/* $OpenBSD: scif.c,v 1.20 2021/01/01 10:21:26 jan Exp $ */ /* $NetBSD: scif.c,v 1.47 2006/07/23 22:06:06 ad Exp $ */ /*- * Copyright (C) 1999 T.Horiuchi and SAITOH Masanobu. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1991 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)com.c 7.5 (Berkeley) 5/16/91 */ /* * SH internal serial driver * * This code is derived from both z8530tty.c and com.c */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif void scifstart(struct tty *); int scifparam(struct tty *, struct termios *); cons_decl(scif); void scif_intr_init(void); int scifintr(void *); struct scif_softc { struct device sc_dev; /* boilerplate */ struct tty *sc_tty; void *sc_si; struct timeout sc_diag_tmo; #if 0 bus_space_tag_t sc_iot; /* ISA i/o space identifier */ bus_space_handle_t sc_ioh; /* ISA io handle */ int sc_drq; int sc_frequency; #endif u_int sc_overflows, sc_floods, sc_errors; /* number of retries so far */ u_char sc_status[7]; /* copy of registers */ int sc_hwflags; int sc_swflags; u_int sc_fifolen; u_int sc_r_hiwat, sc_r_lowat; u_char *volatile sc_rbget, *volatile sc_rbput; volatile u_int sc_rbavail; u_char *sc_rbuf, *sc_ebuf; u_char *sc_tba; /* transmit buffer address */ u_int sc_tbc, /* transmit byte count */ sc_heldtbc; volatile u_char sc_rx_flags, #define RX_TTY_BLOCKED 0x01 #define RX_TTY_OVERFLOWED 0x02 #define RX_IBUF_BLOCKED 0x04 #define RX_IBUF_OVERFLOWED 0x08 #define RX_ANY_BLOCK 0x0f sc_tx_busy, /* working on an output chunk */ sc_tx_done, /* done with one output chunk */ sc_tx_stopped, /* H/W level stop (lost CTS) */ sc_st_check, /* got a status interrupt */ sc_rx_ready; volatile u_char sc_heldchange; }; /* controller driver configuration */ int scif_match(struct device *, void *, void *); void scif_attach(struct device *, struct device *, void *); void scif_break(struct scif_softc *, int); void scif_iflush(struct scif_softc *); void scifsoft(void *); void scif_rxsoft(struct scif_softc *, struct tty *); void scif_txsoft(struct scif_softc *, struct tty *); void scif_stsoft(struct scif_softc *, struct tty *); void scif_schedrx(struct scif_softc *); void scifdiag(void *); #define SCIFUNIT_MASK 0x7ffff #define SCIFDIALOUT_MASK 0x80000 #define SCIFUNIT(x) (minor(x) & SCIFUNIT_MASK) #define SCIFDIALOUT(x) (minor(x) & SCIFDIALOUT_MASK) /* Hardware flag masks */ #define SCIF_HW_NOIEN 0x01 #define SCIF_HW_FIFO 0x02 #define SCIF_HW_FLOW 0x08 #define SCIF_HW_DEV_OK 0x20 #define SCIF_HW_CONSOLE 0x40 /* Buffer size for character buffer */ #define SCIF_RING_SIZE 2048 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */ u_int scif_rbuf_hiwat = (SCIF_RING_SIZE * 1) / 4; u_int scif_rbuf_lowat = (SCIF_RING_SIZE * 3) / 4; #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ int scifconscflag = CONMODE; int scifisconsole = 0; #ifdef SCIFCN_SPEED unsigned int scifcn_speed = SCIFCN_SPEED; #else unsigned int scifcn_speed = 9600; #endif #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */ u_int scif_rbuf_size = SCIF_RING_SIZE; struct cfattach scif_ca = { sizeof(struct scif_softc), scif_match, scif_attach }; struct cfdriver scif_cd = { 0, "scif", DV_DULL }; static int scif_attached; void InitializeScif(unsigned int); /* * following functions are debugging prupose only */ #define CR 0x0D #define USART_ON (unsigned int)~0x08 void scif_putc(unsigned char); unsigned char scif_getc(void); int ScifErrCheck(void); /* XXX: uwe * Prepare for bus_spacification. The difference in access widths is * still handled by the magic definitions in scifreg.h */ #define scif_smr_read() SHREG_SCSMR2 #define scif_smr_write(v) (SHREG_SCSMR2 = (v)) #define scif_brr_read() SHREG_SCBRR2 #define scif_brr_write(v) (SHREG_SCBRR2 = (v)) #define scif_scr_read() SHREG_SCSCR2 #define scif_scr_write(v) (SHREG_SCSCR2 = (v)) #define scif_ftdr_write(v) (SHREG_SCFTDR2 = (v)) #define scif_ssr_read() SHREG_SCSSR2 #define scif_ssr_write(v) (SHREG_SCSSR2 = (v)) #define scif_frdr_read() SHREG_SCFRDR2 #define scif_fcr_read() SHREG_SCFCR2 #define scif_fcr_write(v) (SHREG_SCFCR2 = (v)) #define scif_fdr_read() SHREG_SCFDR2 #ifdef SH4 /* additional registers in sh4 */ #define scif_sptr_read() SHREG_SCSPTR2 #define scif_sptr_write(v) (SHREG_SCSPTR2 = (v)) #define scif_lsr_read() SHREG_SCLSR2 #define scif_lsr_write(v) (SHREG_SCLSR2 = (v)) #endif /* SH4 */ /* * InitializeScif * : unsigned int bps; * : SCIF(Serial Communication Interface) */ void InitializeScif(unsigned int bps) { /* Initialize SCR */ scif_scr_write(0x00); #if 0 scif_fcr_write(SCFCR2_TFRST | SCFCR2_RFRST | SCFCR2_MCE); #else scif_fcr_write(SCFCR2_TFRST | SCFCR2_RFRST); #endif /* Serial Mode Register */ scif_smr_write(0x00); /* 8bit,NonParity,Even,1Stop */ /* Bit Rate Register */ scif_brr_write(divrnd(sh_clock_get_pclock(), 32 * bps) - 1); /* * wait 2m Sec, because Send/Recv must begin 1 bit period after * BRR is set. */ delay(2000); #if 0 scif_fcr_write(FIFO_RCV_TRIGGER_14 | FIFO_XMT_TRIGGER_1 | SCFCR2_MCE); #else scif_fcr_write(FIFO_RCV_TRIGGER_14 | FIFO_XMT_TRIGGER_1); #endif /* Send permission, Receive permission ON */ scif_scr_write(SCSCR2_TE | SCSCR2_RE); /* Serial Status Register */ scif_ssr_write(scif_ssr_read() & SCSSR2_TDFE); /* Clear Status */ } /* * scif_putc * : unsigned char c; */ void scif_putc(unsigned char c) { /* wait for ready */ while ((scif_fdr_read() & SCFDR2_TXCNT) == SCFDR2_TXF_FULL) continue; /* write send data to send register */ scif_ftdr_write(c); /* clear ready flag */ scif_ssr_write(scif_ssr_read() & ~(SCSSR2_TDFE | SCSSR2_TEND)); } /* * : ScifErrCheck * 0x80 = error * 0x08 = frame error * 0x04 = parity error */ int ScifErrCheck(void) { return (scif_ssr_read() & (SCSSR2_ER | SCSSR2_FER | SCSSR2_PER)); } /* * scif_getc */ unsigned char scif_getc(void) { unsigned char c, err_c; #ifdef SH4 unsigned short err_c2 = 0; /* XXXGCC: -Wuninitialized */ #endif for (;;) { /* wait for ready */ while ((scif_fdr_read() & SCFDR2_RECVCNT) == 0) continue; c = scif_frdr_read(); err_c = scif_ssr_read(); scif_ssr_write(scif_ssr_read() & ~(SCSSR2_ER | SCSSR2_BRK | SCSSR2_RDF | SCSSR2_DR)); #ifdef SH4 if (CPU_IS_SH4) { err_c2 = scif_lsr_read(); scif_lsr_write(scif_lsr_read() & ~SCLSR2_ORER); } #endif if ((err_c & (SCSSR2_ER | SCSSR2_BRK | SCSSR2_FER | SCSSR2_PER)) == 0) { #ifdef SH4 if (CPU_IS_SH4 && ((err_c2 & SCLSR2_ORER) == 0)) #endif return(c); } } } int scif_match(struct device *parent, void *vcf, void *aux) { if (scif_attached != 0) return 0; return 1; } void scif_attach(struct device *parent, struct device *self, void *aux) { struct scif_softc *sc = (struct scif_softc *)self; struct tty *tp; scif_attached = 1; sc->sc_hwflags = 0; /* XXX */ sc->sc_swflags = 0; /* XXX */ sc->sc_fifolen = 16; if (scifisconsole) { /* InitializeScif(scifcn_speed); */ SET(sc->sc_hwflags, SCIF_HW_CONSOLE); SET(sc->sc_swflags, TIOCFLAG_SOFTCAR); printf("\n%s: console\n", sc->sc_dev.dv_xname); } else { InitializeScif(9600); printf("\n"); } timeout_set(&sc->sc_diag_tmo, scifdiag, sc); #ifdef SH4 intc_intr_establish(SH4_INTEVT_SCIF_ERI, IST_LEVEL, IPL_TTY, scifintr, sc, self->dv_xname); intc_intr_establish(SH4_INTEVT_SCIF_RXI, IST_LEVEL, IPL_TTY, scifintr, sc, self->dv_xname); intc_intr_establish(SH4_INTEVT_SCIF_BRI, IST_LEVEL, IPL_TTY, scifintr, sc, self->dv_xname); intc_intr_establish(SH4_INTEVT_SCIF_TXI, IST_LEVEL, IPL_TTY, scifintr, sc, self->dv_xname); #else intc_intr_establish(SH7709_INTEVT2_SCIF_ERI, IST_LEVEL, IPL_TTY, scifintr, sc, self->dv_xname); intc_intr_establish(SH7709_INTEVT2_SCIF_RXI, IST_LEVEL, IPL_TTY, scifintr, sc, self->dv_xname); intc_intr_establish(SH7709_INTEVT2_SCIF_BRI, IST_LEVEL, IPL_TTY, scifintr, sc, self->dv_xname); intc_intr_establish(SH7709_INTEVT2_SCIF_TXI, IST_LEVEL, IPL_TTY, scifintr, sc, self->dv_xname); #endif sc->sc_si = softintr_establish(IPL_SOFTSERIAL, scifsoft, sc); SET(sc->sc_hwflags, SCIF_HW_DEV_OK); tp = ttymalloc(0); tp->t_oproc = scifstart; tp->t_param = scifparam; tp->t_hwiflow = NULL; sc->sc_tty = tp; sc->sc_rbuf = malloc(scif_rbuf_size << 1, M_DEVBUF, M_NOWAIT); if (sc->sc_rbuf == NULL) { printf("%s: unable to allocate ring buffer\n", sc->sc_dev.dv_xname); return; } sc->sc_ebuf = sc->sc_rbuf + (scif_rbuf_size << 1); } /* * Start or restart transmission. */ void scifstart(struct tty *tp) { struct scif_softc *sc = scif_cd.cd_devs[SCIFUNIT(tp->t_dev)]; int s; s = spltty(); if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP)) goto out; if (sc->sc_tx_stopped) goto out; ttwakeupwr(tp); if (tp->t_outq.c_cc == 0) goto out; /* Grab the first contiguous region of buffer space. */ { u_char *tba; int tbc; tba = tp->t_outq.c_cf; tbc = ndqb(&tp->t_outq, 0); sc->sc_tba = tba; sc->sc_tbc = tbc; } SET(tp->t_state, TS_BUSY); sc->sc_tx_busy = 1; /* Enable transmit completion interrupts if necessary. */ scif_scr_write(scif_scr_read() | SCSCR2_TIE | SCSCR2_RIE); /* Output the first chunk of the contiguous buffer. */ { int n; int maxchars; int i; n = sc->sc_tbc; maxchars = sc->sc_fifolen - ((scif_fdr_read() & SCFDR2_TXCNT) >> 8); if (n > maxchars) n = maxchars; for (i = 0; i < n; i++) { scif_putc(*(sc->sc_tba)); sc->sc_tba++; } sc->sc_tbc -= n; } out: splx(s); return; } /* * Set SCIF tty parameters from termios. * XXX - Should just copy the whole termios after * making sure all the changes could be done. */ int scifparam(struct tty *tp, struct termios *t) { struct scif_softc *sc = scif_cd.cd_devs[SCIFUNIT(tp->t_dev)]; int ospeed = t->c_ospeed; int s; /* Check requested parameters. */ if (ospeed < 0) return (EINVAL); if (t->c_ispeed && t->c_ispeed != t->c_ospeed) return (EINVAL); /* * For the console, always force CLOCAL and !HUPCL, so that the port * is always active. */ if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) || ISSET(sc->sc_hwflags, SCIF_HW_CONSOLE)) { SET(t->c_cflag, CLOCAL); CLR(t->c_cflag, HUPCL); } /* * If there were no changes, don't do anything. This avoids dropping * input and improves performance when all we did was frob things like * VMIN and VTIME. */ if (tp->t_ospeed == t->c_ospeed && tp->t_cflag == t->c_cflag) return (0); #if 0 /* XXX (msaitoh) */ lcr = ISSET(sc->sc_lcr, LCR_SBREAK) | cflag2lcr(t->c_cflag); #endif s = spltty(); /* * Set the flow control pins depending on the current flow control * mode. */ if (ISSET(t->c_cflag, CRTSCTS)) { scif_fcr_write(scif_fcr_read() | SCFCR2_MCE); } else { scif_fcr_write(scif_fcr_read() & ~SCFCR2_MCE); } scif_brr_write(divrnd(sh_clock_get_pclock(), 32 * ospeed) -1); /* * Set the FIFO threshold based on the receive speed. * * * If it's a low speed, it's probably a mouse or some other * interactive device, so set the threshold low. * * If it's a high speed, trim the trigger level down to prevent * overflows. * * Otherwise set it a bit higher. */ #if 0 /* XXX (msaitoh) */ if (ISSET(sc->sc_hwflags, SCIF_HW_HAYESP)) sc->sc_fifo = FIFO_DMA_MODE | FIFO_ENABLE | FIFO_TRIGGER_8; else if (ISSET(sc->sc_hwflags, SCIF_HW_FIFO)) sc->sc_fifo = FIFO_ENABLE | (t->c_ospeed <= 1200 ? FIFO_TRIGGER_1 : t->c_ospeed <= 38400 ? FIFO_TRIGGER_8 : FIFO_TRIGGER_4); else sc->sc_fifo = 0; #endif /* And copy to tty. */ tp->t_ispeed = 0; tp->t_ospeed = t->c_ospeed; tp->t_cflag = t->c_cflag; if (!sc->sc_heldchange) { if (sc->sc_tx_busy) { sc->sc_heldtbc = sc->sc_tbc; sc->sc_tbc = 0; sc->sc_heldchange = 1; } #if 0 /* XXX (msaitoh) */ else scif_loadchannelregs(sc); #endif } if (!ISSET(t->c_cflag, CHWFLOW)) { /* Disable the high water mark. */ sc->sc_r_hiwat = 0; sc->sc_r_lowat = 0; if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) { CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED); scif_schedrx(sc); } } else { sc->sc_r_hiwat = scif_rbuf_hiwat; sc->sc_r_lowat = scif_rbuf_lowat; } splx(s); #ifdef SCIF_DEBUG if (scif_debug) scifstatus(sc, "scifparam "); #endif if (!ISSET(t->c_cflag, CHWFLOW)) { if (sc->sc_tx_stopped) { sc->sc_tx_stopped = 0; scifstart(tp); } } return (0); } void scif_iflush(struct scif_softc *sc) { int i; unsigned char c; i = scif_fdr_read() & SCFDR2_RECVCNT; while (i > 0) { c = scif_frdr_read(); scif_ssr_write(scif_ssr_read() & ~(SCSSR2_RDF | SCSSR2_DR)); i--; } } int scifopen(dev_t dev, int flag, int mode, struct proc *p) { int unit = SCIFUNIT(dev); struct scif_softc *sc; struct tty *tp; int s; int error; if (unit >= scif_cd.cd_ndevs) return (ENXIO); sc = scif_cd.cd_devs[unit]; if (sc == 0 || !ISSET(sc->sc_hwflags, SCIF_HW_DEV_OK) || sc->sc_rbuf == NULL) return (ENXIO); tp = sc->sc_tty; if (ISSET(tp->t_state, TS_ISOPEN) && ISSET(tp->t_state, TS_XCLUDE) && suser(p) != 0) return (EBUSY); s = spltty(); /* * Do the following iff this is a first open. */ if (!ISSET(tp->t_state, TS_ISOPEN)) { struct termios t; tp->t_dev = dev; /* Turn on interrupts. */ scif_scr_write(scif_scr_read() | SCSCR2_TIE | SCSCR2_RIE); /* * Initialize the termios status to the defaults. Add in the * sticky bits from TIOCSFLAGS. */ t.c_ispeed = 0; if (ISSET(sc->sc_hwflags, SCIF_HW_CONSOLE)) { t.c_ospeed = scifcn_speed; /* XXX (msaitoh) */ t.c_cflag = scifconscflag; } else { t.c_ospeed = TTYDEF_SPEED; t.c_cflag = TTYDEF_CFLAG; } if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL)) SET(t.c_cflag, CLOCAL); if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS)) SET(t.c_cflag, CRTSCTS); if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF)) SET(t.c_cflag, MDMBUF); /* Make sure scifparam() will do something. */ tp->t_ospeed = 0; (void) scifparam(tp, &t); /* * XXX landisk has no hardware flow control! * When porting to another platform, fix this somehow */ SET(tp->t_state, TS_CARR_ON); tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_lflag = TTYDEF_LFLAG; ttychars(tp); ttsetwater(tp); /* Clear the input ring, and unblock. */ sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf; sc->sc_rbavail = scif_rbuf_size; scif_iflush(sc); CLR(sc->sc_rx_flags, RX_ANY_BLOCK); #if 0 /* XXX (msaitoh) */ scif_hwiflow(sc); #endif #ifdef SCIF_DEBUG if (scif_debug) scifstatus(sc, "scifopen "); #endif } splx(s); error = (*linesw[tp->t_line].l_open)(dev, tp, p); if (error) goto bad; return (0); bad: return (error); } int scifclose(dev_t dev, int flag, int mode, struct proc *p) { struct scif_softc *sc = scif_cd.cd_devs[SCIFUNIT(dev)]; struct tty *tp = sc->sc_tty; /* XXX This is for cons.c. */ if (!ISSET(tp->t_state, TS_ISOPEN)) return (0); (*linesw[tp->t_line].l_close)(tp, flag, p); ttyclose(tp); return (0); } int scifread(dev_t dev, struct uio *uio, int flag) { struct scif_softc *sc = scif_cd.cd_devs[SCIFUNIT(dev)]; struct tty *tp = sc->sc_tty; return ((*linesw[tp->t_line].l_read)(tp, uio, flag)); } int scifwrite(dev_t dev, struct uio *uio, int flag) { struct scif_softc *sc = scif_cd.cd_devs[SCIFUNIT(dev)]; struct tty *tp = sc->sc_tty; return ((*linesw[tp->t_line].l_write)(tp, uio, flag)); } #if 0 int scifpoll(dev_t dev, int events, struct proc *p) { struct scif_softc *sc = scif_cd.cd_devs[SCIFUNIT(dev)]; struct tty *tp = sc->sc_tty; return ((*linesw[tp->t_line].l_poll)(tp, events, p)); } #endif struct tty * sciftty(dev_t dev) { struct scif_softc *sc = scif_cd.cd_devs[SCIFUNIT(dev)]; struct tty *tp = sc->sc_tty; return (tp); } int scifioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) { struct scif_softc *sc = scif_cd.cd_devs[SCIFUNIT(dev)]; struct tty *tp = sc->sc_tty; int error; int s; error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p); if (error != -1) return (error); error = ttioctl(tp, cmd, data, flag, p); if (error != -1) return (error); error = 0; s = spltty(); switch (cmd) { case TIOCSBRK: scif_break(sc, 1); break; case TIOCCBRK: scif_break(sc, 0); break; case TIOCGFLAGS: *(int *)data = sc->sc_swflags; break; case TIOCSFLAGS: error = suser(p); if (error) break; sc->sc_swflags = *(int *)data; break; default: error = -1; break; } splx(s); return (error); } void scif_schedrx(struct scif_softc *sc) { sc->sc_rx_ready = 1; /* Wake up the poller. */ softintr_schedule(sc->sc_si); } void scif_break(struct scif_softc *sc, int onoff) { if (onoff) scif_ssr_write(scif_ssr_read() & ~SCSSR2_TDFE); else scif_ssr_write(scif_ssr_read() | SCSSR2_TDFE); #if 0 /* XXX */ if (!sc->sc_heldchange) { if (sc->sc_tx_busy) { sc->sc_heldtbc = sc->sc_tbc; sc->sc_tbc = 0; sc->sc_heldchange = 1; } else scif_loadchannelregs(sc); } #endif } /* * Stop output, e.g., for ^S or output flush. */ int scifstop(struct tty *tp, int flag) { struct scif_softc *sc = scif_cd.cd_devs[SCIFUNIT(tp->t_dev)]; int s; s = spltty(); if (ISSET(tp->t_state, TS_BUSY)) { /* Stop transmitting at the next chunk. */ sc->sc_tbc = 0; sc->sc_heldtbc = 0; if (!ISSET(tp->t_state, TS_TTSTOP)) SET(tp->t_state, TS_FLUSH); } splx(s); return (0); } void scif_intr_init(void) { /* XXX */ } void scifdiag(void *arg) { struct scif_softc *sc = arg; int overflows, floods; int s; s = spltty(); overflows = sc->sc_overflows; sc->sc_overflows = 0; floods = sc->sc_floods; sc->sc_floods = 0; sc->sc_errors = 0; splx(s); log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n", sc->sc_dev.dv_xname, overflows, overflows == 1 ? "" : "s", floods, floods == 1 ? "" : "s"); } void scif_rxsoft(struct scif_softc *sc, struct tty *tp) { int (*rint)(int, struct tty *) = *linesw[tp->t_line].l_rint; u_char *get, *end; u_int cc, scc; u_char ssr2; int code; int s; end = sc->sc_ebuf; get = sc->sc_rbget; scc = cc = scif_rbuf_size - sc->sc_rbavail; if (cc == scif_rbuf_size) { sc->sc_floods++; if (sc->sc_errors++ == 0) timeout_add_sec(&sc->sc_diag_tmo, 60); } while (cc) { code = get[0]; ssr2 = get[1]; if (ISSET(ssr2, SCSSR2_BRK | SCSSR2_FER | SCSSR2_PER)) { if (ISSET(ssr2, SCSSR2_BRK | SCSSR2_FER)) SET(code, TTY_FE); if (ISSET(ssr2, SCSSR2_PER)) SET(code, TTY_PE); } if ((*rint)(code, tp) == -1) { /* * The line discipline's buffer is out of space. */ if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { /* * We're either not using flow control, or the * line discipline didn't tell us to block for * some reason. Either way, we have no way to * know when there's more space available, so * just drop the rest of the data. */ get += cc << 1; if (get >= end) get -= scif_rbuf_size << 1; cc = 0; } else { /* * Don't schedule any more receive processing * until the line discipline tells us there's * space available (through scifhwiflow()). * Leave the rest of the data in the input * buffer. */ SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED); } break; } get += 2; if (get >= end) get = sc->sc_rbuf; cc--; } if (cc != scc) { sc->sc_rbget = get; s = spltty(); cc = sc->sc_rbavail += scc - cc; /* Buffers should be ok again, release possible block. */ if (cc >= sc->sc_r_lowat) { if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) { CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED); scif_scr_write(scif_scr_read() | SCSCR2_RIE); } #if 0 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) { CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED); scif_hwiflow(sc); } #endif } splx(s); } } void scif_txsoft(struct scif_softc *sc, struct tty *tp) { CLR(tp->t_state, TS_BUSY); if (ISSET(tp->t_state, TS_FLUSH)) CLR(tp->t_state, TS_FLUSH); else ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf)); (*linesw[tp->t_line].l_start)(tp); } void scif_stsoft(struct scif_softc *sc, struct tty *tp) { #if 0 /* XXX (msaitoh) */ u_char msr, delta; int s; s = spltty(); msr = sc->sc_msr; delta = sc->sc_msr_delta; sc->sc_msr_delta = 0; splx(s); if (ISSET(delta, sc->sc_msr_dcd)) { /* * Inform the tty layer that carrier detect changed. */ (void) (*linesw[tp->t_line].l_modem)(tp, ISSET(msr, MSR_DCD)); } if (ISSET(delta, sc->sc_msr_cts)) { /* Block or unblock output according to flow control. */ if (ISSET(msr, sc->sc_msr_cts)) { sc->sc_tx_stopped = 0; (*linesw[tp->t_line].l_start)(tp); } else { sc->sc_tx_stopped = 1; } } #ifdef SCIF_DEBUG if (scif_debug) scifstatus(sc, "scif_stsoft"); #endif #endif } void scifsoft(void *arg) { struct scif_softc *sc = arg; struct tty *tp; tp = sc->sc_tty; if (sc->sc_rx_ready) { sc->sc_rx_ready = 0; scif_rxsoft(sc, tp); } #if 0 if (sc->sc_st_check) { sc->sc_st_check = 0; scif_stsoft(sc, tp); } #endif if (sc->sc_tx_done) { sc->sc_tx_done = 0; scif_txsoft(sc, tp); } } int scifintr(void *arg) { struct scif_softc *sc = arg; u_char *put, *end; u_int cc; u_short ssr2; int count; end = sc->sc_ebuf; put = sc->sc_rbput; cc = sc->sc_rbavail; do { ssr2 = scif_ssr_read(); if (ISSET(ssr2, SCSSR2_BRK)) { scif_ssr_write(scif_ssr_read() & ~(SCSSR2_ER | SCSSR2_BRK | SCSSR2_DR)); #ifdef DDB if (ISSET(sc->sc_hwflags, SCIF_HW_CONSOLE) && db_console != 0) { db_enter(); } #endif /* DDB */ } count = scif_fdr_read() & SCFDR2_RECVCNT; if (count != 0) { for (;;) { u_char c = scif_frdr_read(); u_char err = (u_char)(scif_ssr_read() & 0x00ff); scif_ssr_write(scif_ssr_read() & ~(SCSSR2_ER | SCSSR2_RDF | SCSSR2_DR)); #ifdef SH4 if (CPU_IS_SH4) scif_lsr_write(scif_lsr_read() & ~SCLSR2_ORER); #endif if ((cc > 0) && (count > 0)) { put[0] = c; put[1] = err; put += 2; if (put >= end) put = sc->sc_rbuf; cc--; count--; } else break; } /* * Current string of incoming characters ended because * no more data was available or we ran out of space. * Schedule a receive event if any data was received. * If we're out of space, turn off receive interrupts. */ sc->sc_rbput = put; sc->sc_rbavail = cc; if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) sc->sc_rx_ready = 1; /* * See if we are in danger of overflowing a buffer. If * so, use hardware flow control to ease the pressure. */ if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) && cc < sc->sc_r_hiwat) { SET(sc->sc_rx_flags, RX_IBUF_BLOCKED); #if 0 scif_hwiflow(sc); #endif } /* * If we're out of space, disable receive interrupts * until the queue has drained a bit. */ if (!cc) { SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED); scif_scr_write(scif_scr_read() & ~SCSCR2_RIE); } } else { if (scif_ssr_read() & (SCSSR2_RDF | SCSSR2_DR)) { scif_scr_write(scif_scr_read() & ~(SCSCR2_TIE | SCSCR2_RIE)); delay(10); scif_scr_write(scif_scr_read() | SCSCR2_TIE | SCSCR2_RIE); continue; } } } while (scif_ssr_read() & (SCSSR2_RDF | SCSSR2_DR)); #if 0 msr = bus_space_read_1(iot, ioh, scif_msr); delta = msr ^ sc->sc_msr; sc->sc_msr = msr; if (ISSET(delta, sc->sc_msr_mask)) { SET(sc->sc_msr_delta, delta); /* * Pulse-per-second clock signal on edge of DCD? */ if (ISSET(delta, sc->sc_ppsmask)) { struct timeval tv; if (ISSET(msr, sc->sc_ppsmask) == sc->sc_ppsassert) { /* XXX nanotime() */ microtime(&tv); TIMEVAL_TO_TIMESPEC(&tv, &sc->ppsinfo.assert_timestamp); if (sc->ppsparam.mode & PPS_OFFSETASSERT) { timespecadd(&sc->ppsinfo.assert_timestamp, &sc->ppsparam.assert_offset, &sc->ppsinfo.assert_timestamp); TIMESPEC_TO_TIMEVAL(&tv, &sc->ppsinfo.assert_timestamp); } #ifdef PPS_SYNC if (sc->ppsparam.mode & PPS_HARDPPSONASSERT) hardpps(&tv, tv.tv_usec); #endif sc->ppsinfo.assert_sequence++; sc->ppsinfo.current_mode = sc->ppsparam.mode; } else if (ISSET(msr, sc->sc_ppsmask) == sc->sc_ppsclear) { /* XXX nanotime() */ microtime(&tv); TIMEVAL_TO_TIMESPEC(&tv, &sc->ppsinfo.clear_timestamp); if (sc->ppsparam.mode & PPS_OFFSETCLEAR) { timespecadd(&sc->ppsinfo.clear_timestamp, &sc->ppsparam.clear_offset, &sc->ppsinfo.clear_timestamp); TIMESPEC_TO_TIMEVAL(&tv, &sc->ppsinfo.clear_timestamp); } #ifdef PPS_SYNC if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR) hardpps(&tv, tv.tv_usec); #endif sc->ppsinfo.clear_sequence++; sc->ppsinfo.current_mode = sc->ppsparam.mode; } } /* * Stop output immediately if we lose the output * flow control signal or carrier detect. */ if (ISSET(~msr, sc->sc_msr_mask)) { sc->sc_tbc = 0; sc->sc_heldtbc = 0; #ifdef SCIF_DEBUG if (scif_debug) scifstatus(sc, "scifintr "); #endif } sc->sc_st_check = 1; } #endif /* * Done handling any receive interrupts. See if data can be * transmitted as well. Schedule tx done event if no data left * and tty was marked busy. */ if (((scif_fdr_read() & SCFDR2_TXCNT) >> 8) != 16) { /* XXX (msaitoh) */ /* * If we've delayed a parameter change, do it now, and restart * output. */ if (sc->sc_heldchange) { sc->sc_heldchange = 0; sc->sc_tbc = sc->sc_heldtbc; sc->sc_heldtbc = 0; } /* Output the next chunk of the contiguous buffer, if any. */ if (sc->sc_tbc > 0) { int n; int maxchars; int i; n = sc->sc_tbc; maxchars = sc->sc_fifolen - ((scif_fdr_read() & SCFDR2_TXCNT) >> 8); if (n > maxchars) n = maxchars; for (i = 0; i < n; i++) { scif_putc(*(sc->sc_tba)); sc->sc_tba++; } sc->sc_tbc -= n; } else { /* Disable transmit completion interrupts if necessary. */ #if 0 if (ISSET(sc->sc_ier, IER_ETXRDY)) #endif scif_scr_write(scif_scr_read() & ~SCSCR2_TIE); if (sc->sc_tx_busy) { sc->sc_tx_busy = 0; sc->sc_tx_done = 1; } } } /* Wake up the poller. */ softintr_schedule(sc->sc_si); return (1); } void scifcnprobe(struct consdev *cp) { int maj; /* locate the major number */ for (maj = 0; maj < nchrdev; maj++) if (cdevsw[maj].d_open == scifopen) break; cp->cn_dev = makedev(maj, 0); #ifdef SCIFCONSOLE cp->cn_pri = CN_HIGHPRI; #else cp->cn_pri = CN_LOWPRI; #endif } void scifcninit(struct consdev *cp) { InitializeScif(scifcn_speed); scifisconsole = 1; } int scifcngetc(dev_t dev) { int c; int s; s = spltty(); c = scif_getc(); splx(s); return (c); } void scifcnputc(dev_t dev, int c) { int s; s = spltty(); scif_putc((u_char)c); splx(s); }