/* $OpenBSD: macebus.c,v 1.42 2009/07/22 21:28:42 miod Exp $ */ /* * Copyright (c) 2000-2004 Opsycon AB (www.opsycon.se) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * This is a combined macebus/crimebus driver. It handles configuration of all * devices on the processor bus. */ #include #include #include #include #include #include #include #include #include #include #include #include #include int macebusmatch(struct device *, void *, void *); void macebusattach(struct device *, struct device *, void *); int macebusprint(void *, const char *); int macebussearch(struct device *, void *, void *); void macebus_intr_makemasks(void); void macebus_do_pending_int(int); intrmask_t macebus_iointr(intrmask_t, struct trap_frame *); intrmask_t macebus_aux(intrmask_t, struct trap_frame *); u_int8_t mace_read_1(bus_space_tag_t, bus_space_handle_t, bus_size_t); u_int16_t mace_read_2(bus_space_tag_t, bus_space_handle_t, bus_size_t); u_int32_t mace_read_4(bus_space_tag_t, bus_space_handle_t, bus_size_t); u_int64_t mace_read_8(bus_space_tag_t, bus_space_handle_t, bus_size_t); void mace_write_1(bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int8_t); void mace_write_2(bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int16_t); void mace_write_4(bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int32_t); void mace_write_8(bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int64_t); void mace_read_raw_2(bus_space_tag_t, bus_space_handle_t, bus_addr_t, u_int8_t *, bus_size_t); void mace_write_raw_2(bus_space_tag_t, bus_space_handle_t, bus_addr_t, const u_int8_t *, bus_size_t); void mace_read_raw_4(bus_space_tag_t, bus_space_handle_t, bus_addr_t, u_int8_t *, bus_size_t); void mace_write_raw_4(bus_space_tag_t, bus_space_handle_t, bus_addr_t, const u_int8_t *, bus_size_t); void mace_read_raw_8(bus_space_tag_t, bus_space_handle_t, bus_addr_t, u_int8_t *, bus_size_t); void mace_write_raw_8(bus_space_tag_t, bus_space_handle_t, bus_addr_t, const u_int8_t *, bus_size_t); int mace_space_map(bus_space_tag_t, bus_addr_t, bus_size_t, int, bus_space_handle_t *); void mace_space_unmap(bus_space_tag_t, bus_space_handle_t, bus_size_t); int mace_space_region(bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_size_t, bus_space_handle_t *); void *mace_space_vaddr(bus_space_tag_t, bus_space_handle_t); bus_addr_t macebus_pa_to_device(paddr_t); paddr_t macebus_device_to_pa(bus_addr_t); struct cfattach macebus_ca = { sizeof(struct device), macebusmatch, macebusattach }; struct cfdriver macebus_cd = { NULL, "macebus", DV_DULL }; bus_space_t macebus_tag = { PHYS_TO_XKPHYS(MACEBUS_BASE, CCA_NC), NULL, mace_read_1, mace_write_1, mace_read_2, mace_write_2, mace_read_4, mace_write_4, mace_read_8, mace_write_8, mace_read_raw_2, mace_write_raw_2, mace_read_raw_4, mace_write_raw_4, mace_read_raw_8, mace_write_raw_8, mace_space_map, mace_space_unmap, mace_space_region, mace_space_vaddr }; bus_space_t crimebus_tag = { PHYS_TO_XKPHYS(CRIMEBUS_BASE, CCA_NC), NULL, mace_read_1, mace_write_1, mace_read_2, mace_write_2, mace_read_4, mace_write_4, mace_read_8, mace_write_8, mace_read_raw_2, mace_write_raw_2, mace_read_raw_4, mace_write_raw_4, mace_read_raw_8, mace_write_raw_8, mace_space_map, mace_space_unmap, mace_space_region, mace_space_vaddr }; bus_space_handle_t crime_h; bus_space_handle_t mace_h; struct machine_bus_dma_tag mace_bus_dma_tag = { NULL, /* _cookie */ _dmamap_create, _dmamap_destroy, _dmamap_load, _dmamap_load_mbuf, _dmamap_load_uio, _dmamap_load_raw, _dmamap_load_buffer, _dmamap_unload, _dmamap_sync, _dmamem_alloc, _dmamem_free, _dmamem_map, _dmamem_unmap, _dmamem_mmap, macebus_pa_to_device, macebus_device_to_pa, CRIME_MEMORY_MASK }; /* * Match bus only to targets which have this bus. */ int macebusmatch(struct device *parent, void *match, void *aux) { if (sys_config.system_type == SGI_O2) return (1); return (0); } int macebusprint(void *aux, const char *macebus) { struct confargs *ca = aux; if (macebus != NULL) printf("%s at %s", ca->ca_name, macebus); if (ca->ca_baseaddr != 0) printf(" base 0x%08x", ca->ca_baseaddr); if (ca->ca_intr != 0) printf(" irq %d", ca->ca_intr); return (UNCONF); } int macebussearch(struct device *parent, void *child, void *args) { struct cfdata *cf = child; struct confargs ca; ca.ca_name = cf->cf_driver->cd_name; ca.ca_iot = &macebus_tag; ca.ca_memt = &macebus_tag; ca.ca_dmat = &mace_bus_dma_tag; if (cf->cf_loc[0] == -1) ca.ca_baseaddr = 0; else ca.ca_baseaddr = cf->cf_loc[0]; if (cf->cf_loc[1] == -1) ca.ca_intr = 0; else ca.ca_intr = cf->cf_loc[1]; if ((*cf->cf_attach->ca_match)(parent, cf, &ca) == 0) return (0); config_attach(parent, cf, &ca, macebusprint); return (1); } void macebusattach(struct device *parent, struct device *self, void *aux) { u_int32_t creg; /* * Map and setup CRIME control registers. */ if (bus_space_map(&crimebus_tag, 0x00000000, 0x400, 0, &crime_h)) { printf(": can't map CRIME control registers\n"); return; } hwmask_addr = (void *) (PHYS_TO_XKPHYS(CRIMEBUS_BASE, CCA_NC) + CRIME_INT_MASK); creg = bus_space_read_8(&crimebus_tag, crime_h, CRIME_REVISION); printf(": crime rev %d.%d\n", (creg & 0xf0) >> 4, creg & 0xf); bus_space_write_8(&crimebus_tag, crime_h, CRIME_CPU_ERROR_STAT, 0); bus_space_write_8(&crimebus_tag, crime_h, CRIME_MEM_ERROR_STAT, 0); bus_space_write_8(&crimebus_tag, crime_h, CRIME_INT_MASK, 0); bus_space_write_8(&crimebus_tag, crime_h, CRIME_INT_SOFT, 0); bus_space_write_8(&crimebus_tag, crime_h, CRIME_INT_HARD, 0); bus_space_write_8(&crimebus_tag, crime_h, CRIME_INT_STAT, 0); /* * Map and setup MACE ISA control registers. */ if (bus_space_map(&macebus_tag, MACE_ISA_OFFS, 0x400, 0, &mace_h)) { printf("%s: can't map MACE ISA control registers\n", self->dv_xname); return; } /* Turn on all interrupts except for MACE compare/timer. */ bus_space_write_8(&macebus_tag, mace_h, MACE_ISA_INT_MASK, 0xffffffff & ~MACE_ISA_INT_TIMER); bus_space_write_8(&macebus_tag, mace_h, MACE_ISA_INT_STAT, 0); /* * On O2 systems all interrupts are handled by the macebus interrupt * handler. Register all except clock. */ set_intr(INTPRI_MACEIO, CR_INT_0, macebus_iointr); register_pending_int_handler(macebus_do_pending_int); /* Set up a handler called when clock interrupts go off. */ set_intr(INTPRI_MACEAUX, CR_INT_5, macebus_aux); config_search(macebussearch, self, aux); } /* * Bus access primitives. These are really ugly... */ u_int8_t mace_read_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o) { return *(volatile u_int8_t *)(h + (o << 8) + 7); } u_int16_t mace_read_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o) { panic(__func__); } u_int32_t mace_read_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o) { return *(volatile u_int32_t *)(h + o); } u_int64_t mace_read_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o) { return *(volatile u_int64_t *)(h + o); } void mace_write_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o, u_int8_t v) { *(volatile u_int8_t *)(h + (o << 8) + 7) = v; } void mace_write_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o, u_int16_t v) { panic(__func__); } void mace_write_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o, u_int32_t v) { *(volatile u_int32_t *)(h + o) = v; } void mace_write_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o, u_int64_t v) { *(volatile u_int64_t *)(h + o) = v; } void mace_read_raw_2(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, u_int8_t *buf, bus_size_t len) { panic(__func__); } void mace_write_raw_2(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, const u_int8_t *buf, bus_size_t len) { panic(__func__); } void mace_read_raw_4(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, u_int8_t *buf, bus_size_t len) { volatile u_int32_t *addr = (volatile u_int32_t *)(h + o); len >>= 2; while (len-- != 0) { *(u_int32_t *)buf = *addr; buf += 4; } } void mace_write_raw_4(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, const u_int8_t *buf, bus_size_t len) { volatile u_int32_t *addr = (volatile u_int32_t *)(h + o); len >>= 2; while (len-- != 0) { *addr = *(u_int32_t *)buf; buf += 4; } } void mace_read_raw_8(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, u_int8_t *buf, bus_size_t len) { volatile u_int64_t *addr = (volatile u_int64_t *)(h + o); len >>= 3; while (len-- != 0) { *(u_int64_t *)buf = *addr; buf += 8; } } void mace_write_raw_8(bus_space_tag_t t, bus_space_handle_t h, bus_addr_t o, const u_int8_t *buf, bus_size_t len) { volatile u_int64_t *addr = (volatile u_int64_t *)(h + o); len >>= 3; while (len-- != 0) { *addr = *(u_int64_t *)buf; buf += 8; } } int mace_space_map(bus_space_tag_t t, bus_addr_t offs, bus_size_t size, int flags, bus_space_handle_t *bshp) { if (ISSET(flags, BUS_SPACE_MAP_CACHEABLE)) offs += PHYS_TO_XKPHYS(0, CCA_CACHED) - PHYS_TO_XKPHYS(0, CCA_NC); *bshp = t->bus_base + offs; return 0; } void mace_space_unmap(bus_space_tag_t t, bus_space_handle_t bsh, bus_size_t size) { } int mace_space_region(bus_space_tag_t t, bus_space_handle_t bsh, bus_size_t offset, bus_size_t size, bus_space_handle_t *nbshp) { *nbshp = bsh + offset; return (0); } void * mace_space_vaddr(bus_space_tag_t t, bus_space_handle_t h) { return (void *)h; } /* * Macebus bus_dma helpers. * Mace accesses memory contiguously at 0x40000000 onwards. */ bus_addr_t macebus_pa_to_device(paddr_t pa) { return (pa | CRIME_MEMORY_OFFSET); } paddr_t macebus_device_to_pa(bus_addr_t addr) { paddr_t pa = (paddr_t)addr & CRIME_MEMORY_MASK; if (pa >= 256 * 1024 * 1024) pa |= CRIME_MEMORY_OFFSET; return (pa); } /* * Macebus interrupt handler driver. */ intrmask_t mace_intem = 0x0; static intrmask_t intrtype[INTMASKSIZE]; static intrmask_t intrmask[INTMASKSIZE]; static intrmask_t intrlevel[INTMASKSIZE]; static int fakeintr(void *); static int fakeintr(void *a) {return 0;} /* * Establish an interrupt handler called from the dispatcher. * The interrupt function established should return zero if there was nothing * to serve (no int) and non-zero when an interrupt was serviced. * Interrupts are numbered from 1 and up where 1 maps to HW int 0. */ void * macebus_intr_establish(void *icp, u_long irq, int type, int level, int (*ih_fun)(void *), void *ih_arg, char *ih_what) { struct intrhand **p, *q, *ih; static struct intrhand fakehand = {NULL, fakeintr}; int edge; extern int cold; static int initialized = 0; if (!initialized) { /*INIT CODE HERE*/ initialized = 1; } if (irq > SPL_CLOCK || irq < 1) { panic("intr_establish: illegal irq %d", irq); } irq -= 1; /* Adjust for 1 being first (0 is no int) */ /* No point in sleeping unless someone can free memory. */ ih = malloc(sizeof *ih, M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); if (ih == NULL) panic("intr_establish: can't malloc handler info"); if (type == IST_NONE || type == IST_PULSE) panic("intr_establish: bogus type"); switch (intrtype[irq]) { case IST_EDGE: case IST_LEVEL: if (type == intrtype[irq]) break; } switch (type) { case IST_EDGE: edge |= 1 << irq; break; case IST_LEVEL: edge &= ~(1 << irq); break; } /* * Figure out where to put the handler. * This is O(N^2), but we want to preserve the order, and N is * generally small. */ for (p = &intrhand[irq]; (q = *p) != NULL; p = &q->ih_next) ; /* * Actually install a fake handler momentarily, since we might be doing * this with interrupts enabled and don't want the real routine called * until masking is set up. */ fakehand.ih_level = level; *p = &fakehand; macebus_intr_makemasks(); /* * Poke the real handler in now. */ ih->ih_fun = ih_fun; ih->ih_arg = ih_arg; ih->ih_next = NULL; ih->ih_level = level; ih->ih_irq = irq + 1; ih->ih_what = ih_what; evcount_attach(&ih->ih_count, ih_what, (void *)&ih->ih_irq, &evcount_intr); *p = ih; return (ih); } void macebus_intr_disestablish(void *p1, void *p2) { } /* * Regenerate interrupt masks to reflect reality. */ void macebus_intr_makemasks(void) { int irq, level; struct intrhand *q; /* First, figure out which levels each IRQ uses. */ for (irq = 0; irq < INTMASKSIZE; irq++) { int levels = 0; for (q = intrhand[irq]; q; q = q->ih_next) levels |= 1 << q->ih_level; intrlevel[irq] = levels; } /* Then figure out which IRQs use each level. */ for (level = IPL_NONE; level < NIPLS; level++) { int irqs = 0; for (irq = 0; irq < INTMASKSIZE; irq++) if (intrlevel[irq] & (1 << level)) irqs |= 1 << irq; if (level != IPL_NONE) irqs |= SINT_ALLMASK; imask[level] = irqs; } /* * There are tty, network and disk drivers that use free() at interrupt * time, so imp > (tty | net | bio). * * Enforce a hierarchy that gives slow devices a better chance at not * dropping data. */ imask[IPL_NET] |= imask[IPL_BIO]; imask[IPL_TTY] |= imask[IPL_NET]; imask[IPL_VM] |= imask[IPL_TTY]; imask[IPL_CLOCK] |= imask[IPL_VM] | SPL_CLOCKMASK; /* * These are pseudo-levels. */ imask[IPL_NONE] = 0; imask[IPL_HIGH] = -1; /* And eventually calculate the complete masks. */ for (irq = 0; irq < INTMASKSIZE; irq++) { int irqs = 1 << irq; for (q = intrhand[irq]; q; q = q->ih_next) irqs |= imask[q->ih_level]; intrmask[irq] = irqs | SINT_ALLMASK; } /* Lastly, determine which IRQs are actually in use. */ irq = 0; for (level = 0; level < INTMASKSIZE; level++) { if (intrhand[level]) { irq |= 1 << level; } } mace_intem = irq & 0x0000ffff; hw_setintrmask(0); } void macebus_do_pending_int(int newcpl) { /* Update masks to new cpl. Order highly important! */ __asm__ (" .set noreorder\n"); cpl = newcpl; __asm__ (" sync\n .set reorder\n"); hw_setintrmask(newcpl); /* If we still have softints pending trigger processing. */ if (ipending & SINT_ALLMASK & ~newcpl) setsoftintr0(); } /* * Process interrupts. The parameter pending has non-masked interrupts. */ intrmask_t macebus_iointr(intrmask_t hwpend, struct trap_frame *cf) { struct intrhand *ih; intrmask_t caught, vm; int v; intrmask_t pending; u_int64_t intstat, isastat, mask; #ifdef DIAGNOSTIC static int spurious = 0; #endif intstat = bus_space_read_8(&crimebus_tag, crime_h, CRIME_INT_STAT); intstat &= 0xffff; isastat = bus_space_read_8(&macebus_tag, mace_h, MACE_ISA_INT_STAT); caught = 0; /* Mask off masked interrupts and save them as pending. */ if (intstat & cf->cpl) { atomic_setbits_int(&ipending, intstat & cf->cpl); mask = bus_space_read_8(&crimebus_tag, crime_h, CRIME_INT_MASK); mask &= ~ipending; bus_space_write_8(&crimebus_tag, crime_h, CRIME_INT_MASK, mask); caught++; } /* Scan all unmasked. Scan the first 16 for now. */ pending = intstat & ~cf->cpl; atomic_clearbits_int(&ipending, pending); for (v = 0, vm = 1; pending != 0 && v < 16 ; v++, vm <<= 1) { if (pending & vm) { ih = intrhand[v]; while (ih) { ih->frame = cf; if ((*ih->ih_fun)(ih->ih_arg)) { caught |= vm; ih->ih_count.ec_count++; } ih = ih->ih_next; } } } if (caught) { #ifdef DIAGNOSTIC spurious = 0; #endif return CR_INT_0; } #ifdef DIAGNOSTIC if (pending != 0) { intstat = bus_space_read_8(&crimebus_tag, crime_h, CRIME_INT_STAT) & bus_space_read_8(&crimebus_tag, crime_h, CRIME_INT_MASK); isastat = bus_space_read_8(&macebus_tag, mace_h, MACE_ISA_INT_STAT) & bus_space_read_8(&macebus_tag, mace_h, MACE_ISA_INT_MASK); if (intstat != 0 || isastat != 0) { printf("stray interrupt, mace mask %lx stat %lx\n" "crime mask %lx stat %lx hard %lx " "(pending %lx caught %lx)\n", bus_space_read_8(&macebus_tag, mace_h, MACE_ISA_INT_MASK), bus_space_read_8(&macebus_tag, mace_h, MACE_ISA_INT_STAT), bus_space_read_8(&crimebus_tag, crime_h, CRIME_INT_MASK), bus_space_read_8(&crimebus_tag, crime_h, CRIME_INT_STAT), bus_space_read_8(&crimebus_tag, crime_h, CRIME_INT_HARD), pending, caught); if (++spurious >= 10) panic("too many stray interrupts"); } } #endif return 0; /* Not found here. */ } /* * Macebus auxilary functions run each clock interrupt. */ intrmask_t macebus_aux(intrmask_t hwpend, struct trap_frame *cf) { u_int64_t mask; mask = bus_space_read_8(&macebus_tag, mace_h, MACE_ISA_MISC_REG); mask |= MACE_ISA_MISC_RLED_OFF | MACE_ISA_MISC_GLED_OFF; /* GREEN - Idle */ /* AMBER - System mode */ /* RED - User mode */ if (cf->sr & SR_KSU_USER) { mask &= ~MACE_ISA_MISC_RLED_OFF; } else if (curproc == NULL || curproc == curcpu()->ci_schedstate.spc_idleproc) { mask &= ~MACE_ISA_MISC_GLED_OFF; } else { mask &= ~(MACE_ISA_MISC_RLED_OFF | MACE_ISA_MISC_GLED_OFF); } bus_space_write_8(&macebus_tag, mace_h, MACE_ISA_MISC_REG, mask); return 0; /* Real clock int handler registers. */ }