/* $OpenBSD: aed.c,v 1.3 2001/07/04 08:38:50 niklas Exp $ */ /* $NetBSD: aed.c,v 1.5 2000/03/23 06:40:33 thorpej Exp $ */ /* * Copyright (C) 1994 Bradley A. Grantham * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bradley A. Grantham. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define spladb splhigh /* * Function declarations. */ #ifdef __NetBSD__ static int aedmatch __P((struct device *, struct cfdata *, void *)); #endif /* __NetBSD__ */ #ifdef __OpenBSD__ static int aedmatch __P((struct device *, void *, void *)); #endif /* __OpenBSD__ */ static void aedattach __P((struct device *, struct device *, void *)); static void aed_emulate_mouse __P((adb_event_t *event)); static void aed_kbdrpt __P((void *kstate)); static void aed_dokeyupdown __P((adb_event_t *event)); static void aed_handoff __P((adb_event_t *event)); static void aed_enqevent __P((adb_event_t *event)); /* * Global variables. */ extern int adb_polling; /* Are we polling? (Debugger mode) */ /* * Local variables. */ static struct aed_softc *aed_sc = NULL; static int aed_options = 0; /* | AED_MSEMUL; */ /* Driver definition */ struct cfdriver aed_cd = { NULL, "aed", DV_DULL }; /* Driver definition */ struct cfattach aed_ca = { sizeof(struct aed_softc), aedmatch, aedattach }; extern struct cfdriver aed_cd; static int aedmatch(parent, cf, aux) struct device *parent; #ifdef __NetBSD__ struct cfdata *cf; #endif /* __NetBSD__ */ #ifdef __OpenBSD__ void *cf; #endif /* __OpenBSD__ */ void *aux; { struct adb_attach_args *aa_args = (struct adb_attach_args *)aux; static int aed_matched = 0; /* Allow only one instance. */ if ((aa_args->origaddr == 0) && (!aed_matched)) { aed_matched = 1; return (1); } else return (0); } static void aedattach(parent, self, aux) struct device *parent, *self; void *aux; { struct adb_attach_args *aa_args = (struct adb_attach_args *)aux; struct aed_softc *sc = (struct aed_softc *)self; aed_sc = sc; timeout_set(&sc->sc_repeat_ch, aed_kbdrpt, aed_sc); sc->origaddr = aa_args->origaddr; sc->adbaddr = aa_args->adbaddr; sc->handler_id = aa_args->handler_id; sc->sc_evq_tail = 0; sc->sc_evq_len = 0; sc->sc_rptdelay = 20; sc->sc_rptinterval = 6; sc->sc_repeating = -1; /* not repeating */ /* Pull in the options flags. */ sc->sc_options = (sc->sc_dev.dv_cfdata->cf_flags | aed_options); sc->sc_ioproc = NULL; sc->sc_buttons = 0; sc->sc_open = 0; printf("ADB Event device\n"); return; } /* * Given a keyboard ADB event, record the keycode and call the key * repeat handler, optionally passing the event through the mouse * button emulation handler first. Pass mouse events directly to * the handoff function. */ void aed_input(event) adb_event_t *event; { adb_event_t new_event = *event; switch (event->def_addr) { case ADBADDR_KBD: if (aed_sc->sc_options & AED_MSEMUL) aed_emulate_mouse(&new_event); else aed_dokeyupdown(&new_event); break; case ADBADDR_MS: new_event.u.m.buttons |= aed_sc->sc_buttons; aed_handoff(&new_event); break; default: /* God only knows. */ #ifdef DIAGNOSTIC panic("aed: received event from unsupported device!\n"); #endif break; } } /* * Handles mouse button emulation via the keyboard. If the emulation * modifier key is down, left and right arrows will generate 2nd and * 3rd mouse button events while the 1, 2, and 3 keys will generate * the corresponding mouse button event. */ static void aed_emulate_mouse(event) adb_event_t *event; { static int emulmodkey_down = 0; adb_event_t new_event; if (event->u.k.key == ADBK_KEYDOWN(ADBK_OPTION)) { emulmodkey_down = 1; } else if (event->u.k.key == ADBK_KEYUP(ADBK_OPTION)) { /* key up */ emulmodkey_down = 0; if (aed_sc->sc_buttons & 0xfe) { aed_sc->sc_buttons &= 1; new_event.def_addr = ADBADDR_MS; new_event.u.m.buttons = aed_sc->sc_buttons; new_event.u.m.dx = new_event.u.m.dy = 0; microtime(&new_event.timestamp); aed_handoff(&new_event); } } else if (emulmodkey_down) { switch(event->u.k.key) { #ifdef ALTXBUTTONS case ADBK_KEYDOWN(ADBK_1): aed_sc->sc_buttons |= 1; /* left down */ new_event.def_addr = ADBADDR_MS; new_event.u.m.buttons = aed_sc->sc_buttons; new_event.u.m.dx = new_event.u.m.dy = 0; microtime(&new_event.timestamp); aed_handoff(&new_event); break; case ADBK_KEYUP(ADBK_1): aed_sc->sc_buttons &= ~1; /* left up */ new_event.def_addr = ADBADDR_MS; new_event.u.m.buttons = aed_sc->sc_buttons; new_event.u.m.dx = new_event.u.m.dy = 0; microtime(&new_event.timestamp); aed_handoff(&new_event); break; #endif case ADBK_KEYDOWN(ADBK_LEFT): #ifdef ALTXBUTTONS case ADBK_KEYDOWN(ADBK_2): #endif aed_sc->sc_buttons |= 2; /* middle down */ new_event.def_addr = ADBADDR_MS; new_event.u.m.buttons = aed_sc->sc_buttons; new_event.u.m.dx = new_event.u.m.dy = 0; microtime(&new_event.timestamp); aed_handoff(&new_event); break; case ADBK_KEYUP(ADBK_LEFT): #ifdef ALTXBUTTONS case ADBK_KEYUP(ADBK_2): #endif aed_sc->sc_buttons &= ~2; /* middle up */ new_event.def_addr = ADBADDR_MS; new_event.u.m.buttons = aed_sc->sc_buttons; new_event.u.m.dx = new_event.u.m.dy = 0; microtime(&new_event.timestamp); aed_handoff(&new_event); break; case ADBK_KEYDOWN(ADBK_RIGHT): #ifdef ALTXBUTTONS case ADBK_KEYDOWN(ADBK_3): #endif aed_sc->sc_buttons |= 4; /* right down */ new_event.def_addr = ADBADDR_MS; new_event.u.m.buttons = aed_sc->sc_buttons; new_event.u.m.dx = new_event.u.m.dy = 0; microtime(&new_event.timestamp); aed_handoff(&new_event); break; case ADBK_KEYUP(ADBK_RIGHT): #ifdef ALTXBUTTONS case ADBK_KEYUP(ADBK_3): #endif aed_sc->sc_buttons &= ~4; /* right up */ new_event.def_addr = ADBADDR_MS; new_event.u.m.buttons = aed_sc->sc_buttons; new_event.u.m.dx = new_event.u.m.dy = 0; microtime(&new_event.timestamp); aed_handoff(&new_event); break; case ADBK_KEYUP(ADBK_SHIFT): case ADBK_KEYDOWN(ADBK_SHIFT): case ADBK_KEYUP(ADBK_CONTROL): case ADBK_KEYDOWN(ADBK_CONTROL): case ADBK_KEYUP(ADBK_FLOWER): case ADBK_KEYDOWN(ADBK_FLOWER): /* ctrl, shift, cmd */ aed_dokeyupdown(event); break; default: if (event->u.k.key & 0x80) /* ignore keyup */ break; /* key down */ new_event = *event; /* send option-down */ new_event.u.k.key = ADBK_KEYDOWN(ADBK_OPTION); new_event.bytes[0] = new_event.u.k.key; microtime(&new_event.timestamp); aed_dokeyupdown(&new_event); /* send key-down */ new_event.u.k.key = event->bytes[0]; new_event.bytes[0] = new_event.u.k.key; microtime(&new_event.timestamp); aed_dokeyupdown(&new_event); /* send key-up */ new_event.u.k.key = ADBK_KEYUP(ADBK_KEYVAL(event->bytes[0])); microtime(&new_event.timestamp); new_event.bytes[0] = new_event.u.k.key; aed_dokeyupdown(&new_event); /* send option-up */ new_event.u.k.key = ADBK_KEYUP(ADBK_OPTION); new_event.bytes[0] = new_event.u.k.key; microtime(&new_event.timestamp); aed_dokeyupdown(&new_event); break; } } else { aed_dokeyupdown(event); } } /* * Keyboard autorepeat timeout function. Sends key up/down events * for the repeating key and schedules the next call at sc_rptinterval * ticks in the future. */ static void aed_kbdrpt(kstate) void *kstate; { struct aed_softc *aed_sc = (struct aed_softc *)kstate; aed_sc->sc_rptevent.bytes[0] |= 0x80; microtime(&aed_sc->sc_rptevent.timestamp); aed_handoff(&aed_sc->sc_rptevent); /* do key up */ aed_sc->sc_rptevent.bytes[0] &= 0x7f; microtime(&aed_sc->sc_rptevent.timestamp); aed_handoff(&aed_sc->sc_rptevent); /* do key down */ if (aed_sc->sc_repeating == aed_sc->sc_rptevent.u.k.key) { timeout_add(&aed_sc->sc_repeat_ch, aed_sc->sc_rptinterval); } } /* * Cancels the currently repeating key event if there is one, schedules * a new repeating key event if needed, and hands the event off to the * appropriate subsystem. */ static void aed_dokeyupdown(event) adb_event_t *event; { int kbd_key; kbd_key = ADBK_KEYVAL(event->u.k.key); if (ADBK_PRESS(event->u.k.key) && keyboard[kbd_key][0] != 0) { /* ignore shift & control */ if (aed_sc->sc_repeating != -1) { timeout_del(&aed_sc->sc_repeat_ch); } aed_sc->sc_rptevent = *event; aed_sc->sc_repeating = kbd_key; timeout_add(&aed_sc->sc_repeat_ch, aed_sc->sc_rptdelay); } else { if (aed_sc->sc_repeating != -1) { aed_sc->sc_repeating = -1; timeout_del(&aed_sc->sc_repeat_ch); } aed_sc->sc_rptevent = *event; } aed_handoff(event); } /* * Place the event in the event queue if a requesting device is open * and we are not polling. */ static void aed_handoff(event) adb_event_t *event; { if (aed_sc->sc_open && !adb_polling) aed_enqevent(event); } /* * Place the event in the event queue and wakeup any waiting processes. */ static void aed_enqevent(event) adb_event_t *event; { int s; s = spladb(); #ifdef DIAGNOSTIC if (aed_sc->sc_evq_tail < 0 || aed_sc->sc_evq_tail >= AED_MAX_EVENTS) panic("adb: event queue tail is out of bounds"); if (aed_sc->sc_evq_len < 0 || aed_sc->sc_evq_len > AED_MAX_EVENTS) panic("adb: event queue len is out of bounds"); #endif if (aed_sc->sc_evq_len == AED_MAX_EVENTS) { splx(s); return; /* Oh, well... */ } aed_sc->sc_evq[(aed_sc->sc_evq_len + aed_sc->sc_evq_tail) % AED_MAX_EVENTS] = *event; aed_sc->sc_evq_len++; selwakeup(&aed_sc->sc_selinfo); if (aed_sc->sc_ioproc) psignal(aed_sc->sc_ioproc, SIGIO); splx(s); } int aedopen(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { int unit; int error = 0; int s; unit = minor(dev); if (unit != 0) return (ENXIO); s = spladb(); if (aed_sc->sc_open) { splx(s); return (EBUSY); } aed_sc->sc_evq_tail = 0; aed_sc->sc_evq_len = 0; aed_sc->sc_open = 1; aed_sc->sc_ioproc = p; splx(s); return (error); } int aedclose(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { int s = spladb(); aed_sc->sc_open = 0; aed_sc->sc_ioproc = NULL; splx(s); return (0); } int aedread(dev, uio, flag) dev_t dev; struct uio *uio; int flag; { int s, error; int willfit; int total; int firstmove; int moremove; if (uio->uio_resid < sizeof(adb_event_t)) return (EMSGSIZE); /* close enough. */ s = spladb(); if (aed_sc->sc_evq_len == 0) { splx(s); return (0); } willfit = howmany(uio->uio_resid, sizeof(adb_event_t)); total = (aed_sc->sc_evq_len < willfit) ? aed_sc->sc_evq_len : willfit; firstmove = (aed_sc->sc_evq_tail + total > AED_MAX_EVENTS) ? (AED_MAX_EVENTS - aed_sc->sc_evq_tail) : total; error = uiomove((caddr_t) & aed_sc->sc_evq[aed_sc->sc_evq_tail], firstmove * sizeof(adb_event_t), uio); if (error) { splx(s); return (error); } moremove = total - firstmove; if (moremove > 0) { error = uiomove((caddr_t) & aed_sc->sc_evq[0], moremove * sizeof(adb_event_t), uio); if (error) { splx(s); return (error); } } aed_sc->sc_evq_tail = (aed_sc->sc_evq_tail + total) % AED_MAX_EVENTS; aed_sc->sc_evq_len -= total; splx(s); return (0); } int aedwrite(dev, uio, flag) dev_t dev; struct uio *uio; int flag; { return 0; } int aedioctl(dev, cmd, data, flag, p) dev_t dev; int cmd; caddr_t data; int flag; struct proc *p; { switch (cmd) { case ADBIOCDEVSINFO: { adb_devinfo_t *di; ADBDataBlock adbdata; int totaldevs; int adbaddr; int i; di = (void *)data; /* Initialize to no devices */ for (i = 0; i < 16; i++) di->dev[i].addr = -1; totaldevs = CountADBs(); for (i = 1; i <= totaldevs; i++) { adbaddr = GetIndADB(&adbdata, i); di->dev[adbaddr].addr = adbaddr; di->dev[adbaddr].default_addr = (int)(adbdata.origADBAddr); di->dev[adbaddr].handler_id = (int)(adbdata.devType); } /* Must call ADB Manager to get devices now */ break; } case ADBIOCGETREPEAT:{ adb_rptinfo_t *ri; ri = (void *)data; ri->delay_ticks = aed_sc->sc_rptdelay; ri->interval_ticks = aed_sc->sc_rptinterval; break; } case ADBIOCSETREPEAT:{ adb_rptinfo_t *ri; ri = (void *) data; aed_sc->sc_rptdelay = ri->delay_ticks; aed_sc->sc_rptinterval = ri->interval_ticks; break; } case ADBIOCRESET: /* Do nothing for now */ break; case ADBIOCLISTENCMD:{ adb_listencmd_t *lc; lc = (void *)data; } default: return (EINVAL); } return (0); } int aedpoll(dev, events, p) dev_t dev; int events; struct proc *p; { int s, revents; revents = events & (POLLOUT | POLLWRNORM); if ((events & (POLLIN | POLLRDNORM)) == 0) return (revents); s = spladb(); if (aed_sc->sc_evq_len > 0) revents |= events & (POLLIN | POLLRDNORM); else selrecord(p, &aed_sc->sc_selinfo); splx(s); return (revents); }