff) /* * buffer sizes in 32 bit mode * 1 TXpkt is 4 hdr words + (3 * FRAGMAX) + 1 link word * FRAGMAX == 16 => 54 words == 216 bytes * * 1 RxPkt is 7 words == 28 bytes * 1 Rda is 4 words == 16 bytes */ #define NRRA 32 /* # receive resource descriptors */ #define RRAMASK 0x1f /* why it must be poer of two */ #define NRBA 16 /* # receive buffers < NRRA */ #define NRDA NRBA /* # receive descriptors */ #define NTDA 4 /* # transmit descriptors */ #define CDASIZE sizeof(struct CDA) #define RRASIZE (NRRA*sizeof(struct RXrsrc)) #define RDASIZE (NRDA*sizeof(struct RXpkt)) #define TDASIZE (NTDA*sizeof(struct TXpkt)) #define FCSSIZE 4 /* size of FCS append te received packets */ /* * maximum recieve packet size plus 2 byte pad to make each * one aligned. 4 byte slop (required for eobc) */ #define RBASIZE (sizeof(struct ether_header) + ETHERMTU + FCSSIZE + 2 + 4) /* * space requiered for descriptors */ #define DESC_SIZE (RRASIZE + CDASIZE + RDASIZE + TDASIZE + SONICALIGN - 1) /* * This should really be 'allocated' but for now we * 'hardwire' it. */ #define SONICBUF 0xa0010000 /* * Nicely aligned pointers into the sonicbuffers * p_ points at physical (K1_SEG) addresses. * v_ is dma viritual address used by sonic. */ struct RXrsrc *p_rra; /* receiver resource descriptors */ struct RXrsrc *v_rra; struct RXpkt *p_rda; /* receiver desriptors */ struct RXpkt *v_rda; struct TXpkt *p_tda; /* transmitter descriptors */ struct TXpkt *v_tda; struct CDA *p_cda; /* CAM descriptors */ struct CDA *v_cda; char *p_rba; /* receive buffer area base */ char *v_rba; /* Meta transmit descriptors */ struct mtd { struct mtd *mtd_link; struct TXpkt *mtd_txp; struct mbuf *mtd_mbuf; } mtda[NTDA]; struct mtd *mtdfree; /* list of free meta transmit descriptors */ struct mtd *mtdhead; /* head of descriptors assigned to chip */ struct mtd *mtdtail; /* tail of descriptors assigned to chip */ struct mtd *mtdnext; /* next descriptor to give to chip */ void mtd_free __P((struct mtd *)); struct mtd *mtd_alloc __P((void)); int sngetaddr __P((struct sn_softc *sc)); int sninit __P((int unit)); int snstop __P((int unit)); int sonicput __P((struct sn_softc *sc, struct mbuf *m0)); void camdump __P((struct sn_softc *sc)); int snmatch(parent, match, aux) struct device *parent; void *match, *aux; { struct cfdata *cf = match; struct confargs *ca = aux; /* XXX CHECK BUS */ /* make sure that we're looking for this type of device. */ if (!BUS_MATCHNAME(ca, "sonic")) return (0); return (1); } /* * Interface exists: make available by filling in network interface * record. System will initialize the interface when it is ready * to accept packets. */ void snattach(parent, self, aux) struct device *parent, *self; void *aux; { struct sn_softc *sc = (void *)self; struct confargs *ca = aux; struct ifnet *ifp = &sc->sc_if; struct cfdata *cf = sc->sc_dev.dv_cfdata; int p, pp; sc->sc_csr = (struct sonic_reg *)BUS_CVTADDR(ca); sc->dma = &sc->__dma; sn_dma_init(sc->dma, FRAGMAX * NTDA + (NRBA * RBASIZE / PICA_DMA_PAGE_SIZE) + 1 + (DESC_SIZE * 2 / PICA_DMA_PAGE_SIZE) + 1); /* * because the sonic is basicly 16bit device it 'concatenates' * a higher buffer address to a 16 bit offset this will cause wrap * around problems near the end of 64k !! */ p = SONICBUF; pp = SONICBUF - (FRAGMAX * NTDA * PICA_DMA_PAGE_SIZE); if ((p ^ (p + RRASIZE + CDASIZE)) & 0x10000) p = (p + 0x10000) & ~0xffff; p_rra = (struct RXrsrc *) p; v_rra = (struct RXrsrc *)(p - pp + sc->dma->dma_va); p += RRASIZE; p_cda = (struct CDA *) p; v_cda = (struct CDA *)(p - pp + sc->dma->dma_va); p += CDASIZE; if ((p ^ (p + RDASIZE)) & 0x10000) p = (p + 0x10000) & ~0xffff; p_rda = (struct RXpkt *) p; v_rda = (struct RXpkt *)(p - pp + sc->dma->dma_va); p += RDASIZE; if ((p ^ (p + TDASIZE)) & 0x10000) p = (p + 0x10000) & ~0xffff; p_tda = (struct TXpkt *) p; v_tda = (struct TXpkt *)(p - pp + sc->dma->dma_va); p += TDASIZE; p += PICA_DMA_PAGE_SIZE - (p & (PICA_DMA_PAGE_SIZE -1)); p_rba = (char *)p; v_rba = (char *)(p - pp + sc->dma->dma_va); p += NRBA * RBASIZE; DMA_MAP(sc->dma, (caddr_t)SONICBUF, p - SONICBUF, SONICBUF - pp); #if 0 camdump(sc); #endif sngetaddr(sc); printf(" address %s\n", ether_sprintf(sc->sc_enaddr)); #if 0 printf("\nsonic buffers: rra=0x%x cda=0x%x rda=0x%x tda=0x%x rba=0x%x\n", p_rra, p_cda, p_rda, p_tda, p_rba); printf("sonic buffers: rra=0x%x cda=0x%x rda=0x%x tda=0x%x rba=0x%x\n", v_rra, v_cda, v_rda, v_tda, v_rba); printf("mapped to offset 0x%x size 0x%x\n", SONICBUF - pp, p - SONICBUF); #endif BUS_INTR_ESTABLISH(ca, (intr_handler_t)snintr, (void *)sc); ifp->if_name = "sn"; ifp->if_unit = sc->sc_dev.dv_unit; ifp->if_ioctl = snioctl; ifp->if_start = snstart; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_watchdog = snwatchdog; #if NBPFILTER > 0 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif if_attach(ifp); ether_ifattach(ifp); } int snioctl(ifp, cmd, data) struct ifnet *ifp; u_long cmd; caddr_t data; { struct ifaddr *ifa; struct sn_softc *sc = sncd.cd_devs[ifp->if_unit]; int s = splnet(), err = 0; int temp; switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: (void)sninit(ifp->if_unit); arp_ifinit(&sc->sc_ac, ifa); break; #endif #ifdef NS case AF_NS: { struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr); if (ns_nullhost(*ina)) { ina->x_host = *(union ns_host *)(sc->sc_addr); } else { /* XXX * add an extra i/f address to * sonic filter */ } } (void)sninit(ifp->if_unit); break; #endif /* NS */ default: (void)sninit(ifp->if_unit); break; } break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && ifp->if_flags & IFF_RUNNING) { snstop(ifp->if_unit); ifp->if_flags &= ~IFF_RUNNING; } else if (ifp->if_flags & IFF_UP && (ifp->if_flags & IFF_RUNNING) == 0) (void)sninit(ifp->if_unit); /* * If the state of the promiscuous bit changes, the interface * must be reset to effect the change. */ if (((ifp->if_flags ^ sc->sc_iflags) & IFF_PROMISC) && (ifp->if_flags & IFF_RUNNING)) { sc->sc_iflags = ifp->if_flags; printf("change in flags\n"); temp = sc->sc_if.if_flags & IFF_UP; snreset(sc); sc->sc_if.if_flags |= temp; snstart(ifp); } break; case SIOCADDMULTI: case SIOCDELMULTI: if(cmd == SIOCADDMULTI) err = ether_addmulti((struct ifreq *)data, &sc->sc_ac); else err = ether_delmulti((struct ifreq *)data, &sc->sc_ac); if (err == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. But remember UP flag! */ temp = sc->sc_if.if_flags & IFF_UP; snreset(sc); sc->sc_if.if_flags |= temp; err = 0; } break; default: err = EINVAL; } splx(s); return (err); } /* * Encapsulate a packet of type family for the local net. * Use trailer local net encapsulation if enough data in first * packet leaves a multiple of 512 bytes of data in remainder. */ void snstart(ifp) struct ifnet *ifp; { struct sn_softc *sc = sncd.cd_devs[ifp->if_unit]; struct mbuf *m; int len; if ((sc->sc_if.if_flags & IFF_RUNNING) == 0) return; IF_DEQUEUE(&sc->sc_if.if_snd, m); if (m == 0) return; /* * If there is nothing in the o/p queue, and there is room in * the Tx ring, then send the packet directly. Otherwise append * it to the o/p queue. */ len = sonicput(sc, m); #if NBPFILTER > 0 /* * If bpf is listening on this interface, let it * see the packet before we commit it to the wire. */ if (sc->sc_if.if_bpf) bpf_mtap(sc->sc_if.if_bpf, m); #endif sc->sc_if.if_opackets++; /* # of pkts */ sc->sc_sum.ls_opacks++; /* # of pkts */ } /* * This is called from sonicioctl() when /etc/ifconfig is run to set * the address or switch the i/f on. */ void caminitialise __P((void)); void camentry __P((int, u_char *ea)); void camprogram __P((struct sn_softc *)); void initialise_tda __P((struct sn_softc *)); void initialise_rda __P((struct sn_softc *)); void initialise_rra __P((struct sn_softc *)); /* * reset and restart the SONIC. Called in case of fatal * hardware/software errors. */ void snreset(sc) struct sn_softc *sc; { printf("snreset\n"); snstop(sc->sc_dev.dv_unit); sninit(sc->sc_dev.dv_unit); } int sninit(unit) int unit; { struct sn_softc *sc = sncd.cd_devs[unit]; struct sonic_reg *csr = sc->sc_csr; int s, error; if (sc->sc_if.if_flags & IFF_RUNNING) /* already running */ return (0); s = splnet(); csr->s_cr = CR_RST; /* s_dcr only accessable reset mode! */ /* config it */ csr->s_dcr = DCR_LBR | DCR_SYNC | DCR_WAIT0 | DCR_DW32 | DCR_DMABLOCK | DCR_RFT16 | DCR_TFT16; csr->s_rcr = RCR_BRD | RCR_LBNONE; csr->s_imr = IMR_PRXEN | IMR_PTXEN | IMR_TXEREN | IMR_HBLEN | IMR_LCDEN; /* clear pending interrupts */ csr->s_isr = 0x7fff; /* clear tally counters */ csr->s_crct = -1; csr->s_faet = -1; csr->s_mpt = -1; initialise_tda(sc); initialise_rda(sc); initialise_rra(sc); /* enable the chip */ csr->s_cr = 0; wbflush(); /* program the CAM with our address */ caminitialise(); camentry(0, sc->sc_enaddr); camprogram(sc); /* get it to read resource descriptors */ csr->s_cr = CR_RRRA; wbflush(); while (csr->s_cr & CR_RRRA) continue; /* enable rx */ csr->s_cr = CR_RXEN; wbflush(); /* flag interface as "running" */ sc->sc_if.if_flags |= IFF_RUNNING; splx(s); return (0); bad: snstop(sc->sc_dev.dv_unit); return (error); } /* * close down an interface and free its buffers * Called on final close of device, or if sninit() fails * part way through. */ int snstop(unit) int unit; { struct sn_softc *sc = sncd.cd_devs[unit]; struct mtd *mtd; int s = splnet(); /* stick chip in reset */ sc->sc_csr->s_cr = CR_RST; wbflush(); /* free all receive buffers (currently static so nothing to do) */ /* free all pending transmit mbufs */ while (mtd = mtdhead) { mtdhead = mtdhead->mtd_link; if (mtd->mtd_mbuf) m_freem(mtd->mtd_mbuf); mtd->mtd_mbuf = 0; mtd_free(mtd); } mtdnext = mtd_alloc(); sc->sc_if.if_timer = 0; sc->sc_if.if_flags &= ~(IFF_RUNNING | IFF_UP); splx(s); return (0); } /* * Called if any Tx packets remain unsent after 5 seconds, * In all cases we just reset the chip, and any retransmission * will be handled by higher level protocol timeouts. */ void snwatchdog(unit) int unit; { struct sn_softc *sc = sncd.cd_devs[unit]; int temp; if (mtdhead && mtdhead->mtd_mbuf) { /* something still pending for transmit */ if (mtdhead->mtd_txp->status == 0) log(LOG_ERR, "%s%d: Tx - timeout\n", sc->sc_if.if_name, sc->sc_if.if_unit); else log(LOG_ERR, "%s%d: Tx - lost interrupt\n", sc->sc_if.if_name, sc->sc_if.if_unit); temp = sc->sc_if.if_flags & IFF_UP; snreset(sc); sc->sc_if.if_flags |= temp; } } /* * stuff packet into sonic (at splnet) */ int sonicput(sc, m0) struct sn_softc *sc; struct mbuf *m0; { struct sonic_reg *csr = sc->sc_csr; struct TXpkt *txp; struct mtd *mtdnew; struct mbuf *m; int len = 0, fr = 0; int i; int fragoffset; /* Offset in viritual dma space for fragment */ /* grab the replacement mtd */ if ((mtdnew = mtd_alloc()) == 0) return (0); /* this packet goes to mdtnext fill in the TDA */ mtdnext->mtd_mbuf = m0; txp = mtdnext->mtd_txp; SWR(txp->config, 0); fragoffset = (txp - p_tda) * FRAGMAX * PICA_DMA_PAGE_SIZE; /* * Now fill in the fragments. Each fragment maps to it's * own dma page. Fragments crossing a dma page boundary * are split up in two fragments. This is somewhat stupid * because the dma mapper can do the work, but it helps * keeping the fragments in order. (read lazy programmer). */ for (m = m0; m; m = m->m_next) { unsigned va = (unsigned) mtod(m, caddr_t); int resid = m->m_len; MachHitFlushDCache(va, resid); len += resid; DMA_MAP(sc->dma, (caddr_t)va, resid, fragoffset); while (resid) { unsigned pa; unsigned n; pa = sc->dma->dma_va + (va & PGOFSET) + fragoffset; n = resid; if (n > NBPG - (va & PGOFSET)) { n = NBPG - (va & PGOFSET); } if (fr < FRAGMAX) { SWR(txp->u[fr].frag_ptrlo, LOWER(pa)); SWR(txp->u[fr].frag_ptrhi, UPPER(pa)); SWR(txp->u[fr].frag_size, n); } fr++; va += n; resid -= n; fragoffset += PICA_DMA_PAGE_SIZE; } } if (fr > FRAGMAX) { mtd_free(mtdnew); m_freem(m0); log(LOG_ERR, "%s%d: tx too many fragments %d\n", sc->sc_if.if_name, sc->sc_if.if_unit, fr); sc->sc_if.if_oerrors++; return (len); } /* * pad out last fragment for minimum size * * XXX is this incorrectly done? does it cause random bytes of * mem to be sent? if so, it should instead point to a zero'd * zone of mem. */ if (len < ETHERMIN + sizeof(struct ether_header)) { int pad = ETHERMIN + sizeof(struct ether_header) - len; SWR(txp->u[fr - 1].frag_size, pad + SRD(txp->u[fr - 1].frag_size)); len = ETHERMIN + sizeof(struct ether_header); } SWR(txp->frag_count, fr); SWR(txp->pkt_size, len); /* link onto the next mtd that will be used */ SWR(txp->u[fr].tlink, LOWER(v_tda + (mtdnew->mtd_txp - p_tda)) | EOL); if (mtdhead == 0) { /* no current transmit list start with this one */ mtdtail = mtdhead = mtdnext; csr->s_ctda = LOWER(v_tda + (txp - p_tda)); } else { /* * have a transmit list append it to end note * mtdnext is already physicaly linked to mtdtail in * mtdtail->mtd_txp->u[mtdtail->mtd_txp->frag_count].tlink */ SWR(mtdtail->mtd_txp->u[mtdtail->mtd_txp->frag_count].tlink, SRD(mtdtail->mtd_txp->u[mtdtail->mtd_txp->frag_count].tlink) & ~EOL); mtdtail = mtdnext; } mtdnext->mtd_link = mtdnew; mtdnext = mtdnew; /* make sure chip is running */ wbflush(); csr->s_cr = CR_TXP; wbflush(); sc->sc_if.if_timer = 5; /* 5 seconds to watch for failing to transmit */ return (len); } /* * Read out the ethernet address from the cam. It is stored * there by the boot when doing a loopback test. Thus we don't * have to fetch it from nv ram. */ int sngetaddr(sc) struct sn_softc *sc; { unsigned i, x, y; char *cp, *ea; #if 1 sc->sc_csr->s_cr = CR_RST; wbflush(); sc->sc_csr->s_cep = 0; i = sc->sc_csr->s_cap2; wbflush(); sc->sc_enaddr[5] = i >> 8; sc->sc_enaddr[4] = i; i = sc->sc_csr->s_cap1; wbflush(); sc->sc_enaddr[3] = i >> 8; sc->sc_enaddr[2] = i; i = sc->sc_csr->s_cap0; wbflush(); sc->sc_enaddr[1] = i >> 8; sc->sc_enaddr[0] = i; sc->sc_csr->s_cr = 0; wbflush(); #else sc->sc_enaddr[0] = 0x08; sc->sc_enaddr[1] = 0x00; sc->sc_enaddr[2] = 0x20; sc->sc_enaddr[3] = 0xa0; sc->sc_enaddr[4] = 0x66; sc->sc_enaddr[5] = 0x54; #endif return (0); } void sonictxint __P((struct sn_softc *)); void sonicrxint __P((struct sn_softc *)); int sonic_read __P((struct sn_softc *, struct RXpkt *)); struct mbuf *sonic_get __P((struct sn_softc *, struct ether_header *, int)); void mtd_free(mtd) struct mtd *mtd; { mtd->mtd_link = mtdfree; mtdfree = mtd; } struct mtd * mtd_alloc() { struct mtd *mtd = mtdfree; if (mtd) { mtdfree = mtd->mtd_link; mtd->mtd_link = 0; } return (mtd); } /* * CAM support */ void caminitialise() { int i; for (i = 0; i < MAXCAM; i++) SWR(p_cda->desc[i].cam_ep, i); SWR(p_cda->enable, 0); } void camentry(entry, ea) int entry; u_char *ea; { SWR(p_cda->desc[entry].cam_ep, entry); SWR(p_cda->desc[entry].cam_ap2, (ea[5] << 8) | ea[4]); SWR(p_cda->desc[entry].cam_ap1, (ea[3] << 8) | ea[2]); SWR(p_cda->desc[entry].cam_ap0, (ea[1] << 8) | ea[0]); SWR(p_cda->enable, SRD(p_cda->enable) | (1 << entry)); } void camprogram(sc) struct sn_softc *sc; { struct sonic_reg *csr; int timeout; int i; csr = sc->sc_csr; csr->s_cdp = LOWER(v_cda); csr->s_cdc = MAXCAM; csr->s_cr = CR_LCAM; wbflush(); timeout = 10000; while (csr->s_cr & CR_LCAM && timeout--) continue; if (timeout == 0) { /* XXX */ panic("sonic: CAM initialisation failed\n"); } timeout = 10000; while ((csr->s_isr & ISR_LCD) == 0 && timeout--) continue; if (csr->s_isr & ISR_LCD) csr->s_isr = ISR_LCD; else printf("sonic: CAM initialisation without interrupt\n"); } #if 0 void camdump(sc) struct sn_softc *sc; { struct sonic_reg *csr = sc->sc_csr; int i; printf("CAM entries:\n"); csr->s_cr = CR_RST; wbflush(); for (i = 0; i < 16; i++) { ushort ap2, ap1, ap0; csr->s_cep = i; wbflush(); ap2 = csr->s_cap2; ap1 = csr->s_cap1; ap0 = csr->s_cap0; printf("%d: ap2=0x%x ap1=0x%x ap0=0x%x\n", i, ap2, ap1, ap0); } printf("CAM enable 0x%x\n", csr->s_cep); csr->s_cr = 0; wbflush(); } #endif void initialise_tda(sc) struct sn_softc *sc; { struct sonic_reg *csr; struct mtd *mtd; int i; csr = sc->sc_csr; mtdfree = mtdhead = mtdtail = (struct mtd *) 0; for (i = 0; i < NTDA; i++) { mtd = &mtda[i]; mtd->mtd_txp = &p_tda[i]; mtd->mtd_mbuf = (struct mbuf *) 0; mtd_free(mtd); } mtdnext = mtd_alloc(); csr->s_utda = UPPER(v_tda); } void initialise_rda(sc) struct sn_softc *sc; { struct sonic_reg *csr; int i; csr = sc->sc_csr; /* link the RDA's together into a circular list */ for (i = 0; i < (NRDA - 1); i++) { SWR(p_rda[i].rlink, LOWER(&v_rda[i + 1])); SWR(p_rda[i].in_use, 1); } SWR(p_rda[NRDA - 1].rlink, LOWER(&v_rda[0]) | EOL); SWR(p_rda[NRDA - 1].in_use, 1); /* mark end of receive descriptor list */ sc->sc_lrxp = &p_rda[NRDA - 1]; sc->sc_rxmark = 0; csr->s_urda = UPPER(&v_rda[0]); csr->s_crda = LOWER(&v_rda[0]); wbflush(); } void initialise_rra(sc) struct sn_softc *sc; { struct sonic_reg *csr; int i; csr = sc->sc_csr; csr->s_eobc = RBASIZE / 2 - 2; /* must be >= MAXETHERPKT */ csr->s_urra = UPPER(v_rra); csr->s_rsa = LOWER(v_rra); csr->s_rea = LOWER(&v_rra[NRRA]); csr->s_rrp = LOWER(v_rra); /* fill up SOME of the rra with buffers */ for (i = 0; i < NRBA; i++) { SWR(p_rra[i].buff_ptrhi, UPPER(&v_rba[i * RBASIZE])); SWR(p_rra[i].buff_ptrlo, LOWER(&v_rba[i * RBASIZE])); SWR(p_rra[i].buff_wchi, UPPER(RBASIZE / 2)); SWR(p_rra[i].buff_wclo, LOWER(RBASIZE / 2)); } sc->sc_rramark = NRBA; csr->s_rwp = LOWER(&v_rra[sc->sc_rramark]); wbflush(); } int snintr(sc) struct sn_softc *sc; { struct sonic_reg *csr = sc->sc_csr; int isr; while (isr = (csr->s_isr & ISR_ALL)) { /* scrub the interrupts that we are going to service */ csr->s_isr = isr; wbflush(); if (isr & (ISR_BR | ISR_LCD | ISR_PINT | ISR_TC)) printf("sonic: unexpected interrupt status 0x%x\n", isr); if (isr & (ISR_TXDN | ISR_TXER)) sonictxint(sc); if (isr & ISR_PKTRX) sonicrxint(sc); if (isr & (ISR_HBL | ISR_RDE | ISR_RBE | ISR_RBAE | ISR_RFO)) { if (isr & ISR_HBL) printf("sonic: no heartbeat\n"); if (isr & ISR_RDE) printf("sonic: receive descriptors exhausted\n"); if (isr & ISR_RBE) printf("sonic: receive buffers exhausted\n"); if (isr & ISR_RBAE) printf("sonic: receive buffer area exhausted\n"); if (isr & ISR_RFO) printf("sonic: receive FIFO overrun\n"); } if (isr & (ISR_CRC | ISR_FAE | ISR_MP)) { #ifdef notdef if (isr & ISR_CRC) sc->sc_crctally++; if (isr & ISR_FAE) sc->sc_faetally++; if (isr & ISR_MP) sc->sc_mptally++; #endif } } return (1); } /* * Transmit interrupt routine */ void sonictxint(sc) struct sn_softc *sc; { struct TXpkt *txp; struct sonic_reg *csr; struct mtd *mtd; if (mtdhead == (struct mtd *) 0) return; csr = sc->sc_csr; while (mtd = mtdhead) { struct mbuf *m = mtd->mtd_mbuf; if (m == 0) break; txp = mtd->mtd_txp; if (SRD(txp->status) == 0) /* it hasn't really gone yet */ return; if (ethdebug) { struct ether_header *eh = mtod(m, struct ether_header *); printf("xmit status=0x%x len=%d type=0x%x from %s", txp->status, txp->pkt_size, htons(eh->ether_type), ether_sprintf(eh->ether_shost)); printf(" (to %s)\n", ether_sprintf(eh->ether_dhost)); } m_freem(m); mtd->mtd_mbuf = 0; mtdhead = mtd->mtd_link; mtd_free(mtd); if ((SRD(txp->status) & TCR_PTX) == 0) { printf("sonic: Tx packet status=0x%x\n", txp->status); if (mtdhead != mtdnext) { printf("resubmitting remaining packets\n"); csr->s_ctda = LOWER(mtdhead->mtd_txp); csr->s_cr = CR_TXP; wbflush(); return; } } } /* mtdhead should be at mtdnext (go) */ assert(mtdhead == mtdnext); assert(mtdhead->mtd_link == 0); mtdhead = 0; /* and start feeding any queued packets to chip */ while (1) { struct mbuf *m; IF_DEQUEUE(&sc->sc_if.if_snd, m); if (m == 0) /* nothing left to send */ break; if (!sonicput(sc, m)) { /* not enough space */ IF_PREPEND(&sc->sc_if.if_snd, m); break; } } } /* * Receive interrupt routine */ void sonicrxint(sc) struct sn_softc *sc; { struct sonic_reg *csr = sc->sc_csr; struct RXpkt *rxp; u_long addr; int orra; rxp = &p_rda[sc->sc_rxmark]; while (SRD(rxp->in_use) == 0) { unsigned status = SRD(rxp->status); if ((status & RCR_LPKT) == 0) printf("sonic: more than one packet in RBA!\n"); assert(PSNSEQ(SRD(rxp->seq_no)) == 0); if (status & RCR_PRX) { if (sonic_read(sc, rxp)) { sc->sc_if.if_ipackets++; sc->sc_sum.ls_ipacks++; sc->sc_missed = 0; } } else sc->sc_if.if_ierrors++; /* * give receive buffer area back to chip XXX what buffer * did the sonic use for this descriptor answer look at * the rba sequence number !! */ orra = RBASEQ(SRD(rxp->seq_no)) & RRAMASK; assert(SRD(rxp->pkt_ptrhi) == SRD(p_rra[orra].buff_ptrhi)); assert(SRD(rxp->pkt_ptrlo) == SRD(p_rra[orra].buff_ptrlo)); assert(SRD(p_rra[orra].buff_wclo)); /* * orra is now empty of packets and can be freed if * sonic read didnt copy it out then we would have to * wait !! * (dont bother add it back in again straight away) */ p_rra[sc->sc_rramark] = p_rra[orra]; /* zap old rra for fun */ p_rra[orra].buff_wchi = 0; p_rra[orra].buff_wclo = 0; sc->sc_rramark = (sc->sc_rramark + 1) & RRAMASK; csr->s_rwp = LOWER(&v_rra[sc->sc_rramark]); wbflush(); /* * give recieve descriptor back to chip simple * list is circular */ SWR(rxp->in_use, 1); SWR(rxp->rlink, SRD(rxp->rlink) | EOL); SWR(sc->sc_lrxp->rlink, SRD(sc->sc_lrxp->rlink) & ~EOL); sc->sc_lrxp = rxp; if (++sc->sc_rxmark >= NRDA) sc->sc_rxmark = 0; rxp = &p_rda[sc->sc_rxmark]; } } /* * sonic_read -- pull packet off interface and forward to * appropriate protocol handler */ int sonic_read(sc, rxp) struct sn_softc *sc; struct RXpkt *rxp; { struct ifnet *ifp = &sc->sc_if; /*extern char *ether_sprintf();*/ struct ether_header *et; struct mbuf *m; int len, off, i; caddr_t pkt; /* * Get input data length. * Get pointer to ethernet header (in input buffer). * Deal with trailer protocol: if type is PUP trailer * get true type from first 16-bit word past data. * Remember that type was trailer by setting off. */ len = SRD(rxp->byte_count) - sizeof(struct ether_header) - FCSSIZE; pkt = (caddr_t)((SRD(rxp->pkt_ptrhi) << 16) | SRD(rxp->pkt_ptrlo)); pkt = pkt - v_rba + p_rba; et = (struct ether_header *)pkt; if (ethdebug) { printf("rcvd 0x%x status=0x%x, len=%d type=0x%x from %s", et, rxp->status, len, htons(et->ether_type), ether_sprintf(et->ether_shost)); printf(" (to %s)\n", ether_sprintf(et->ether_dhost)); } if (len < ETHERMIN || len > ETHERMTU) { printf("sonic: invalid packet length %d bytes\n", len); return (0); } #if NBPFILTER > 0 /* * Check if there's a bpf filter listening on this interface. * If so, hand off the raw packet to enet, then discard things * not destined for us (but be sure to keep broadcast/multicast). */ if (sc->sc_if.if_bpf) { bpf_tap(sc->sc_if.if_bpf, pkt, len + sizeof(struct ether_header)); if ((ifp->if_flags & IFF_PROMISC) != 0 && (et->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */ bcmp(et->ether_dhost, sc->sc_enaddr, sizeof(et->ether_dhost)) != 0) return; } #endif m = sonic_get(sc, et, len); if (m == NULL) return (0); ether_input(ifp, et, m); return(1); } #define sonicdataaddr(eh, off, type) ((type)(((caddr_t)((eh)+1)+(off)))) /* * munge the recieved packet into an mbuf chain * because we are using stupif buffer management this * is slow. */ struct mbuf * sonic_get(sc, eh, datalen) struct sn_softc *sc; struct ether_header *eh; int datalen; { struct mbuf *m; struct mbuf *top = 0, **mp = ⊤ int len; char *spkt = sonicdataaddr(eh, 0, caddr_t); char *epkt = spkt + datalen; char *cp = spkt; epkt = cp + datalen; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) return (0); m->m_pkthdr.rcvif = &sc->sc_if; m->m_pkthdr.len = datalen; m->m_len = MHLEN; while (datalen > 0) { if (top) { MGET(m, M_DONTWAIT, MT_DATA); if (m == 0) { m_freem(top); return (0); } m->m_len = MLEN; } len = min(datalen, epkt - cp); if (len >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if (m->m_flags & M_EXT) m->m_len = len = min(len, MCLBYTES); else len = m->m_len; } else { /* * Place initial small packet/header at end of mbuf. */ if (len < m->m_len) { if (top == 0 && len + max_linkhdr <= m->m_len) m->m_data += max_linkhdr; m->m_len = len; } else len = m->m_len; } bcopy(cp, mtod(m, caddr_t), (unsigned) len); cp += len; *mp = m; mp = &m->m_next; datalen -= len; if (cp == epkt) cp = spkt; } return (top); }