/* $OpenBSD: cs4231.c,v 1.24 2005/07/09 22:23:13 miod Exp $ */ /* * Copyright (c) 1999 Jason L. Wright (jason@thought.net) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Driver for CS4231 based audio found in some sun4m systems (cs4231) * based on ideas from the S/Linux project and the NetBSD project. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CSAUDIO_DAC_LVL 0 #define CSAUDIO_LINE_IN_LVL 1 #define CSAUDIO_MIC_LVL 2 #define CSAUDIO_CD_LVL 3 #define CSAUDIO_MONITOR_LVL 4 #define CSAUDIO_OUTPUT_LVL 5 #define CSAUDIO_LINE_IN_MUTE 6 #define CSAUDIO_DAC_MUTE 7 #define CSAUDIO_CD_MUTE 8 #define CSAUDIO_MIC_MUTE 9 #define CSAUDIO_MONITOR_MUTE 10 #define CSAUDIO_OUTPUT_MUTE 11 #define CSAUDIO_REC_LVL 12 #define CSAUDIO_RECORD_SOURCE 13 #define CSAUDIO_OUTPUT 14 #define CSAUDIO_INPUT_CLASS 15 #define CSAUDIO_OUTPUT_CLASS 16 #define CSAUDIO_RECORD_CLASS 17 #define CSAUDIO_MONITOR_CLASS 18 #define CSPORT_AUX2 0 #define CSPORT_AUX1 1 #define CSPORT_DAC 2 #define CSPORT_LINEIN 3 #define CSPORT_MONO 4 #define CSPORT_MONITOR 5 #define CSPORT_SPEAKER 6 #define CSPORT_LINEOUT 7 #define CSPORT_HEADPHONE 8 #define CSPORT_MICROPHONE 9 #define MIC_IN_PORT 0 #define LINE_IN_PORT 1 #define AUX1_IN_PORT 2 #define DAC_IN_PORT 3 #ifdef AUDIO_DEBUG #define DPRINTF(x) printf x #else #define DPRINTF(x) #endif /* Sun uses these pins in pin control register as GPIO */ #define CS_PC_LINEMUTE XCTL0_ENABLE /* mute line */ #define CS_PC_HDPHMUTE XCTL1_ENABLE /* mute headphone */ /* cs4231 playback interrupt */ #define CS_AFS_TI 0x40 /* timer interrupt */ #define CS_AFS_CI 0x20 /* capture interrupt */ #define CS_AFS_PI 0x10 /* playback interrupt */ #define CS_AFS_CU 0x08 /* capture underrun */ #define CS_AFS_CO 0x04 /* capture overrun */ #define CS_AFS_PO 0x02 /* playback overrun */ #define CS_AFS_PU 0x01 /* playback underrun */ #define CS_TIMEOUT 90000 /* recalibration timeout */ int cs4231_match(struct device *, void *, void *); void cs4231_attach(struct device *, struct device *, void *); int cs4231_intr(void *); int cs4231_set_speed(struct cs4231_softc *, u_long *); void cs4231_setup_output(struct cs4231_softc *sc); /* Audio interface */ int cs4231_open(void *, int); void cs4231_close(void *); int cs4231_query_encoding(void *, struct audio_encoding *); int cs4231_set_params(void *, int, int, struct audio_params *, struct audio_params *); int cs4231_round_blocksize(void *, int); int cs4231_commit_settings(void *); int cs4231_halt_output(void *); int cs4231_halt_input(void *); int cs4231_getdev(void *, struct audio_device *); int cs4231_set_port(void *, mixer_ctrl_t *); int cs4231_get_port(void *, mixer_ctrl_t *); int cs4231_query_devinfo(void *addr, mixer_devinfo_t *); void * cs4231_alloc(void *, int, size_t, int, int); void cs4231_free(void *, void *, int); int cs4231_get_props(void *); int cs4231_trigger_output(void *, void *, void *, int, void (*intr)(void *), void *arg, struct audio_params *); int cs4231_trigger_input(void *, void *, void *, int, void (*intr)(void *), void *arg, struct audio_params *); void cs4231_write(struct cs4231_softc *, u_int8_t, u_int8_t); u_int8_t cs4231_read(struct cs4231_softc *, u_int8_t); struct audio_hw_if cs4231_sa_hw_if = { cs4231_open, cs4231_close, 0, cs4231_query_encoding, cs4231_set_params, cs4231_round_blocksize, cs4231_commit_settings, 0, 0, 0, 0, cs4231_halt_output, cs4231_halt_input, 0, cs4231_getdev, 0, cs4231_set_port, cs4231_get_port, cs4231_query_devinfo, cs4231_alloc, cs4231_free, 0, 0, cs4231_get_props, cs4231_trigger_output, cs4231_trigger_input }; struct cfattach audiocs_ca = { sizeof (struct cs4231_softc), cs4231_match, cs4231_attach }; struct cfdriver audiocs_cd = { NULL, "audiocs", DV_DULL }; struct audio_device cs4231_device = { "SUNW,CS4231", "a", /* XXX b for ultra */ "onboard1", /* XXX unknown for ultra */ }; int cs4231_match(parent, vcf, aux) struct device *parent; void *vcf, *aux; { struct cfdata *cf = vcf; struct confargs *ca = aux; register struct romaux *ra = &ca->ca_ra; if (strcmp(cf->cf_driver->cd_name, ra->ra_name) && strcmp("SUNW,CS4231", ra->ra_name)) { return (0); } return (1); } void cs4231_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct confargs *ca = aux; struct cs4231_softc *sc = (struct cs4231_softc *)self; int pri; if (ca->ca_ra.ra_nintr != 1) { printf(": expected 1 interrupt, got %d\n", ca->ca_ra.ra_nintr); return; } pri = ca->ca_ra.ra_intr[0].int_pri; if (ca->ca_ra.ra_nreg != 1) { printf(": expected 1 register set, got %d\n", ca->ca_ra.ra_nreg); return; } sc->sc_regs = mapiodev(&(ca->ca_ra.ra_reg[0]), 0, ca->ca_ra.ra_reg[0].rr_len); sc->sc_node = ca->ca_ra.ra_node; sc->sc_burst = getpropint(ca->ca_ra.ra_node, "burst-sizes", -1); if (sc->sc_burst == -1) sc->sc_burst = ((struct sbus_softc *)parent)->sc_burst; /* Clamp at parent's burst sizes */ sc->sc_burst &= ((struct sbus_softc *)parent)->sc_burst; sbus_establish(&sc->sc_sd, &sc->sc_dev); sc->sc_ih.ih_fun = cs4231_intr; sc->sc_ih.ih_arg = sc; intr_establish(ca->ca_ra.ra_intr[0].int_pri, &sc->sc_ih, IPL_AUHARD, self->dv_xname); printf(" pri %d, softpri %d\n", pri, IPL_AUSOFT); audio_attach_mi(&cs4231_sa_hw_if, sc, &sc->sc_dev); /* Default to speaker, unmuted, reasonable volume */ sc->sc_out_port = CSPORT_SPEAKER; sc->sc_in_port = CSPORT_MICROPHONE; sc->sc_mute[CSPORT_SPEAKER] = 1; sc->sc_mute[CSPORT_MONITOR] = 1; sc->sc_volume[CSPORT_SPEAKER].left = 192; sc->sc_volume[CSPORT_SPEAKER].right = 192; } void cs4231_write(sc, r, v) struct cs4231_softc *sc; u_int8_t r, v; { sc->sc_regs->iar = r; sc->sc_regs->idr = v; } u_int8_t cs4231_read(sc, r) struct cs4231_softc *sc; u_int8_t r; { sc->sc_regs->iar = r; return (sc->sc_regs->idr); } /* * Hardware interrupt handler */ int cs4231_intr(v) void *v; { struct cs4231_softc *sc = (struct cs4231_softc *)v; struct cs4231_regs *regs = sc->sc_regs; struct cs_channel *chan; struct cs_dma *p; u_int32_t csr; u_int8_t reg, status; int r = 0; csr = regs->dma_csr; regs->dma_csr = csr; if ((csr & APC_CSR_EIE) && (csr & APC_CSR_EI)) { printf("%s: error interrupt\n", sc->sc_dev.dv_xname); r = 1; } if ((csr & APC_CSR_PIE) && (csr & APC_CSR_PI)) { /* playback interrupt */ r = 1; } if ((csr & APC_CSR_GIE) && (csr & APC_CSR_GI)) { /* general interrupt */ status = regs->status; if (status & (INTERRUPT_STATUS | SAMPLE_ERROR)) { regs->iar = CS_IRQ_STATUS; reg = regs->idr; if (reg & CS_AFS_PI) { cs4231_write(sc, SP_LOWER_BASE_COUNT, 0xff); cs4231_write(sc, SP_UPPER_BASE_COUNT, 0xff); } if (reg & CS_AFS_CI) { cs4231_write(sc, CS_LOWER_REC_CNT, 0xff); cs4231_write(sc, CS_UPPER_REC_CNT, 0xff); } regs->status = 0; } r = 1; } if ((csr & APC_CSR_PMIE) && (csr & APC_CSR_PMI)) { u_int32_t nextaddr, togo; chan = &sc->sc_playback; p = chan->cs_curdma; togo = chan->cs_segsz - chan->cs_cnt; if (togo == 0) { nextaddr = (u_int32_t)p->addr_dva; chan->cs_cnt = togo = chan->cs_blksz; } else { nextaddr = regs->dma_pnva + chan->cs_blksz; if (togo > chan->cs_blksz) togo = chan->cs_blksz; chan->cs_cnt += togo; } regs->dma_pnva = nextaddr; regs->dma_pnc = togo; if (chan->cs_intr != NULL) (*chan->cs_intr)(chan->cs_arg); r = 1; } if ((csr & APC_CSR_CIE) && (csr & APC_CSR_CI)) { if (csr & APC_CSR_CD) { u_int32_t nextaddr, togo; chan = &sc->sc_capture; p = chan->cs_curdma; togo = chan->cs_segsz - chan->cs_cnt; if (togo == 0) { nextaddr = (u_int32_t)p->addr_dva; chan->cs_cnt = togo = chan->cs_blksz; } else { nextaddr = regs->dma_cnva + chan->cs_blksz; if (togo > chan->cs_blksz) togo = chan->cs_blksz; chan->cs_cnt += togo; } regs->dma_cnva = nextaddr; regs->dma_cnc = togo; if (chan->cs_intr != NULL) (*chan->cs_intr)(chan->cs_arg); } r = 1; } if ((csr & APC_CSR_CMIE) && (csr & APC_CSR_CMI)) { /* capture empty */ r = 1; } return (r); } int cs4231_set_speed(sc, argp) struct cs4231_softc *sc; u_long *argp; { /* * The available speeds are in the following table. Keep the speeds in * the increasing order. */ typedef struct { int speed; u_char bits; } speed_struct; u_long arg = *argp; static speed_struct speed_table[] = { {5510, (0 << 1) | CLOCK_XTAL2}, {5510, (0 << 1) | CLOCK_XTAL2}, {6620, (7 << 1) | CLOCK_XTAL2}, {8000, (0 << 1) | CLOCK_XTAL1}, {9600, (7 << 1) | CLOCK_XTAL1}, {11025, (1 << 1) | CLOCK_XTAL2}, {16000, (1 << 1) | CLOCK_XTAL1}, {18900, (2 << 1) | CLOCK_XTAL2}, {22050, (3 << 1) | CLOCK_XTAL2}, {27420, (2 << 1) | CLOCK_XTAL1}, {32000, (3 << 1) | CLOCK_XTAL1}, {33075, (6 << 1) | CLOCK_XTAL2}, {33075, (4 << 1) | CLOCK_XTAL2}, {44100, (5 << 1) | CLOCK_XTAL2}, {48000, (6 << 1) | CLOCK_XTAL1}, }; int i, n, selected = -1; n = sizeof(speed_table) / sizeof(speed_struct); if (arg < speed_table[0].speed) selected = 0; if (arg > speed_table[n - 1].speed) selected = n - 1; for (i = 1; selected == -1 && i < n; i++) { if (speed_table[i].speed == arg) selected = i; else if (speed_table[i].speed > arg) { int diff1, diff2; diff1 = arg - speed_table[i - 1].speed; diff2 = speed_table[i].speed - arg; if (diff1 < diff2) selected = i - 1; else selected = i; } } if (selected == -1) selected = 3; sc->sc_speed_bits = speed_table[selected].bits; sc->sc_need_commit = 1; *argp = speed_table[selected].speed; return (0); } /* * Audio interface functions */ int cs4231_open(addr, flags) void *addr; int flags; { struct cs4231_softc *sc = addr; struct cs4231_regs *regs = sc->sc_regs; int tries; if (sc->sc_open) return (EBUSY); sc->sc_open = 1; sc->sc_capture.cs_intr = NULL; sc->sc_capture.cs_arg = NULL; sc->sc_capture.cs_locked = 0; sc->sc_playback.cs_intr = NULL; sc->sc_playback.cs_arg = NULL; sc->sc_playback.cs_locked = 0; regs->dma_csr = APC_CSR_RESET; DELAY(10); regs->dma_csr = 0; DELAY(10); regs->dma_csr |= APC_CSR_CODEC_RESET; DELAY(20); regs->dma_csr &= ~(APC_CSR_CODEC_RESET); for (tries = CS_TIMEOUT; tries && regs->iar == SP_IN_INIT; tries--) DELAY(10); if (tries == 0) printf("%s: timeout waiting for reset\n", sc->sc_dev.dv_xname); /* Turn on cs4231 mode */ cs4231_write(sc, SP_MISC_INFO, cs4231_read(sc, SP_MISC_INFO) | MODE2); cs4231_setup_output(sc); cs4231_write(sc, SP_PIN_CONTROL, cs4231_read(sc, SP_PIN_CONTROL) | INTERRUPT_ENABLE); return (0); } void cs4231_setup_output(sc) struct cs4231_softc *sc; { u_int8_t pc, mi, rm, lm; pc = cs4231_read(sc, SP_PIN_CONTROL) | CS_PC_HDPHMUTE | CS_PC_LINEMUTE; mi = cs4231_read(sc, CS_MONO_IO_CONTROL) | MONO_OUTPUT_MUTE; lm = cs4231_read(sc, SP_LEFT_OUTPUT_CONTROL); lm &= ~OUTPUT_ATTEN_BITS; lm |= ((~(sc->sc_volume[CSPORT_SPEAKER].left >> 2)) & OUTPUT_ATTEN_BITS) | OUTPUT_MUTE; rm = cs4231_read(sc, SP_RIGHT_OUTPUT_CONTROL); rm &= ~OUTPUT_ATTEN_BITS; rm |= ((~(sc->sc_volume[CSPORT_SPEAKER].right >> 2)) & OUTPUT_ATTEN_BITS) | OUTPUT_MUTE; if (sc->sc_mute[CSPORT_MONITOR]) { lm &= ~OUTPUT_MUTE; rm &= ~OUTPUT_MUTE; } switch (sc->sc_out_port) { case CSPORT_HEADPHONE: if (sc->sc_mute[CSPORT_SPEAKER]) pc &= ~CS_PC_HDPHMUTE; break; case CSPORT_SPEAKER: if (sc->sc_mute[CSPORT_SPEAKER]) mi &= ~MONO_OUTPUT_MUTE; break; case CSPORT_LINEOUT: if (sc->sc_mute[CSPORT_SPEAKER]) pc &= ~CS_PC_LINEMUTE; break; } cs4231_write(sc, SP_LEFT_OUTPUT_CONTROL, lm); cs4231_write(sc, SP_RIGHT_OUTPUT_CONTROL, rm); cs4231_write(sc, SP_PIN_CONTROL, pc); cs4231_write(sc, CS_MONO_IO_CONTROL, mi); /* XXX doesn't really belong here... */ switch (sc->sc_in_port) { case CSPORT_LINEIN: pc = LINE_INPUT; break; case CSPORT_AUX1: pc = AUX_INPUT; break; case CSPORT_DAC: pc = MIXED_DAC_INPUT; break; case CSPORT_MICROPHONE: default: pc = MIC_INPUT; break; } lm = cs4231_read(sc, SP_LEFT_INPUT_CONTROL); rm = cs4231_read(sc, SP_RIGHT_INPUT_CONTROL); lm &= ~(MIXED_DAC_INPUT | ATTEN_22_5); rm &= ~(MIXED_DAC_INPUT | ATTEN_22_5); lm |= pc | (sc->sc_adc.left >> 4); rm |= pc | (sc->sc_adc.right >> 4); cs4231_write(sc, SP_LEFT_INPUT_CONTROL, lm); cs4231_write(sc, SP_RIGHT_INPUT_CONTROL, rm); } void cs4231_close(addr) void *addr; { struct cs4231_softc *sc = addr; struct cs4231_regs *regs = sc->sc_regs; cs4231_halt_input(sc); cs4231_halt_output(sc); regs->iar = SP_PIN_CONTROL; regs->idr &= ~INTERRUPT_ENABLE; sc->sc_open = 0; } int cs4231_query_encoding(addr, fp) void *addr; struct audio_encoding *fp; { int err = 0; switch (fp->index) { case 0: strlcpy(fp->name, AudioEmulaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = 0; break; case 1: strlcpy(fp->name, AudioEalaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ALAW; fp->precision = 8; fp->flags = 0; break; case 2: strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR_LE; fp->precision = 16; fp->flags = 0; break; case 3: strlcpy(fp->name, AudioEulinear, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = 0; break; case 4: strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR_BE; fp->precision = 16; fp->flags = 0; break; case 5: strlcpy(fp->name, AudioEslinear, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 6: strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR_LE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 7: strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 8: strlcpy(fp->name, AudioEadpcm, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ADPCM; fp->precision = 8; fp->flags = 0; break; default: err = EINVAL; } return (err); } int cs4231_set_params(addr, setmode, usemode, p, r) void *addr; int setmode, usemode; struct audio_params *p, *r; { struct cs4231_softc *sc = (struct cs4231_softc *)addr; int err, bits, enc = p->encoding; void (*pswcode)(void *, u_char *, int cnt) = NULL; void (*rswcode)(void *, u_char *, int cnt) = NULL; switch (enc) { case AUDIO_ENCODING_ULAW: if (p->precision != 8) return (EINVAL); bits = FMT_ULAW >> 5; break; case AUDIO_ENCODING_ALAW: if (p->precision != 8) return (EINVAL); bits = FMT_ALAW >> 5; break; case AUDIO_ENCODING_SLINEAR_LE: if (p->precision == 8) { bits = FMT_PCM8 >> 5; pswcode = rswcode = change_sign8; } else if (p->precision == 16) bits = FMT_TWOS_COMP >> 5; else return (EINVAL); break; case AUDIO_ENCODING_ULINEAR: if (p->precision != 8) return (EINVAL); bits = FMT_PCM8 >> 5; break; case AUDIO_ENCODING_SLINEAR_BE: if (p->precision == 8) { bits = FMT_PCM8 >> 5; pswcode = rswcode = change_sign8; } else if (p->precision == 16) bits = FMT_TWOS_COMP_BE >> 5; else return (EINVAL); break; case AUDIO_ENCODING_SLINEAR: if (p->precision != 8) return (EINVAL); bits = FMT_PCM8 >> 5; pswcode = rswcode = change_sign8; break; case AUDIO_ENCODING_ULINEAR_LE: if (p->precision == 8) bits = FMT_PCM8 >> 5; else if (p->precision == 16) { bits = FMT_TWOS_COMP >> 5; pswcode = rswcode = change_sign16_le; } else return (EINVAL); break; case AUDIO_ENCODING_ULINEAR_BE: if (p->precision == 8) bits = FMT_PCM8 >> 5; else if (p->precision == 16) { bits = FMT_TWOS_COMP_BE >> 5; pswcode = rswcode = change_sign16_be; } else return (EINVAL); break; case AUDIO_ENCODING_ADPCM: if (p->precision != 8) return (EINVAL); bits = FMT_ADPCM >> 5; break; default: return (EINVAL); } if (p->channels != 1 && p->channels != 2) return (EINVAL); err = cs4231_set_speed(sc, &p->sample_rate); if (err) return (err); p->sw_code = pswcode; r->sw_code = rswcode; sc->sc_format_bits = bits; sc->sc_channels = p->channels; sc->sc_precision = p->precision; sc->sc_need_commit = 1; return (0); } int cs4231_round_blocksize(addr, blk) void *addr; int blk; { return ((blk + 3) & (-4)); } int cs4231_commit_settings(addr) void *addr; { struct cs4231_softc *sc = (struct cs4231_softc *)addr; struct cs4231_regs *regs = sc->sc_regs; int s, tries; u_int8_t r, fs; if (sc->sc_need_commit == 0) return (0); fs = sc->sc_speed_bits | (sc->sc_format_bits << 5); if (sc->sc_channels == 2) fs |= FMT_STEREO; s = splaudio(); r = cs4231_read(sc, SP_INTERFACE_CONFIG) | AUTO_CAL_ENABLE; regs->iar = MODE_CHANGE_ENABLE; regs->iar = MODE_CHANGE_ENABLE | SP_INTERFACE_CONFIG; regs->idr = r; regs->iar = MODE_CHANGE_ENABLE | SP_CLOCK_DATA_FORMAT; regs->idr = fs; r = regs->idr; r = regs->idr; tries = CS_TIMEOUT; for (tries = CS_TIMEOUT; tries && regs->iar == SP_IN_INIT; tries--) DELAY(10); if (tries == 0) printf("%s: timeout committing fspb\n", sc->sc_dev.dv_xname); regs->iar = MODE_CHANGE_ENABLE | CS_REC_FORMAT; regs->idr = fs; r = regs->idr; r = regs->idr; for (tries = CS_TIMEOUT; tries && regs->iar == SP_IN_INIT; tries--) DELAY(10); if (tries == 0) printf("%s: timeout committing cdf\n", sc->sc_dev.dv_xname); regs->iar = 0; for (tries = CS_TIMEOUT; tries && regs->iar == SP_IN_INIT; tries--) DELAY(10); if (tries == 0) printf("%s: timeout waiting for !mce\n", sc->sc_dev.dv_xname); regs->iar = SP_TEST_AND_INIT; for (tries = CS_TIMEOUT; tries && regs->idr & AUTO_CAL_IN_PROG; tries--) DELAY(10); if (tries == 0) printf("%s: timeout waiting for autocalibration\n", sc->sc_dev.dv_xname); splx(s); sc->sc_need_commit = 0; return (0); } int cs4231_halt_output(addr) void *addr; { struct cs4231_softc *sc = (struct cs4231_softc *)addr; struct cs4231_regs *regs = sc->sc_regs; u_int8_t r; /* XXX Kills some capture bits */ regs->dma_csr &= ~(APC_CSR_EI | APC_CSR_GIE | APC_CSR_PIE | APC_CSR_EIE | APC_CSR_PDMA_GO | APC_CSR_PMIE); regs->iar = SP_INTERFACE_CONFIG; r = regs->idr & (~PLAYBACK_ENABLE); regs->iar = SP_INTERFACE_CONFIG; regs->idr = r; sc->sc_playback.cs_locked = 0; return (0); } int cs4231_halt_input(addr) void *addr; { struct cs4231_softc *sc = (struct cs4231_softc *)addr; struct cs4231_regs *regs = sc->sc_regs; /* XXX Kills some playback bits */ regs->dma_csr = APC_CSR_CAPTURE_PAUSE; regs->iar = SP_INTERFACE_CONFIG; regs->idr &= ~CAPTURE_ENABLE; sc->sc_capture.cs_locked = 0; return (0); } int cs4231_getdev(addr, retp) void *addr; struct audio_device *retp; { *retp = cs4231_device; return (0); } int cs4231_set_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct cs4231_softc *sc = (struct cs4231_softc *)addr; int error = EINVAL; DPRINTF(("cs4231_set_port: port=%d type=%d\n", cp->dev, cp->type)); switch (cp->dev) { case CSAUDIO_DAC_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { sc->sc_regs->iar = SP_LEFT_AUX1_CONTROL; sc->sc_regs->idr = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] & AUX_INPUT_ATTEN_BITS; } else if (cp->un.value.num_channels == 2) { sc->sc_regs->iar = SP_LEFT_AUX1_CONTROL; sc->sc_regs->idr = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] & AUX_INPUT_ATTEN_BITS; sc->sc_regs->iar = SP_RIGHT_AUX1_CONTROL; sc->sc_regs->idr = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] & AUX_INPUT_ATTEN_BITS; } else break; error = 0; break; case CSAUDIO_LINE_IN_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { sc->sc_regs->iar = CS_LEFT_LINE_CONTROL; sc->sc_regs->idr = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] & AUX_INPUT_ATTEN_BITS; } else if (cp->un.value.num_channels == 2) { sc->sc_regs->iar = CS_LEFT_LINE_CONTROL; sc->sc_regs->idr = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] & AUX_INPUT_ATTEN_BITS; sc->sc_regs->iar = CS_RIGHT_LINE_CONTROL; sc->sc_regs->idr = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] & AUX_INPUT_ATTEN_BITS; } else break; error = 0; break; case CSAUDIO_MIC_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { #if 0 sc->sc_regs->iar = CS_MONO_IO_CONTROL; sc->sc_regs->idr = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] & MONO_INPUT_ATTEN_BITS; #endif } else break; error = 0; break; case CSAUDIO_CD_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { sc->sc_regs->iar = SP_LEFT_AUX2_CONTROL; sc->sc_regs->idr = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] & AUX_INPUT_ATTEN_BITS; error = 0; } else if (cp->un.value.num_channels == 2) { sc->sc_regs->iar = SP_LEFT_AUX2_CONTROL; sc->sc_regs->idr = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] & AUX_INPUT_ATTEN_BITS; sc->sc_regs->iar = SP_RIGHT_AUX2_CONTROL; sc->sc_regs->idr = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] & AUX_INPUT_ATTEN_BITS; error = 0; } else break; break; case CSAUDIO_MONITOR_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { sc->sc_regs->iar = SP_DIGITAL_MIX; sc->sc_regs->idr = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] << 2; } else break; error = 0; break; case CSAUDIO_OUTPUT_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { sc->sc_volume[CSPORT_SPEAKER].left = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; sc->sc_volume[CSPORT_SPEAKER].right = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; } else if (cp->un.value.num_channels == 2) { sc->sc_volume[CSPORT_SPEAKER].left = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; sc->sc_volume[CSPORT_SPEAKER].right = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; } else break; cs4231_setup_output(sc); error = 0; break; case CSAUDIO_OUTPUT: if (cp->type != AUDIO_MIXER_ENUM) break; if (cp->un.ord != CSPORT_LINEOUT && cp->un.ord != CSPORT_SPEAKER && cp->un.ord != CSPORT_HEADPHONE) return (EINVAL); sc->sc_out_port = cp->un.ord; cs4231_setup_output(sc); error = 0; break; case CSAUDIO_LINE_IN_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; sc->sc_mute[CSPORT_LINEIN] = cp->un.ord ? 1 : 0; error = 0; break; case CSAUDIO_DAC_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; sc->sc_mute[CSPORT_AUX1] = cp->un.ord ? 1 : 0; error = 0; break; case CSAUDIO_CD_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; sc->sc_mute[CSPORT_AUX2] = cp->un.ord ? 1 : 0; error = 0; break; case CSAUDIO_MIC_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; sc->sc_mute[CSPORT_MONO] = cp->un.ord ? 1 : 0; error = 0; break; case CSAUDIO_MONITOR_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; sc->sc_mute[CSPORT_MONITOR] = cp->un.ord ? 1 : 0; error = 0; break; case CSAUDIO_OUTPUT_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; sc->sc_mute[CSPORT_SPEAKER] = cp->un.ord ? 1 : 0; cs4231_setup_output(sc); error = 0; break; case CSAUDIO_REC_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { sc->sc_adc.left = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; sc->sc_adc.right = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; } else if (cp->un.value.num_channels == 2) { sc->sc_adc.left = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; sc->sc_adc.right = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; } else break; cs4231_setup_output(sc); error = 0; break; case CSAUDIO_RECORD_SOURCE: if (cp->type != AUDIO_MIXER_ENUM) break; if (cp->un.ord == CSPORT_MICROPHONE || cp->un.ord == CSPORT_LINEIN || cp->un.ord == CSPORT_AUX1 || cp->un.ord == CSPORT_DAC) { sc->sc_in_port = cp->un.ord; error = 0; cs4231_setup_output(sc); } break; } return (error); } int cs4231_get_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct cs4231_softc *sc = (struct cs4231_softc *)addr; int error = EINVAL; DPRINTF(("cs4231_get_port: port=%d type=%d\n", cp->dev, cp->type)); switch (cp->dev) { case CSAUDIO_DAC_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { sc->sc_regs->iar = SP_LEFT_AUX1_CONTROL; cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_regs->idr & AUX_INPUT_ATTEN_BITS; } else if (cp->un.value.num_channels == 2) { sc->sc_regs->iar = SP_LEFT_AUX1_CONTROL; cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_regs->idr & AUX_INPUT_ATTEN_BITS; sc->sc_regs->iar = SP_RIGHT_AUX1_CONTROL; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_regs->idr & AUX_INPUT_ATTEN_BITS; } else break; error = 0; break; case CSAUDIO_LINE_IN_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { sc->sc_regs->iar = CS_LEFT_LINE_CONTROL; cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_regs->idr & AUX_INPUT_ATTEN_BITS; } else if (cp->un.value.num_channels == 2) { sc->sc_regs->iar = CS_LEFT_LINE_CONTROL; cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_regs->idr & AUX_INPUT_ATTEN_BITS; sc->sc_regs->iar = CS_RIGHT_LINE_CONTROL; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_regs->idr & AUX_INPUT_ATTEN_BITS; } else break; error = 0; break; case CSAUDIO_MIC_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { #if 0 sc->sc_regs->iar = CS_MONO_IO_CONTROL; cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_regs->idr & MONO_INPUT_ATTEN_BITS; #endif } else break; error = 0; break; case CSAUDIO_CD_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { sc->sc_regs->iar = SP_LEFT_AUX2_CONTROL; cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_regs->idr & AUX_INPUT_ATTEN_BITS; error = 0; } else if (cp->un.value.num_channels == 2) { sc->sc_regs->iar = SP_LEFT_AUX2_CONTROL; cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_regs->idr & AUX_INPUT_ATTEN_BITS; sc->sc_regs->iar = SP_RIGHT_AUX2_CONTROL; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_regs->idr & AUX_INPUT_ATTEN_BITS; error = 0; } else break; break; case CSAUDIO_MONITOR_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { sc->sc_regs->iar = SP_DIGITAL_MIX; cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_regs->idr >> 2; } else break; error = 0; break; case CSAUDIO_OUTPUT_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_volume[CSPORT_SPEAKER].left; else if (cp->un.value.num_channels == 2) { cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_volume[CSPORT_SPEAKER].left; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_volume[CSPORT_SPEAKER].right; } else break; error = 0; break; case CSAUDIO_LINE_IN_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_mute[CSPORT_LINEIN] ? 1 : 0; error = 0; break; case CSAUDIO_DAC_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_mute[CSPORT_AUX1] ? 1 : 0; error = 0; break; case CSAUDIO_CD_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_mute[CSPORT_AUX2] ? 1 : 0; error = 0; break; case CSAUDIO_MIC_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_mute[CSPORT_MONO] ? 1 : 0; error = 0; break; case CSAUDIO_MONITOR_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_mute[CSPORT_MONITOR] ? 1 : 0; error = 0; break; case CSAUDIO_OUTPUT_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_mute[CSPORT_SPEAKER] ? 1 : 0; error = 0; break; case CSAUDIO_REC_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_adc.left; } else if (cp->un.value.num_channels == 2) { cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_adc.left; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_adc.right; } else break; error = 0; break; case CSAUDIO_RECORD_SOURCE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_in_port; error = 0; break; case CSAUDIO_OUTPUT: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_out_port; error = 0; break; } return (error); } int cs4231_query_devinfo(addr, dip) void *addr; mixer_devinfo_t *dip; { int err = 0; switch (dip->index) { case CSAUDIO_MIC_LVL: /* mono/microphone mixer */ dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_MIC_MUTE; strlcpy(dip->label.name, AudioNmicrophone, sizeof dip->label.name); dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_DAC_LVL: /* dacout */ dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_DAC_MUTE; strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name); dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_LINE_IN_LVL: /* line */ dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_LINE_IN_MUTE; strlcpy(dip->label.name, AudioNline, sizeof dip->label.name); dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_CD_LVL: /* cd */ dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_CD_MUTE; strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name); dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_MONITOR_LVL: /* monitor level */ dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_MONITOR_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_MONITOR_MUTE; strlcpy(dip->label.name, AudioNmonitor, sizeof dip->label.name); dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_OUTPUT_LVL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_OUTPUT_MUTE; strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name); dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_LINE_IN_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = CSAUDIO_LINE_IN_LVL; dip->next = AUDIO_MIXER_LAST; goto mute; case CSAUDIO_DAC_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = CSAUDIO_DAC_LVL; dip->next = AUDIO_MIXER_LAST; goto mute; case CSAUDIO_CD_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = CSAUDIO_CD_LVL; dip->next = AUDIO_MIXER_LAST; goto mute; case CSAUDIO_MIC_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = CSAUDIO_MIC_LVL; dip->next = AUDIO_MIXER_LAST; goto mute; case CSAUDIO_MONITOR_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = CSAUDIO_MONITOR_LVL; dip->next = AUDIO_MIXER_LAST; goto mute; case CSAUDIO_OUTPUT_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = CSAUDIO_OUTPUT_LVL; dip->next = AUDIO_MIXER_LAST; goto mute; mute: strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNon, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = 0; strlcpy(dip->un.e.member[1].label.name, AudioNoff, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = 1; break; case CSAUDIO_REC_LVL: /* record level */ dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_RECORD_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_RECORD_SOURCE; strlcpy(dip->label.name, AudioNrecord, sizeof dip->label.name); dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_RECORD_SOURCE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_RECORD_CLASS; dip->prev = CSAUDIO_REC_LVL; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); dip->un.e.num_mem = 4; strlcpy(dip->un.e.member[0].label.name, AudioNmicrophone, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = CSPORT_MICROPHONE; strlcpy(dip->un.e.member[1].label.name, AudioNline, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = CSPORT_LINEIN; strlcpy(dip->un.e.member[2].label.name, AudioNcd, sizeof dip->un.e.member[2].label.name); dip->un.e.member[2].ord = CSPORT_AUX1; strlcpy(dip->un.e.member[3].label.name, AudioNdac, sizeof dip->un.e.member[3].label.name); dip->un.e.member[3].ord = CSPORT_DAC; break; case CSAUDIO_OUTPUT: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_MONITOR_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name); dip->un.e.num_mem = 3; strlcpy(dip->un.e.member[0].label.name, AudioNspeaker, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = CSPORT_SPEAKER; strlcpy(dip->un.e.member[1].label.name, AudioNline, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = CSPORT_LINEOUT; strlcpy(dip->un.e.member[2].label.name, AudioNheadphone, sizeof dip->un.e.member[2].label.name); dip->un.e.member[2].ord = CSPORT_HEADPHONE; break; case CSAUDIO_INPUT_CLASS: /* input class descriptor */ dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name); break; case CSAUDIO_OUTPUT_CLASS: /* output class descriptor */ dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name); break; case CSAUDIO_MONITOR_CLASS: /* monitor class descriptor */ dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = CSAUDIO_MONITOR_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCmonitor, sizeof dip->label.name); break; case CSAUDIO_RECORD_CLASS: /* record class descriptor */ dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = CSAUDIO_RECORD_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name); break; default: err = ENXIO; } return (err); } void * cs4231_alloc(addr, direction, size, pool, flags) void *addr; int direction; size_t size; int pool; int flags; { struct cs4231_softc *sc = (struct cs4231_softc *)addr; struct cs_dma *p; p = (struct cs_dma *)malloc(sizeof(struct cs_dma), pool, flags); if (p == NULL) return (NULL); p->addr_dva = dvma_malloc(size, &p->addr, flags); if (p->addr_dva == NULL) { free(p, pool); return (NULL); } p->size = size; p->next = sc->sc_dmas; sc->sc_dmas = p; return (p->addr); } void cs4231_free(addr, ptr, pool) void *addr; void *ptr; int pool; { struct cs4231_softc *sc = addr; struct cs_dma *p, **pp; for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &(*pp)->next) { if (p->addr != ptr) continue; dvma_free(p->addr_dva, 16*1024, &p->addr); *pp = p->next; free(p, pool); return; } printf("%s: attempt to free rogue pointer\n", sc->sc_dev.dv_xname); } int cs4231_get_props(addr) void *addr; { return (AUDIO_PROP_FULLDUPLEX); } int cs4231_trigger_output(addr, start, end, blksize, intr, arg, param) void *addr, *start, *end; int blksize; void (*intr)(void *); void *arg; struct audio_params *param; { struct cs4231_softc *sc = addr; struct cs4231_regs *regs = sc->sc_regs; struct cs_channel *chan = &sc->sc_playback; struct cs_dma *p; u_int8_t reg; u_int32_t n, csr; if (chan->cs_locked != 0) { printf("cs4231_trigger_output: already running\n"); return (EINVAL); } chan->cs_locked = 1; chan->cs_intr = intr; chan->cs_arg = arg; p = sc->sc_dmas; while (p != NULL && p->addr != start) p = p->next; if (p == NULL) { printf("cs4231_trigger_output: bad addr: %p\n", start); return (EINVAL); } n = (char *)end - (char *)start; /* * Do only `blksize' at a time, so audio_pint() is kept * synchronous with us... */ chan->cs_blksz = blksize; chan->cs_curdma = p; chan->cs_segsz = n; if (n > chan->cs_blksz) n = chan->cs_blksz; chan->cs_cnt = n; csr = regs->dma_csr; regs->dma_pnva = (u_int32_t)p->addr_dva; regs->dma_pnc = n; if ((csr & APC_CSR_PDMA_GO) == 0 || (csr & APC_CSR_PPAUSE) != 0) { regs->dma_csr &= ~(APC_CSR_PIE | APC_CSR_PPAUSE); regs->dma_csr |= APC_CSR_EI | APC_CSR_GIE | APC_CSR_PIE | APC_CSR_EIE | APC_CSR_PMIE | APC_CSR_PDMA_GO; regs->iar = SP_LOWER_BASE_COUNT; regs->idr = 0xff; regs->iar = SP_UPPER_BASE_COUNT; regs->idr = 0xff; regs->iar = SP_INTERFACE_CONFIG; reg = regs->idr | PLAYBACK_ENABLE; regs->iar = SP_INTERFACE_CONFIG; regs->idr = reg; } return (0); } int cs4231_trigger_input(addr, start, end, blksize, intr, arg, param) void *addr, *start, *end; int blksize; void (*intr)(void *); void *arg; struct audio_params *param; { struct cs4231_softc *sc = addr; struct cs_channel *chan = &sc->sc_capture; struct cs_dma *p; u_int32_t csr; u_long n; if (chan->cs_locked != 0) { printf("%s: trigger_input: already running\n", sc->sc_dev.dv_xname); return (EINVAL); } chan->cs_locked = 1; chan->cs_intr = intr; chan->cs_arg = arg; for (p = sc->sc_dmas; p->addr != start; p = p->next) /*EMPTY*/; if (p == NULL) { printf("%s: trigger_input: bad addr: %p\n", sc->sc_dev.dv_xname, start); return (EINVAL); } n = (char *)end - (char *)start; /* * Do only `blksize' at a time, so audio_cint() is kept * synchronous with us... */ chan->cs_blksz = blksize; chan->cs_curdma = p; chan->cs_segsz = n; if (n > chan->cs_blksz) n = chan->cs_blksz; chan->cs_cnt = n; sc->sc_regs->dma_cnva = (u_int32_t)p->addr_dva; sc->sc_regs->dma_cnc = n; csr = sc->sc_regs->dma_csr; if ((csr & APC_CSR_CDMA_GO) == 0 || (csr & APC_CSR_CPAUSE) != 0) { csr &= APC_CSR_CPAUSE; csr |= APC_CSR_GIE | APC_CSR_CMIE | APC_CSR_CIE | APC_CSR_EI | APC_CSR_CDMA_GO; sc->sc_regs->dma_csr = csr; cs4231_write(sc, CS_LOWER_REC_CNT, 0xff); cs4231_write(sc, CS_UPPER_REC_CNT, 0xff); cs4231_write(sc, SP_INTERFACE_CONFIG, cs4231_read(sc, SP_INTERFACE_CONFIG) | CAPTURE_ENABLE); } if (sc->sc_regs->dma_csr & APC_CSR_CD) { u_long nextaddr, togo; p = chan->cs_curdma; togo = chan->cs_segsz - chan->cs_cnt; if (togo == 0) { nextaddr = (u_int32_t)p->addr_dva; chan->cs_cnt = togo = chan->cs_blksz; } else { nextaddr = sc->sc_regs->dma_cnva + chan->cs_blksz; if (togo > chan->cs_blksz) togo = chan->cs_blksz; chan->cs_cnt += togo; } sc->sc_regs->dma_cnva = nextaddr; sc->sc_regs->dma_cnc = togo; } return (0); }