/* $OpenBSD: zs.c,v 1.16 2017/12/30 20:46:59 guenther Exp $ */ /* $NetBSD: zs.c,v 1.37 2011/02/20 07:59:50 matt Exp $ */ /*- * Copyright (c) 1996, 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Gordon W. Ross and Wayne Knowles * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * Runs two serial lines per chip using slave drivers. * Plain tty/async lines use the zstty slave. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Some warts needed by z8530tty.c - * The default parity REALLY needs to be the same as the PROM uses, * or you can not see messages done with printf during boot-up... */ int zs_def_cflag = (CREAD | CS8 | HUPCL); int zs_major = 19; #define PCLK 3672000 /* PCLK pin input clock rate */ #ifndef ZS_DEFSPEED #define ZS_DEFSPEED 9600 #endif /* * Define interrupt levels. */ #define ZSHARD_PRI 64 /* SGI shouldn't need ZS_DELAY() as recovery time is done in hardware? */ #define ZS_DELAY() delay(2) /* The layout of this is hardware-dependent (padding, order). */ struct zschan { uint8_t pad1[3]; volatile uint8_t zc_csr; /* ctrl,status, and indirect access */ uint8_t pad2[3]; volatile uint8_t zc_data; /* data */ }; struct zsdevice { struct zschan zs_chan_b; struct zschan zs_chan_a; }; /* Return the byte offset of element within a structure */ #define OFFSET(struct_def, el) ((size_t)&((struct_def *)0)->el) #define ZS_CHAN_A OFFSET(struct zsdevice, zs_chan_a) #define ZS_CHAN_B OFFSET(struct zsdevice, zs_chan_b) #define ZS_REG_CSR 3 #define ZS_REG_DATA 7 static int zs_chan_offset[] = {ZS_CHAN_A, ZS_CHAN_B}; cons_decl(zs); struct consdev zs_cn = { zscnprobe, zscninit, zscngetc, zscnputc, zscnpollc, NULL }; /* Flags from cninit() */ static int zs_consunit = -1; static int zs_conschan = -1; /* Default speed for all channels */ static int zs_defspeed = ZS_DEFSPEED; static uint8_t zs_init_reg[17] = { 0, /* 0: CMD (reset, etc.) */ 0, /* 1: No interrupts yet. */ ZSHARD_PRI, /* 2: IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE, 0, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD | ZSWR11_TRXC_OUT_ENA, BPS_TO_TCONST(PCLK/16, ZS_DEFSPEED), /*12: BAUDLO (default=9600) */ 0, /*13: BAUDHI (default=9600) */ ZSWR14_BAUD_ENA, ZSWR15_BREAK_IE, ZSWR7P_TX_FIFO /* 7': TX FIFO interrupt level */ }; /**************************************************************** * Autoconfig ****************************************************************/ /* Definition of the driver for autoconfig. */ int zs_hpc_match(struct device *, void *, void *); void zs_hpc_attach(struct device *, struct device *, void *); int zs_print(void *, const char *name); struct cfdriver zs_cd = { NULL, "zs", DV_TTY }; struct cfattach zs_hpc_ca = { sizeof(struct zsc_softc), zs_hpc_match, zs_hpc_attach }; int zshard(void *); void zssoft(void *); struct zschan *zs_get_chan_addr(int, int); int zs_getc(void *); void zs_putc(void *, int); /* * Is the zs chip present? */ int zs_hpc_match(struct device *parent, void *vcf, void *aux) { struct cfdata *cf = vcf; struct hpc_attach_args *ha = aux; if (strcmp(ha->ha_name, cf->cf_driver->cd_name) == 0) return (1); return (0); } /* * Attach a found zs. * * Match slave number to zs unit number, so that misconfiguration will * not set up the keyboard as ttya, etc. */ void zs_hpc_attach(struct device *parent, struct device *self, void *aux) { struct zsc_softc *zsc = (void *)self; struct cfdata *cf = self->dv_cfdata; struct hpc_attach_args *haa = aux; struct zsc_attach_args zsc_args; struct zs_chanstate *cs; struct zs_channel *ch; int zs_unit, channel, err, s; int has_fifo; zsc->zsc_bustag = haa->ha_st; if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh, haa->ha_devoff, 0x10, &zsc->zsc_base)) != 0) { printf(": unable to map 85c30 registers, error = %d\n", err); return; } zs_unit = zsc->zsc_dev.dv_unit; /* * Initialize software state for each channel. * * Done in reverse order of channels since the first serial port * is actually attached to the *second* channel, and vice versa. * Doing it this way should force a 'zstty*' to attach zstty0 to * channel 1 and zstty1 to channel 0. They couldn't have wired * it up in a more sensible fashion, could they? */ for (channel = 1; channel >= 0; channel--) { zsc_args.channel = channel; ch = &zsc->zsc_cs_store[channel]; cs = zsc->zsc_cs[channel] = (struct zs_chanstate *)ch; /* * According to IRIX , on Indigo, the CTR, DCD, * DTR and RTS bits are inverted. * * That is, inverted when compared to the Indy and Indigo 2 * designs. However, it turns out that the Indigo wiring is * the `natural' one, with these pins being inverted from * what one would naively expect, on the other designs. * * Choose wiring logic according to the hardware we run on, * and the device flags. */ if (sys_config.system_type != SGI_IP20) ch->cs_flags |= ZSCFL_INVERT_WIRING; if (cf->cf_flags & ZSCFL_INVERT_WIRING) ch->cs_flags ^= ZSCFL_INVERT_WIRING; cs->cs_reg_csr = NULL; cs->cs_reg_data = NULL; cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; cs->cs_brg_clk = PCLK / 16; if (bus_space_subregion(zsc->zsc_bustag, zsc->zsc_base, zs_chan_offset[channel], sizeof(struct zschan), &ch->cs_regs) != 0) { printf(": cannot map regs\n"); return; } ch->cs_bustag = zsc->zsc_bustag; /* * Figure out whether this chip is a 8530 or a 85230. */ if (channel == 1) { zs_write_reg(cs, 15, ZSWR15_ENABLE_ENHANCED); has_fifo = zs_read_reg(cs, 15) & ZSWR15_ENABLE_ENHANCED; if (has_fifo) { zs_write_reg(cs, 15, 0); printf(": 85230\n"); } else printf(": 8530\n"); } if (has_fifo) zs_init_reg[15] |= ZSWR15_ENABLE_ENHANCED; else zs_init_reg[15] &= ~ZSWR15_ENABLE_ENHANCED; memcpy(cs->cs_creg, zs_init_reg, 17); memcpy(cs->cs_preg, zs_init_reg, 17); /* If console, don't stomp speed, let zstty know */ if (zs_unit == zs_consunit && channel == zs_conschan) { zsc_args.consdev = &zs_cn; zsc_args.hwflags = ZS_HWFLAG_CONSOLE; cs->cs_defspeed = bios_consrate; } else { zsc_args.consdev = NULL; zsc_args.hwflags = 0; cs->cs_defspeed = zs_defspeed; } cs->cs_defcflag = zs_def_cflag; /* Make these correspond to cs_defcflag (-crtscts) */ cs->cs_rr0_dcd = ZSRR0_DCD; cs->cs_rr0_cts = 0; cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; /* * Clear the master interrupt enable. * The INTENA is common to both channels, * so just do it on the A channel. */ if (channel == 0) { zs_write_reg(cs, 9, 0); } /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ if (!config_found(self, (void *)&zsc_args, zs_print)) { /* No sub-driver. Just reset it. */ uint8_t reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splhigh(); zs_write_reg(cs, 9, reset); splx(s); } } zsc->sc_si = softintr_establish(IPL_SOFTTTY, zssoft, zsc); hpc_intr_establish(haa->ha_irq, IPL_TTY, zshard, zsc, self->dv_xname); /* * Set the master interrupt enable and interrupt vector. * (common to both channels, do it on A) */ cs = zsc->zsc_cs[0]; s = splhigh(); /* interrupt vector */ zs_write_reg(cs, 2, zs_init_reg[2]); /* master interrupt control (enable) */ zs_write_reg(cs, 9, zs_init_reg[9]); splx(s); } int zs_print(void *aux, const char *name) { struct zsc_attach_args *args = aux; if (name != NULL) printf("%s:", name); if (args->channel != -1) printf(" channel %d", args->channel); return UNCONF; } /* * Our ZS chips all share a common, autovectored interrupt, * so we have to look at all of them on each interrupt. */ int zshard(void *arg) { struct zsc_softc *zsc = arg; int rval; rval = zsc_intr_hard(zsc); if (rval != 0) { if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) softintr_schedule(zsc->sc_si); } return rval; } /* * Similar scheme as for zshard (look at all of them) */ void zssoft(void *arg) { struct zsc_softc *zsc = arg; int s; /* Make sure we call the tty layer at spltty. */ s = spltty(); (void)zsc_intr_soft(zsc); splx(s); } /* * MD functions for setting the baud rate and control modes. */ int zs_set_speed(struct zs_chanstate *cs, int bps) { int tconst, real_bps; if (bps == 0) return (0); #ifdef DIAGNOSTIC if (cs->cs_brg_clk == 0) panic("zs_set_speed"); #endif tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); if (tconst < 0) return (EINVAL); /* Convert back to make sure we can do it. */ real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); #if 0 /* PCLK is too small, 9600bps really yields 9562 */ /* XXX - Allow some tolerance here? */ if (real_bps != bps) return (EINVAL); #endif cs->cs_preg[12] = tconst; cs->cs_preg[13] = tconst >> 8; /* Caller will stuff the pending registers. */ return (0); } int zs_set_modes(struct zs_chanstate *cs, int cflag) { int s; /* * Output hardware flow control on the chip is horrendous: * if carrier detect drops, the receiver is disabled, and if * CTS drops, the transmitter is stoped IN MID CHARACTER! * Therefore, NEVER set the HFC bit, and instead use the * status interrupt to detect CTS changes. */ s = splzs(); cs->cs_rr0_pps = 0; if ((cflag & (CLOCAL | MDMBUF)) != 0) { cs->cs_rr0_dcd = 0; if ((cflag & MDMBUF) == 0) cs->cs_rr0_pps = ZSRR0_DCD; } else cs->cs_rr0_dcd = ZSRR0_DCD; if ((cflag & CRTSCTS) != 0) { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = ZSWR5_RTS; cs->cs_rr0_cts = ZSRR0_CTS; } else if ((cflag & MDMBUF) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_DCD; } else { cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = 0; } splx(s); /* Caller will stuff the pending registers. */ return (0); } /* * Read or write the chip with suitable delays. */ uint8_t zs_read_reg(struct zs_chanstate *cs, uint8_t reg) { uint8_t val; struct zs_channel *zsc = (struct zs_channel *)cs; bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg); bus_space_barrier(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, 1, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); ZS_DELAY(); val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR); ZS_DELAY(); if ((zsc->cs_flags & ZSCFL_INVERT_WIRING) && reg == 0) val ^= ZSRR0_CTS | ZSRR0_DCD; return val; } void zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val) { struct zs_channel *zsc = (struct zs_channel *)cs; if ((zsc->cs_flags & ZSCFL_INVERT_WIRING) && reg == 5) val ^= ZSWR5_DTR | ZSWR5_RTS; bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg); bus_space_barrier(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, 1, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); ZS_DELAY(); bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val); bus_space_barrier(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, 1, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); ZS_DELAY(); } uint8_t zs_read_csr(struct zs_chanstate *cs) { struct zs_channel *zsc = (struct zs_channel *)cs; uint8_t val; val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR); ZS_DELAY(); if (zsc->cs_flags & ZSCFL_INVERT_WIRING) val ^= ZSRR0_CTS | ZSRR0_DCD; return val; } void zs_write_csr(struct zs_chanstate *cs, uint8_t val) { struct zs_channel *zsc = (struct zs_channel *)cs; bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val); bus_space_barrier(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, 1, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); ZS_DELAY(); } uint8_t zs_read_data(struct zs_chanstate *cs) { struct zs_channel *zsc = (struct zs_channel *)cs; uint8_t val; val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA); ZS_DELAY(); return val; } void zs_write_data(struct zs_chanstate *cs, uint8_t val) { struct zs_channel *zsc = (struct zs_channel *)cs; bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA, val); bus_space_barrier(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA, 1, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); ZS_DELAY(); } void zs_abort(struct zs_chanstate *cs) { #if defined(DDB) db_enter(); #endif } /*****************************************************/ /* Polled character I/O functions for console KGDB */ /*****************************************************/ struct zschan * zs_get_chan_addr(int zs_unit, int channel) { #if 0 static int dumped_addr = 0; #endif struct zsdevice *addr = NULL; struct zschan *zc; switch (sys_config.system_type) { case SGI_IP20: switch (zs_unit) { case 0: addr = (struct zsdevice *) PHYS_TO_XKPHYS(0x1fb80d00, CCA_NC); break; case 1: addr = (struct zsdevice *) PHYS_TO_XKPHYS(0x1fb80d10, CCA_NC); break; } break; case SGI_IP22: case SGI_IP26: case SGI_IP28: if (zs_unit == 0) addr = (struct zsdevice *) PHYS_TO_XKPHYS(0x1fbd9830, CCA_NC); break; } if (addr == NULL) panic("zs_get_chan_addr: bad zs_unit %d\n", zs_unit); /* * We need to swap serial ports to match reality on * non-keyboard channels. */ if (sys_config.system_type != SGI_IP20) { if (channel == 0) zc = &addr->zs_chan_b; else zc = &addr->zs_chan_a; } else { if (zs_unit == 0) { if (channel == 0) zc = &addr->zs_chan_a; else zc = &addr->zs_chan_b; } else { if (channel == 0) zc = &addr->zs_chan_b; else zc = &addr->zs_chan_a; } } #if 0 if (dumped_addr == 0) { dumped_addr++; printf("zs unit %d, channel %d had address %p\n", zs_unit, channel, zc); } #endif return (zc); } int zs_getc(void *arg) { register volatile struct zschan *zc = arg; register int s, c, rr0; s = splzs(); /* Wait for a character to arrive. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); c = zc->zc_data; ZS_DELAY(); splx(s); return (c); } /* * Polled output char. */ void zs_putc(void *arg, int c) { register volatile struct zschan *zc = arg; register int s, rr0; s = splzs(); /* Wait for transmitter to become ready. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_TX_READY) == 0); zc->zc_data = c; /* inline bus_space_barrier() */ mips_sync(); if (sys_config.system_type != SGI_IP20) { (void)*(volatile uint32_t *)PHYS_TO_XKPHYS(HPC_BASE_ADDRESS_0 + HPC3_INTRSTAT_40, CCA_NC); } ZS_DELAY(); splx(s); } /***************************************************************/ static int cons_port; void zscnprobe(struct consdev *cp) { cp->cn_dev = makedev(zs_major, 0); cp->cn_pri = CN_DEAD; switch (sys_config.system_type) { case SGI_IP20: case SGI_IP22: case SGI_IP26: case SGI_IP28: if (strlen(bios_console) == 9 && strncmp(bios_console, "serial", 6) == 0) cp->cn_pri = CN_FORCED; else cp->cn_pri = CN_MIDPRI; break; } } void zscninit(struct consdev *cn) { if (strlen(bios_console) == 9 && strncmp(bios_console, "serial", 6) != 0) cons_port = bios_console[7] - '0'; /* Mark this unit as the console */ zs_consunit = 0; /* SGI hardware wires serial port 1 to channel B, port 2 to A */ if (cons_port == 0) zs_conschan = 1; else zs_conschan = 0; } int zscngetc(dev_t dev) { struct zschan *zs; switch (sys_config.system_type) { case SGI_IP20: zs = zs_get_chan_addr(1, cons_port); break; case SGI_IP22: case SGI_IP26: case SGI_IP28: default: zs = zs_get_chan_addr(0, cons_port); break; } return zs_getc(zs); } void zscnputc(dev_t dev, int c) { struct zschan *zs; switch (sys_config.system_type) { case SGI_IP20: zs = zs_get_chan_addr(1, cons_port); break; case SGI_IP22: case SGI_IP26: case SGI_IP28: default: zs = zs_get_chan_addr(0, cons_port); break; } zs_putc(zs, c); } void zscnpollc(dev_t dev, int on) { }