/* $OpenBSD: kbd.c,v 1.5 1996/08/11 23:34:01 downsj Exp $ */ /* $NetBSD: kbd.c,v 1.23 1996/04/01 17:34:34 christos Exp $ */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kbd.c 8.2 (Berkeley) 10/30/93 */ /* * Keyboard driver (/dev/kbd -- note that we do not have minor numbers * [yet?]). Translates incoming bytes to ASCII or to `firm_events' and * passes them up to the appropriate reader. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Sun keyboard definitions (from Sprite). * These apply to type 2, 3 and 4 keyboards. */ #define KEY_CODE(c) ((c) & KBD_KEYMASK) /* keyboard code index */ #define KEY_UP(c) ((c) & KBD_UP) /* true => key went up */ /* * Each KEY_CODE(x) can be translated via the tables below. * The result is either a valid ASCII value in [0..0x7f] or is one * of the following `magic' values saying something interesting * happened. If LSHIFT or RSHIFT has changed state the next * lookup should come from the appropriate table; if ALLUP is * sent all keys (including both shifts and the control key) are * now up, and the next byte is the keyboard ID code. * * These tables ignore all function keys (on the theory that if you * want these keys, you should use a window system). Note that * `caps lock' is just mapped as `ignore' (so there!). (Only the * type 3 and 4 keyboards have a caps lock key anyway.) */ #define KEY_MAGIC 0x80 /* flag => magic value */ #define KEY_IGNORE 0x80 #define KEY_L1 KEY_IGNORE #define KEY_CAPSLOCK KEY_IGNORE #define KEY_LSHIFT 0x81 #define KEY_RSHIFT 0x82 #define KEY_CONTROL 0x83 #define KEY_ALLUP 0x84 /* all keys are now up; also reset */ /* * Decode tables for type 2, 3, and 4 keyboards * (stolen from Sprite; see also kbd.h). */ static u_char kbd_unshifted[] = { /* 0 */ KEY_IGNORE, KEY_L1, KEY_IGNORE, KEY_IGNORE, /* 4 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 8 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 12 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 16 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 20 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 24 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 28 */ KEY_IGNORE, '\033', '1', '2', /* 32 */ '3', '4', '5', '6', /* 36 */ '7', '8', '9', '0', /* 40 */ '-', '=', '`', '\b', /* 44 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 48 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 52 */ KEY_IGNORE, '\t', 'q', 'w', /* 56 */ 'e', 'r', 't', 'y', /* 60 */ 'u', 'i', 'o', 'p', /* 64 */ '[', ']', '\177', KEY_IGNORE, /* 68 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 72 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 76 */ KEY_CONTROL, 'a', 's', 'd', /* 80 */ 'f', 'g', 'h', 'j', /* 84 */ 'k', 'l', ';', '\'', /* 88 */ '\\', '\r', KEY_IGNORE, KEY_IGNORE, /* 92 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 96 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_LSHIFT, /* 100 */ 'z', 'x', 'c', 'v', /* 104 */ 'b', 'n', 'm', ',', /* 108 */ '.', '/', KEY_RSHIFT, '\n', /* 112 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 116 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_CAPSLOCK, /* 120 */ KEY_IGNORE, ' ', KEY_IGNORE, KEY_IGNORE, /* 124 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_ALLUP, }; static u_char kbd_shifted[] = { /* 0 */ KEY_IGNORE, KEY_L1, KEY_IGNORE, KEY_IGNORE, /* 4 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 8 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 12 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 16 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 20 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 24 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 28 */ KEY_IGNORE, '\033', '!', '@', /* 32 */ '#', '$', '%', '^', /* 36 */ '&', '*', '(', ')', /* 40 */ '_', '+', '~', '\b', /* 44 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 48 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 52 */ KEY_IGNORE, '\t', 'Q', 'W', /* 56 */ 'E', 'R', 'T', 'Y', /* 60 */ 'U', 'I', 'O', 'P', /* 64 */ '{', '}', '\177', KEY_IGNORE, /* 68 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 72 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 76 */ KEY_CONTROL, 'A', 'S', 'D', /* 80 */ 'F', 'G', 'H', 'J', /* 84 */ 'K', 'L', ':', '"', /* 88 */ '|', '\r', KEY_IGNORE, KEY_IGNORE, /* 92 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 96 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_LSHIFT, /* 100 */ 'Z', 'X', 'C', 'V', /* 104 */ 'B', 'N', 'M', '<', /* 108 */ '>', '?', KEY_RSHIFT, '\n', /* 112 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, /* 116 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_CAPSLOCK, /* 120 */ KEY_IGNORE, ' ', KEY_IGNORE, KEY_IGNORE, /* 124 */ KEY_IGNORE, KEY_IGNORE, KEY_IGNORE, KEY_ALLUP, }; /* * We need to remember the state of the keyboard's shift and control * keys, and we need a per-type translation table. */ struct kbd_state { const u_char *kbd_unshifted; /* unshifted keys */ const u_char *kbd_shifted; /* shifted keys */ const u_char *kbd_cur; /* current keys (either of the preceding) */ union { char c[2]; /* left and right shift keys */ short s; /* true => either shift key */ } kbd_shift; #define kbd_lshift kbd_shift.c[0] #define kbd_rshift kbd_shift.c[1] #define kbd_anyshift kbd_shift.s char kbd_control; /* true => ctrl down */ char kbd_click; /* true => keyclick enabled */ u_char kbd_pending; /* Another code from the keyboard is due */ u_char kbd_id; /* a place to store the ID */ u_char kbd_layout; /* a place to store layout */ char kbd_leds; /* LED state */ }; /* * Keyboard driver state. The ascii and kbd links go up and down and * we just sit in the middle doing translation. Note that it is possible * to get just one of the two links, in which case /dev/kbd is unavailable. * The downlink supplies us with `internal' open and close routines which * will enable dataflow across the downlink. We promise to call open when * we are willing to take keystrokes, and to call close when we are not. * If /dev/kbd is not the console tty input source, we do this whenever * /dev/kbd is in use; otherwise we just leave it open forever. */ struct kbd_softc { struct tty *k_cons; /* uplink for ASCII data to console */ struct tty *k_kbd; /* downlink for output to keyboard */ void (*k_open) __P((struct tty *)); /* enable dataflow */ void (*k_close) __P((struct tty *)); /* disable dataflow */ int k_evmode; /* set if we should produce events */ struct kbd_state k_state; /* ASCII decode state */ struct evvar k_events; /* event queue state */ int k_repeatc; /* repeated character */ int k_repeating; /* we've called timeout() */ } kbd_softc; /* Prototypes */ void kbd_reset __P((struct kbd_state *)); static int kbd_translate __P((int, struct kbd_state *)); void kbdattach __P((int)); void kbd_repeat __P((void *arg)); /* set in kbdattach() */ int kbd_repeat_start; int kbd_repeat_step; /* * Attach the console keyboard ASCII (up-link) interface. * This happens before kbd_serial. */ void kbd_ascii(tp) struct tty *tp; { kbd_softc.k_cons = tp; } /* * Attach the console keyboard serial (down-link) interface. * We pick up the initial keyboard click state here as well. */ void kbd_serial(tp, iopen, iclose) struct tty *tp; void (*iopen) __P((struct tty *)); void (*iclose) __P((struct tty *)); { register struct kbd_softc *k; register char *cp; k = &kbd_softc; k->k_kbd = tp; k->k_open = iopen; k->k_close = iclose; if (!CPU_ISSUN4) { cp = getpropstring(optionsnode, "keyboard-click?"); if (cp && strcmp(cp, "true") == 0) k->k_state.kbd_click = 1; } } /* * Called from main() during pseudo-device setup. If this keyboard is * the console, this is our chance to open the underlying serial port and * send a RESET, so that we can find out what kind of keyboard it is. */ void kbdattach(kbd) int kbd; { register struct kbd_softc *k; register struct tty *tp; kbd_repeat_start = hz/5; kbd_repeat_step = hz/20; if (kbd_softc.k_cons != NULL) { k = &kbd_softc; tp = k->k_kbd; (*k->k_open)(tp); /* never to be closed */ if (ttyoutput(KBD_CMD_RESET, tp) >= 0) panic("kbdattach"); (*tp->t_oproc)(tp); /* get it going */ } } void kbd_reset(ks) register struct kbd_state *ks; { /* * On first identification, wake up anyone waiting for type * and set up the table pointers. */ if (ks->kbd_unshifted == NULL) { wakeup((caddr_t)ks); ks->kbd_unshifted = kbd_unshifted; ks->kbd_shifted = kbd_shifted; ks->kbd_cur = ks->kbd_unshifted; } /* Restore keyclick, if necessary */ switch (ks->kbd_id) { case KB_SUN2: /* Type 2 keyboards don't support keyclick */ break; case KB_SUN3: /* Type 3 keyboards come up with keyclick on */ if (!ks->kbd_click) (void) kbd_docmd(KBD_CMD_NOCLICK, 0); break; case KB_SUN4: /* Type 4 keyboards come up with keyclick off */ if (ks->kbd_click) (void) kbd_docmd(KBD_CMD_CLICK, 0); break; default: printf("Unknown keyboard type %d\n", ks->kbd_id); break; } ks->kbd_leds = 0; } /* * Turn keyboard up/down codes into ASCII. */ static int kbd_translate(c, ks) register int c; register struct kbd_state *ks; { register int down; if (ks->kbd_cur == NULL) { /* * Do not know how to translate yet. * We will find out when a RESET comes along. */ return (-1); } down = !KEY_UP(c); c = ks->kbd_cur[KEY_CODE(c)]; if (c & KEY_MAGIC) { switch (c) { case KEY_LSHIFT: ks->kbd_lshift = down; break; case KEY_RSHIFT: ks->kbd_rshift = down; break; case KEY_ALLUP: ks->kbd_anyshift = 0; ks->kbd_control = 0; break; case KEY_CONTROL: ks->kbd_control = down; /* FALLTHROUGH */ case KEY_IGNORE: return (-1); default: panic("kbd_translate"); } if (ks->kbd_anyshift) ks->kbd_cur = ks->kbd_shifted; else ks->kbd_cur = ks->kbd_unshifted; return (-1); } if (!down) return (-1); if (ks->kbd_control) { /* control space and unshifted control atsign return null */ if (c == ' ' || c == '2') return (0); /* unshifted control hat */ if (c == '6') return ('^' & 0x1f); /* standard controls */ if (c >= '@' && c < 0x7f) return (c & 0x1f); } return (c); } void kbd_repeat(arg) void *arg; { struct kbd_softc *k = (struct kbd_softc *)arg; int s = spltty(); if (k->k_repeating && k->k_repeatc >= 0 && k->k_cons != NULL) { ttyinput(k->k_repeatc, k->k_cons); timeout(kbd_repeat, k, kbd_repeat_step); } splx(s); } void kbd_rint(c) register int c; { register struct kbd_softc *k = &kbd_softc; register struct firm_event *fe; register int put; if (k->k_repeating) { k->k_repeating = 0; untimeout(kbd_repeat, k); } /* * Reset keyboard after serial port overrun, so we can resynch. * The printf below should be shortened and/or replaced with a * call to log() after this is tested (and how will we test it?!). */ if (c & (TTY_FE|TTY_PE)) { printf("keyboard input parity or framing error (0x%x)\n", c); (void) ttyoutput(KBD_CMD_RESET, k->k_kbd); (*k->k_kbd->t_oproc)(k->k_kbd); return; } /* Read the keyboard id if we read a KBD_RESET last time */ if (k->k_state.kbd_pending == KBD_RESET) { k->k_state.kbd_pending = 0; k->k_state.kbd_id = c; kbd_reset(&k->k_state); if (c == KB_SUN4) { /* Arrange to get keyboard layout as well */ (void)ttyoutput(KBD_CMD_GLAYOUT, k->k_kbd); (*k->k_kbd->t_oproc)(k->k_kbd); } return; } /* Read the keyboard layout if we read a KBD_LAYOUT last time */ if (k->k_state.kbd_pending == KBD_LAYOUT) { k->k_state.kbd_pending = 0; k->k_state.kbd_layout = c; return; } /* * If reset or layout in progress, setup to grab the accompanying * keyboard response next time (id on reset, dip switch on layout). */ if (c == KBD_RESET || c == KBD_LAYOUT) { k->k_state.kbd_pending = c; return; } /* * If /dev/kbd is not connected in event mode, but we are sending * data to /dev/console, translate and send upstream. Note that * we will get this while opening /dev/kbd if it is not already * open and we do not know its type. */ if (!k->k_evmode) { c = kbd_translate(c, &k->k_state); if (c >= 0 && k->k_cons != NULL) { ttyinput(c, k->k_cons); k->k_repeating = 1; k->k_repeatc = c; timeout(kbd_repeat, k, kbd_repeat_start); } return; } /* * IDLEs confuse the MIT X11R4 server badly, so we must drop them. * This is bad as it means the server will not automatically resync * on all-up IDLEs, but I did not drop them before, and the server * goes crazy when it comes time to blank the screen.... */ if (c == KBD_IDLE) return; /* * Keyboard is generating events. Turn this keystroke into an * event and put it in the queue. If the queue is full, the * keystroke is lost (sorry!). */ put = k->k_events.ev_put; fe = &k->k_events.ev_q[put]; put = (put + 1) % EV_QSIZE; if (put == k->k_events.ev_get) { log(LOG_WARNING, "keyboard event queue overflow\n"); /* ??? */ return; } fe->id = KEY_CODE(c); fe->value = KEY_UP(c) ? VKEY_UP : VKEY_DOWN; fe->time = time; k->k_events.ev_put = put; EV_WAKEUP(&k->k_events); } int kbdopen(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { int s, error; struct tty *tp; if (kbd_softc.k_events.ev_io) return (EBUSY); kbd_softc.k_events.ev_io = p; /* * If no console keyboard, tell the device to open up, maybe for * the first time. Then make sure we know what kind of keyboard * it is. */ tp = kbd_softc.k_kbd; if (kbd_softc.k_cons == NULL) (*kbd_softc.k_open)(tp); error = 0; s = spltty(); if (kbd_softc.k_state.kbd_cur == NULL) { (void) ttyoutput(KBD_CMD_RESET, tp); (*tp->t_oproc)(tp); error = tsleep((caddr_t)&kbd_softc.k_state, PZERO | PCATCH, devopn, hz); if (error == EWOULDBLOCK) /* no response */ error = ENXIO; } splx(s); if (error) { kbd_softc.k_events.ev_io = NULL; return (error); } ev_init(&kbd_softc.k_events); return (0); } int kbdclose(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { /* * Turn off event mode, dump the queue, and close the keyboard * unless it is supplying console input. */ kbd_softc.k_evmode = 0; ev_fini(&kbd_softc.k_events); if (kbd_softc.k_cons == NULL) (*kbd_softc.k_close)(kbd_softc.k_kbd); kbd_softc.k_events.ev_io = NULL; return (0); } int kbdread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (ev_read(&kbd_softc.k_events, uio, flags)); } /* this routine should not exist, but is convenient to write here for now */ int kbdwrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (EOPNOTSUPP); } int kbdioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; register caddr_t data; int flag; struct proc *p; { register struct kbd_softc *k = &kbd_softc; register struct kiockey *kmp; register u_char *tp; switch (cmd) { case KIOCTRANS: if (*(int *)data == TR_UNTRANS_EVENT) return (0); break; case KIOCGTRANS: /* * Get translation mode */ *(int *)data = TR_UNTRANS_EVENT; return (0); case KIOCGETKEY: if (((struct okiockey *)data)->kio_station == 118) { /* * This is X11 asking (in an inappropriate fashion) * if a type 3 keyboard is really a type 3 keyboard. * Say yes (inappropriately). */ ((struct okiockey *)data)->kio_entry = (u_char)HOLE; return (0); } break; case KIOCSKEY: kmp = (struct kiockey *)data; switch (kmp->kio_tablemask) { case KIOC_NOMASK: tp = kbd_unshifted; break; case KIOC_SHIFTMASK: tp = kbd_shifted; break; default: /* Silently ignore unsupported masks */ return (0); } if (kmp->kio_entry & 0xff80) /* Silently ignore funny entries */ return (0); tp[kmp->kio_station] = kmp->kio_entry; return (0); case KIOCGKEY: kmp = (struct kiockey *)data; switch (kmp->kio_tablemask) { case KIOC_NOMASK: tp = kbd_unshifted; break; case KIOC_SHIFTMASK: tp = kbd_shifted; break; default: return (0); } kmp->kio_entry = tp[kmp->kio_station] & ~KEY_MAGIC; return (0); case KIOCCMD: /* * ``unimplemented commands are ignored'' (blech) * so cannot check return value from kbd_docmd */ #ifdef notyet while (kbd_docmd(*(int *)data, 1) == ENOSPC) /*ERESTART?*/ (void) sleep((caddr_t)&lbolt, TTOPRI); #else (void) kbd_docmd(*(int *)data, 1); #endif return (0); case KIOCTYPE: *(int *)data = k->k_state.kbd_id; return (0); case KIOCSDIRECT: k->k_evmode = *(int *)data; return (0); case KIOCLAYOUT: *(unsigned int *)data = k->k_state.kbd_layout; return (0); case KIOCSLED: if (k->k_state.kbd_id != KB_SUN4) { /* xxx NYI */ k->k_state.kbd_leds = *(char*)data; } else { int s; char leds = *(char *)data; struct tty *tp = kbd_softc.k_kbd; s = spltty(); if (tp->t_outq.c_cc > 120) (void) tsleep((caddr_t)&lbolt, TTIPRI, ttyout, 0); splx(s); if (ttyoutput(KBD_CMD_SETLED, tp) >= 0) return (ENOSPC); /* ERESTART? */ k->k_state.kbd_leds = leds; if (ttyoutput(leds, tp) >= 0) return (ENOSPC); /* ERESTART? */ (*tp->t_oproc)(tp); } return (0); case KIOCGLED: *(char *)data = k->k_state.kbd_leds; return (0); case FIONBIO: /* we will remove this someday (soon???) */ return (0); case FIOASYNC: k->k_events.ev_async = *(int *)data != 0; return (0); case TIOCSPGRP: if (*(int *)data != k->k_events.ev_io->p_pgid) return (EPERM); return (0); default: return (ENOTTY); } /* * We identified the ioctl, but we do not handle it. */ return (EOPNOTSUPP); /* misuse, but what the heck */ } int kbdselect(dev, rw, p) dev_t dev; int rw; struct proc *p; { return (ev_select(&kbd_softc.k_events, rw, p)); } /* * Execute a keyboard command; return 0 on success. * If `isuser', force a small delay before output if output queue * is flooding. (The keyboard runs at 1200 baud, or 120 cps.) */ int kbd_docmd(cmd, isuser) int cmd; int isuser; { register struct tty *tp = kbd_softc.k_kbd; register struct kbd_softc *k = &kbd_softc; int s; if (tp == NULL) return (ENXIO); /* ??? */ switch (cmd) { case KBD_CMD_BELL: case KBD_CMD_NOBELL: /* Supported by type 2, 3, and 4 keyboards */ break; case KBD_CMD_CLICK: /* Unsupported by type 2 keyboards */ if (k->k_state.kbd_id != KB_SUN2) { k->k_state.kbd_click = 1; break; } return (EINVAL); case KBD_CMD_NOCLICK: /* Unsupported by type 2 keyboards */ if (k->k_state.kbd_id != KB_SUN2) { k->k_state.kbd_click = 0; break; } return (EINVAL); default: return (EINVAL); /* ENOTTY? EOPNOTSUPP? */ } if (isuser) { s = spltty(); if (tp->t_outq.c_cc > 120) (void) tsleep((caddr_t)&lbolt, TTIPRI, ttyout, 0); splx(s); } if (ttyoutput(cmd, tp) >= 0) return (ENOSPC); /* ERESTART? */ (*tp->t_oproc)(tp); return (0); }