/* $OpenBSD: imc.c,v 1.21 2016/03/06 19:42:27 mpi Exp $ */ /* $NetBSD: imc.c,v 1.32 2011/07/01 18:53:46 dyoung Exp $ */ /* * Copyright (c) 2012 Miodrag Vallat. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Copyright (c) 2001 Rafal K. Boni * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Indigo/Indigo2/Indy on-board Memory Controller support code. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "eisa.h" #if NEISA > 0 #include #endif int imc_match(struct device *, void *, void *); void imc_attach(struct device *, struct device *, void *); int imc_activate(struct device *, int); int imc_print(void *, const char *); const struct cfattach imc_ca = { sizeof(struct device), imc_match, imc_attach, NULL, imc_activate }; struct cfdriver imc_cd = { NULL, "imc", DV_DULL }; uint32_t imc_bus_error(uint32_t, struct trapframe *); int imc_watchdog_cb(void *, int); void imc_space_barrier(bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_size_t, int); /* can't be static for gio_cnattach() */ bus_space_t imcbus_tag = { PHYS_TO_XKPHYS(0, CCA_NC), NULL, imc_read_1, imc_write_1, imc_read_2, imc_write_2, imc_read_4, imc_write_4, imc_read_8, imc_write_8, imc_read_raw_2, imc_write_raw_2, imc_read_raw_4, imc_write_raw_4, imc_read_raw_8, imc_write_raw_8, imc_space_map, imc_space_unmap, imc_space_region, imc_space_vaddr, imc_space_barrier }; #if NEISA > 0 void imc_eisa_read_raw_2(bus_space_tag_t, bus_space_handle_t, bus_addr_t, uint8_t *, bus_size_t); void imc_eisa_write_raw_2(bus_space_tag_t, bus_space_handle_t, bus_addr_t, const uint8_t *, bus_size_t); void imc_eisa_read_raw_4(bus_space_tag_t, bus_space_handle_t, bus_addr_t, uint8_t *, bus_size_t); void imc_eisa_write_raw_4(bus_space_tag_t, bus_space_handle_t, bus_addr_t, const uint8_t *, bus_size_t); void imc_eisa_read_raw_8(bus_space_tag_t, bus_space_handle_t, bus_addr_t, uint8_t *, bus_size_t); void imc_eisa_write_raw_8(bus_space_tag_t, bus_space_handle_t, bus_addr_t, const uint8_t *, bus_size_t); int imc_eisa_io_map(bus_space_tag_t, bus_addr_t, bus_size_t, int, bus_space_handle_t *); int imc_eisa_io_region(bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_size_t, bus_space_handle_t *); int imc_eisa_mem_map(bus_space_tag_t, bus_addr_t, bus_size_t, int, bus_space_handle_t *); int imc_eisa_mem_region(bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_size_t, bus_space_handle_t *); static bus_space_t imcbus_eisa_io_tag = { PHYS_TO_XKPHYS(EISA_IO_BASE, CCA_NC), NULL, imc_read_1, imc_write_1, imc_read_2, imc_write_2, imc_read_4, imc_write_4, imc_read_8, imc_write_8, imc_eisa_read_raw_2, imc_eisa_write_raw_2, imc_eisa_read_raw_4, imc_eisa_write_raw_4, imc_eisa_read_raw_8, imc_eisa_write_raw_8, imc_eisa_io_map, imc_space_unmap, imc_eisa_io_region, imc_space_vaddr, imc_space_barrier }; static bus_space_t imcbus_eisa_mem_tag = { PHYS_TO_XKPHYS(0, CCA_NC), NULL, imc_read_1, imc_write_1, imc_read_2, imc_write_2, imc_read_4, imc_write_4, imc_read_8, imc_write_8, imc_read_raw_2, imc_write_raw_2, imc_read_raw_4, imc_write_raw_4, imc_read_raw_8, imc_write_raw_8, imc_eisa_mem_map, imc_space_unmap, imc_eisa_mem_region, imc_space_vaddr, imc_space_barrier }; #endif bus_addr_t imc_pa_to_device(paddr_t); paddr_t imc_device_to_pa(bus_addr_t); /* can't be static for gio_cnattach() */ struct machine_bus_dma_tag imc_bus_dma_tag = { NULL, /* _cookie */ _dmamap_create, _dmamap_destroy, _dmamap_load, _dmamap_load_mbuf, _dmamap_load_uio, _dmamap_load_raw, _dmamap_load_buffer, _dmamap_unload, _dmamap_sync, _dmamem_alloc, _dmamem_free, _dmamem_map, _dmamem_unmap, _dmamem_mmap, imc_pa_to_device, imc_device_to_pa, 0 }; /* * Bus access primitives. */ uint8_t imc_read_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o) { return *(volatile uint8_t *)(h + o); } uint16_t imc_read_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o) { return *(volatile uint16_t *)(h + o); } uint32_t imc_read_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o) { return *(volatile uint32_t *)(h + o); } uint64_t imc_read_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o) { return *(volatile uint64_t *)(h + o); } void imc_write_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o, uint8_t v) { *(volatile uint8_t *)(h + o) = v; } void imc_write_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o, uint16_t v) { *(volatile uint16_t *)(h + o) = v; } void imc_write_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o, uint32_t v) { *(volatile uint32_t *)(h + o) = v; } void imc_write_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o, uint64_t v) { *(volatile uint64_t *)(h + o) = v; } void imc_read_raw_2(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, uint8_t *buf, bus_size_t len) { volatile uint16_t *addr = (volatile uint16_t *)(h + o); len >>= 1; while (len-- != 0) { *(uint16_t *)buf = *addr; buf += 2; } } void imc_write_raw_2(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, const uint8_t *buf, bus_size_t len) { volatile uint16_t *addr = (volatile uint16_t *)(h + o); len >>= 1; while (len-- != 0) { *addr = *(uint16_t *)buf; buf += 2; } } void imc_read_raw_4(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, uint8_t *buf, bus_size_t len) { volatile uint32_t *addr = (volatile uint32_t *)(h + o); len >>= 2; while (len-- != 0) { *(uint32_t *)buf = *addr; buf += 4; } } void imc_write_raw_4(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, const uint8_t *buf, bus_size_t len) { volatile uint32_t *addr = (volatile uint32_t *)(h + o); len >>= 2; while (len-- != 0) { *addr = *(uint32_t *)buf; buf += 4; } } void imc_read_raw_8(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, uint8_t *buf, bus_size_t len) { volatile uint64_t *addr = (volatile uint64_t *)(h + o); len >>= 3; while (len-- != 0) { *(uint64_t *)buf = *addr; buf += 8; } } void imc_write_raw_8(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, const uint8_t *buf, bus_size_t len) { volatile uint64_t *addr = (volatile uint64_t *)(h + o); len >>= 3; while (len-- != 0) { *addr = *(uint64_t *)buf; buf += 8; } } int imc_space_map(bus_space_tag_t t, bus_addr_t offs, bus_size_t size, int flags, bus_space_handle_t *bshp) { *bshp = t->bus_base + offs; return 0; } void imc_space_unmap(bus_space_tag_t t, bus_space_handle_t bsh, bus_size_t size) { } int imc_space_region(bus_space_tag_t t, bus_space_handle_t bsh, bus_size_t offset, bus_size_t size, bus_space_handle_t *nbshp) { *nbshp = bsh + offset; return 0; } void * imc_space_vaddr(bus_space_tag_t t, bus_space_handle_t h) { return (void *)h; } void imc_space_barrier(bus_space_tag_t t, bus_space_handle_t h, bus_size_t offs, bus_size_t len, int flags) { mips_sync(); } #if NEISA > 0 void imc_eisa_read_raw_2(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, uint8_t *buf, bus_size_t len) { volatile uint16_t *addr = (volatile uint16_t *)(h + o); len >>= 1; while (len-- != 0) { *(uint16_t *)buf = swap16(*addr); buf += 2; } } void imc_eisa_write_raw_2(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, const uint8_t *buf, bus_size_t len) { volatile uint16_t *addr = (volatile uint16_t *)(h + o); len >>= 1; while (len-- != 0) { *addr = swap16(*(uint16_t *)buf); buf += 2; } } void imc_eisa_read_raw_4(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, uint8_t *buf, bus_size_t len) { volatile uint32_t *addr = (volatile uint32_t *)(h + o); len >>= 2; while (len-- != 0) { *(uint32_t *)buf = swap32(*addr); buf += 4; } } void imc_eisa_write_raw_4(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, const uint8_t *buf, bus_size_t len) { volatile uint32_t *addr = (volatile uint32_t *)(h + o); len >>= 2; while (len-- != 0) { *addr = swap32(*(uint32_t *)buf); buf += 4; } } void imc_eisa_read_raw_8(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, uint8_t *buf, bus_size_t len) { volatile uint64_t *addr = (volatile uint64_t *)(h + o); len >>= 3; while (len-- != 0) { *(uint64_t *)buf = swap64(*addr); buf += 8; } } void imc_eisa_write_raw_8(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, const uint8_t *buf, bus_size_t len) { volatile uint64_t *addr = (volatile uint64_t *)(h + o); len >>= 3; while (len-- != 0) { *addr = swap64(*(uint64_t *)buf); buf += 8; } } int imc_eisa_io_map(bus_space_tag_t t, bus_addr_t offs, bus_size_t size, int flags, bus_space_handle_t *bshp) { if (offs + size > EISA_IO_END - EISA_IO_BASE) return EINVAL; *bshp = t->bus_base + offs; return 0; } int imc_eisa_io_region(bus_space_tag_t t, bus_space_handle_t bsh, bus_size_t offset, bus_size_t size, bus_space_handle_t *nbshp) { if ((bsh - t->bus_base) + offset + size > EISA_IO_END - EISA_IO_BASE) return EINVAL; *nbshp = bsh + offset; return 0; } int imc_eisa_mem_map(bus_space_tag_t t, bus_addr_t offs, bus_size_t size, int flags, bus_space_handle_t *bshp) { if ((offs >= EISA_MEM0_BASE && offs + size <= EISA_MEM0_END) || (offs >= EISA_MEM1_BASE && offs + size <= EISA_MEM1_END)) { *bshp = t->bus_base + offs; return 0; } return EINVAL; } int imc_eisa_mem_region(bus_space_tag_t t, bus_space_handle_t bsh, bus_size_t offset, bus_size_t size, bus_space_handle_t *nbshp) { bus_addr_t orig = bsh - t->bus_base; if ((orig >= EISA_MEM0_BASE && orig + offset + size <= EISA_MEM0_END) || (orig >= EISA_MEM1_BASE && orig + offset + size <= EISA_MEM1_END)) { *nbshp = t->bus_base + offset; return 0; } return EINVAL; } #endif bus_addr_t imc_pa_to_device(paddr_t pa) { return (bus_addr_t)pa; } paddr_t imc_device_to_pa(bus_addr_t addr) { return (paddr_t)addr; } /* * For some reason, reading the arbitration register sometimes returns * wrong values, at least on IP20 (where the usual value is 0x400, but * nonsense values such as 0x34f have been witnessed). * Because of this, we'll treat the register as write-only, once we have * been able to read a supposedly safe value. * This variable contains the last known value written to this register. */ uint32_t imc_arb_value; /* * Autoconf glue. */ int imc_match(struct device *parent, void *match, void *aux) { struct mainbus_attach_args *maa = (void *)aux; switch (sys_config.system_type) { case SGI_IP20: case SGI_IP22: case SGI_IP26: case SGI_IP28: break; default: return 0; } return strcmp(maa->maa_name, imc_cd.cd_name) == 0; } void imc_attach(struct device *parent, struct device *self, void *aux) { struct imc_attach_args iaa; #if NEISA > 0 struct eisabus_attach_args eba; #endif uint32_t reg, lastreg; uint32_t id, rev; int have_eisa; id = imc_read(IMC_SYSID); rev = id & IMC_SYSID_REVMASK; /* EISA exists on Indigo2 only */ if (sys_config.system_type != SGI_IP20 && sys_config.system_subtype == IP22_INDIGO2) have_eisa = (id & IMC_SYSID_HAVEISA) != 0; else have_eisa = 0; printf(": revision %d\n", rev); /* Clear CPU/GIO error status registers to clear any leftover bits. */ imc_bus_reset(); /* Disable watchdog if leftover from previous reboot */ imc_watchdog_cb(self, 0); /* Hook the bus error handler into the ISR */ set_intr(INTPRI_BUSERR, CR_INT_4, imc_bus_error); /* * Enable parity reporting on GIO/main memory transactions, except * on systems with the ECC memory controller, where enabling parity * interferes with regular operation and causes sticky false errors. * * Disable parity checking on CPU bus transactions (as turning * it on seems to cause spurious bus errors), but enable parity * checking on CPU reads from main memory (note that this bit * has the opposite sense... Turning it on turns the checks off!). * * Finally, turn on interrupt writes to the CPU from the MC. */ reg = imc_read(IMC_CPUCTRL0); if (ip22_ecc) reg &= ~(IMC_CPUCTRL0_GPR | IMC_CPUCTRL0_MPR); else reg |= IMC_CPUCTRL0_GPR | IMC_CPUCTRL0_MPR; reg &= ~IMC_CPUCTRL0_NCHKMEMPAR; reg |= IMC_CPUCTRL0_INTENA; imc_write(IMC_CPUCTRL0, reg); /* Setup the MC write buffer depth */ /* * XXX This hardcoded value is not documented anywhere, and can be * XXX traced back to DaveM's internship at SGI in 1996, so it can * XXX be considered correct at least for IP24 (and, to a lesser * XXX extent, IP22). IP20 and IP28 systems seem to run happy with * XXX this value as well. */ reg = imc_read(IMC_CPUCTRL1); reg = (reg & ~IMC_CPUCTRL1_MCHWMSK) | 13; /* * Force endianness on the onboard HPC and both slots. * This should be safe for Fullhouse, but leave it conditional * for now. */ switch (sys_config.system_type) { case SGI_IP22: if (sys_config.system_subtype == IP22_INDIGO2) break; /* FALLTHROUGH */ case SGI_IP20: reg |= IMC_CPUCTRL1_HPCFX; reg |= IMC_CPUCTRL1_EXP0FX; reg |= IMC_CPUCTRL1_EXP1FX; reg &= ~IMC_CPUCTRL1_HPCLITTLE; reg &= ~IMC_CPUCTRL1_EXP0LITTLE; reg &= ~IMC_CPUCTRL1_EXP1LITTLE; break; } imc_write(IMC_CPUCTRL1, reg); /* * Try and read the GIO64 arbitrator configuration register value. * See comments above the declaration of imc_arb_value for why we * are doing this. */ reg = 0; lastreg = ~reg; while (reg != lastreg || (reg & ~0xffff) != 0) { lastreg = reg; reg = imc_read(IMC_GIO64ARB); /* read another harmless register */ (void)imc_read(IMC_CPUCTRL0); } /* * Set GIO64 arbitrator configuration register: * * Preserve PROM-set graphics-related bits, as they seem to depend * on the graphics variant present and I'm not sure how to figure * that out or 100% sure what the correct settings are for each. */ reg &= (IMC_GIO64ARB_GRX64 | IMC_GIO64ARB_GRXRT | IMC_GIO64ARB_GRXMST); /* * Rest of settings are machine/board dependent */ switch (sys_config.system_type) { case SGI_IP20: reg |= IMC_GIO64ARB_ONEGIO; reg |= IMC_GIO64ARB_EXP0RT | IMC_GIO64ARB_EXP1RT; reg |= IMC_GIO64ARB_EXP0MST | IMC_GIO64ARB_EXP1MST; reg &= ~(IMC_GIO64ARB_HPC64 | IMC_GIO64ARB_HPCEXP64 | IMC_GIO64ARB_EISA64 | IMC_GIO64ARB_EXP064 | IMC_GIO64ARB_EXP164 | IMC_GIO64ARB_EXP0PIPE | IMC_GIO64ARB_EXP1PIPE); break; default: /* * GIO64 invariant for all IP22 platforms: one GIO bus, * HPC1 @ 64 */ reg |= IMC_GIO64ARB_ONEGIO | IMC_GIO64ARB_HPC64; switch (sys_config.system_subtype) { default: case IP22_INDY: case IP22_CHALLS: /* XXX is MST mutually exclusive? */ reg |= IMC_GIO64ARB_EXP0RT | IMC_GIO64ARB_EXP1RT; reg |= IMC_GIO64ARB_EXP0MST | IMC_GIO64ARB_EXP1MST; /* EISA (VINO, really) can bus-master, is 64-bit */ reg |= IMC_GIO64ARB_EISAMST | IMC_GIO64ARB_EISA64; break; case IP22_INDIGO2: /* * All Fullhouse boards have a 64-bit HPC2 and pipelined * EXP0 slot. */ reg |= IMC_GIO64ARB_HPCEXP64 | IMC_GIO64ARB_EXP0PIPE; /* * The EISA bus is the real thing, and is a 32-bit bus. */ reg &= ~IMC_GIO64ARB_EISA64; if (rev < 2) { /* EXP0 realtime, EXP1 can master */ reg |= IMC_GIO64ARB_EXP0RT | IMC_GIO64ARB_EXP1MST; } else { /* EXP1 pipelined as well, EISA masters */ reg |= IMC_GIO64ARB_EXP1PIPE | IMC_GIO64ARB_EISAMST; } break; } } imc_write(IMC_GIO64ARB, reg); imc_arb_value = reg; memset(&iaa, 0, sizeof(iaa)); iaa.iaa_name = "gio"; iaa.iaa_st = &imcbus_tag; iaa.iaa_dmat = &imc_bus_dma_tag; config_found(self, &iaa, imc_print); #if NEISA > 0 if (have_eisa) { memset(&eba, 0, sizeof(eba)); eba.eba_busname = "eisa"; eba.eba_iot = &imcbus_eisa_io_tag; eba.eba_memt = &imcbus_eisa_mem_tag; eba.eba_dmat = &imc_bus_dma_tag; eba.eba_ec = NULL; config_found(self, &eba, imc_print); } #endif #ifndef SMALL_KERNEL /* Register watchdog */ wdog_register(imc_watchdog_cb, self); #endif } int imc_activate(struct device *self, int act) { int rv = 0; switch (act) { case DVACT_POWERDOWN: #ifndef SMALL_KERNEL wdog_shutdown(self); #endif rv = config_activate_children(self, act); break; } return (rv); } int imc_print(void *aux, const char *name) { struct imc_attach_args *iaa = aux; if (name != NULL) printf("%s at %s", iaa->iaa_name, name); return UNCONF; } void imc_bus_reset() { imc_write(IMC_CPU_ERRSTAT, 0); imc_write(IMC_GIO_ERRSTAT, 0); } uint32_t imc_bus_error(uint32_t hwpend, struct trapframe *tf) { uint32_t cpustat, giostat; paddr_t cpuaddr, gioaddr; int cpuquiet = 0, gioquiet = 0; cpustat = imc_read(IMC_CPU_ERRSTAT); giostat = imc_read(IMC_GIO_ERRSTAT); if (sys_config.system_type == SGI_IP26) { /* * We are sharing the bus error interrupt with the streaming * cache controller. This interrupt might not be ours. */ if (cpustat == 0 && giostat == 0) return 0; } if (cpustat != 0) cpuaddr = imc_read(IMC_CPU_ERRADDR); if (giostat != 0) gioaddr = imc_read(IMC_GIO_ERRADDR); switch (sys_config.system_type) { case SGI_IP28: /* * R10000 speculative execution may attempt to access * non-existing memory when in the kernel. We do not * want to flood the console about those. */ if (cpustat & IMC_CPU_ERRSTAT_ADDR) { if (IS_XKPHYS((vaddr_t)tf->pc)) cpuquiet = 1; } if (giostat != 0) { /* * Ignore speculative writes to interrupt controller * registers. */ if ((giostat & IMC_ECC_ERRSTAT_FUW) && (gioaddr & ~0x3f) == INT2_IP22) gioquiet = 1; /* XXX is it wise to hide these? */ if ((giostat & IMC_GIO_ERRSTAT_TMO) && !IS_GIO_ADDRESS(gioaddr)) gioquiet = 1; } break; } if (cpustat != 0 && cpuquiet == 0) { vaddr_t pc = tf->pc; uint32_t insn = 0xffffffff; if (tf->pc < 0) guarded_read_4(pc, &insn); else copyin((void *)pc, &insn, sizeof insn); printf("bus error: cpu_stat %08x addr %08lx pc %p insn %08x\n", cpustat, cpuaddr, (void *)pc, insn); } if (giostat != 0 && gioquiet == 0) { printf("bus error: gio_stat %08x addr %08lx\n", giostat, gioaddr); } if (cpustat != 0) imc_write(IMC_CPU_ERRSTAT, 0); if (giostat != 0) imc_write(IMC_GIO_ERRSTAT, 0); return hwpend; } int imc_watchdog_cb(void *v, int period) { uint32_t reg; if (period == 0) { /* reset... */ imc_write(IMC_WDOG, 0); /* ...and disable */ reg = imc_read(IMC_CPUCTRL0); reg &= ~(IMC_CPUCTRL0_WDOG); imc_write(IMC_CPUCTRL0, reg); return 0; } else { /* enable... */ reg = imc_read(IMC_CPUCTRL0); reg |= IMC_CPUCTRL0_WDOG; imc_write(IMC_CPUCTRL0, reg); /* ...and reset */ imc_write(IMC_WDOG, 0); /* * The watchdog period is not controllable; it will fire * when the 20 bit counter, running on a 64 usec clock, * overflows. */ return (64 << 20) / 1000000; } } /* intended to be called from gio/gio.c only */ int imc_gio64_arb_config(int slot, uint32_t flags) { uint32_t reg; if (sys_config.system_type == SGI_IP20 || sys_config.system_subtype != IP22_INDIGO2) { /* GIO_SLOT_GFX is only usable on Fullhouse */ if (slot == GIO_SLOT_GFX) return EINVAL; } else { /* GIO_SLOT_EXP1 is unusable on Fullhouse */ if (slot == GIO_SLOT_EXP1) return EINVAL; } /* GIO_SLOT_GFX is always pipelined */ if (slot == GIO_SLOT_GFX && (flags & GIO_ARB_NOPIPE)) return EINVAL; /* IP20 does not support pipelining (XXX what about Indy?) */ if (((flags & GIO_ARB_PIPE) || (flags & GIO_ARB_NOPIPE)) && sys_config.system_type == SGI_IP20) return EINVAL; reg = imc_arb_value; if (flags & GIO_ARB_RT) { if (slot == GIO_SLOT_EXP0) reg |= IMC_GIO64ARB_EXP0RT; else if (slot == GIO_SLOT_EXP1) reg |= IMC_GIO64ARB_EXP1RT; else if (slot == GIO_SLOT_GFX) reg |= IMC_GIO64ARB_GRXRT; } if (flags & GIO_ARB_MST) { if (slot == GIO_SLOT_EXP0) reg |= IMC_GIO64ARB_EXP0MST; else if (slot == GIO_SLOT_EXP1) reg |= IMC_GIO64ARB_EXP1MST; else if (slot == GIO_SLOT_GFX) reg |= IMC_GIO64ARB_GRXMST; } if (flags & GIO_ARB_PIPE) { if (slot == GIO_SLOT_EXP0) reg |= IMC_GIO64ARB_EXP0PIPE; else if (slot == GIO_SLOT_EXP1) reg |= IMC_GIO64ARB_EXP1PIPE; } if (flags & GIO_ARB_LB) { if (slot == GIO_SLOT_EXP0) reg &= ~IMC_GIO64ARB_EXP0RT; else if (slot == GIO_SLOT_EXP1) reg &= ~IMC_GIO64ARB_EXP1RT; else if (slot == GIO_SLOT_GFX) reg &= ~IMC_GIO64ARB_GRXRT; } if (flags & GIO_ARB_SLV) { if (slot == GIO_SLOT_EXP0) reg &= ~IMC_GIO64ARB_EXP0MST; else if (slot == GIO_SLOT_EXP1) reg &= ~IMC_GIO64ARB_EXP1MST; else if (slot == GIO_SLOT_GFX) reg &= ~IMC_GIO64ARB_GRXMST; } if (flags & GIO_ARB_NOPIPE) { if (slot == GIO_SLOT_EXP0) reg &= ~IMC_GIO64ARB_EXP0PIPE; else if (slot == GIO_SLOT_EXP1) reg &= ~IMC_GIO64ARB_EXP1PIPE; } if (flags & GIO_ARB_32BIT) { if (slot == GIO_SLOT_EXP0) reg &= ~IMC_GIO64ARB_EXP064; else if (slot == GIO_SLOT_EXP1) reg &= ~IMC_GIO64ARB_EXP164; } if (flags & GIO_ARB_64BIT) { if (slot == GIO_SLOT_EXP0) reg |= IMC_GIO64ARB_EXP064; else if (slot == GIO_SLOT_EXP1) reg |= IMC_GIO64ARB_EXP164; } if (flags & GIO_ARB_HPC2_32BIT) reg &= ~IMC_GIO64ARB_HPCEXP64; if (flags & GIO_ARB_HPC2_64BIT) reg |= IMC_GIO64ARB_HPCEXP64; imc_write(IMC_GIO64ARB, reg); imc_arb_value = reg; return 0; } /* * According to chapter 19 of the "IRIX Device Driver Programmer's Guide", * some GIO devices, which do not drive all data lines, may cause false * memory read parity errors on the SysAD bus. The workaround is to disable * parity checking. */ void imc_disable_sysad_parity(void) { uint32_t reg; if (ip22_ecc) return; reg = imc_read(IMC_CPUCTRL0); reg |= IMC_CPUCTRL0_NCHKMEMPAR; imc_write(IMC_CPUCTRL0, reg); } void imc_enable_sysad_parity(void) { uint32_t reg; if (ip22_ecc) return; reg = imc_read(IMC_CPUCTRL0); reg &= ~IMC_CPUCTRL0_NCHKMEMPAR; imc_write(IMC_CPUCTRL0, reg); } #if 0 int imc_is_sysad_parity_enabled(void) { uint32_t reg; if (ip22_ecc) return 0; reg = imc_read(IMC_CPUCTRL0); return ~reg & IMC_CPUCTRL0_NCHKMEMPAR; } #endif