/* $OpenBSD: magma.c,v 1.7 2001/03/24 10:07:19 ho Exp $ */ /* * magma.c * * Copyright (c) 1998 Iain Hibbert * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Iain Hibbert * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * #define MAGMA_DEBUG */ /* * Driver for Magma SBus Serial/Parallel cards using the Cirrus Logic * CD1400 & CD1190 chips */ #include "magma.h" #if NMAGMA > 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "magmareg.h" /* * Select tty soft interrupt bit based on TTY ipl. (stole from zs.c) */ #if PIL_TTY == 1 # define IE_MSOFT IE_L1 #elif PIL_TTY == 4 # define IE_MSOFT IE_L4 #elif PIL_TTY == 6 # define IE_MSOFT IE_L6 #else # error "no suitable software interrupt bit" #endif /* supported cards * * The table below lists the cards that this driver is likely to * be able to support. * * Cards with parallel ports: except for the LC2+1Sp, they all use * the CD1190 chip which I know nothing about. I've tried to leave * hooks for it so it shouldn't be too hard to add support later. * (I think somebody is working on this separately) * * Thanks to Bruce at Magma for telling me the hardware offsets. */ static struct magma_board_info supported_cards[] = { { "MAGMA,4_Sp", "Magma 4 Sp", 4, 0, 1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 }, 0, { 0, 0 } }, { "MAGMA,8_Sp", "Magma 8 Sp", 8, 0, 2, 0xa000, 0xc000, 0xe000, { 0x4000, 0x6000, 0, 0 }, 0, { 0, 0 } }, { "MAGMA,_8HS_Sp", "Magma Fast 8 Sp", 8, 0, 2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 }, 0, { 0, 0 } }, { "MAGMA,_8SP_422", "Magma 8 Sp - 422", 8, 0, 2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 }, 0, { 0, 0 } }, { "MAGMA,12_Sp", "Magma 12 Sp", 12, 0, 3, 0xa000, 0xc000, 0xe000, { 0x2000, 0x4000, 0x6000, 0 }, 0, { 0, 0 } }, { "MAGMA,16_Sp", "Magma 16 Sp", 16, 0, 4, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0xa000, 0xb000 }, 0, { 0, 0 } }, { "MAGMA,16_Sp_2", "Magma 16 Sp", 16, 0, 4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 }, 0, { 0, 0 } }, { "MAGMA,16HS_Sp", "Magma Fast 16 Sp", 16, 0, 4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 }, 0, { 0, 0 } }, { "MAGMA,21_Sp", "Magma LC 2+1 Sp", 2, 1, 1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 }, 0, { 0, 0 } }, { "MAGMA,21HS_Sp", "Magma 2+1 Sp", 2, 1, 1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 }, 1, { 0x6000, 0 } }, { "MAGMA,41_Sp", "Magma 4+1 Sp", 4, 1, 1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 }, 1, { 0x6000, 0 } }, { "MAGMA,82_Sp", "Magma 8+2 Sp", 8, 2, 2, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0, 0 }, 2, { 0xa000, 0xb000 } }, { "MAGMA,P1_Sp", "Magma P1 Sp", 0, 1, 0, 0, 0, 0, { 0, 0, 0, 0 }, 1, { 0x8000, 0 } }, { "MAGMA,P2_Sp", "Magma P2 Sp", 0, 2, 0, 0, 0, 0, { 0, 0, 0, 0 }, 2, { 0x4000, 0x8000 } }, { NULL, NULL, 0, 0, 0, 0, 0, 0, { 0, 0, 0, 0 }, 0, { 0, 0 } } }; /************************************************************************ * * Autoconfig Stuff */ struct cfattach magma_ca = { sizeof(struct magma_softc), magma_match, magma_attach }; struct cfdriver magma_cd = { NULL, "magma", DV_DULL }; struct cfattach mtty_ca = { sizeof(struct mtty_softc), mtty_match, mtty_attach }; struct cfdriver mtty_cd = { NULL, "mtty", DV_TTY }; struct cfattach mbpp_ca = { sizeof(struct mbpp_softc), mbpp_match, mbpp_attach }; struct cfdriver mbpp_cd = { NULL, "mbpp", DV_DULL }; /************************************************************************ * * CD1400 Routines * * cd1400_compute_baud calculate COR/BPR register values * cd1400_write_ccr write a value to CD1400 ccr * cd1400_read_reg read from a CD1400 register * cd1400_write_reg write to a CD1400 register * cd1400_enable_transmitter enable transmitting on CD1400 channel */ /* * compute the bpr/cor pair for any baud rate * returns 0 for success, 1 for failure */ int cd1400_compute_baud(speed, clock, cor, bpr) speed_t speed; int clock; int *cor, *bpr; { int c, co, br; if( speed < 50 || speed > 150000 ) return(1); for( c = 0, co = 8 ; co <= 2048 ; co <<= 2, c++ ) { br = ((clock * 1000000) + (co * speed) / 2) / (co * speed); if( br < 0x100 ) { *bpr = br; *cor = c; return(0); } } return(1); } /* * Write a CD1400 channel command, should have a timeout? */ __inline void cd1400_write_ccr(cd, cmd) struct cd1400 *cd; u_char cmd; { while( cd1400_read_reg(cd, CD1400_CCR) ) ; cd1400_write_reg(cd, CD1400_CCR, cmd); } /* * read a value from a cd1400 register */ __inline u_char cd1400_read_reg(cd, reg) struct cd1400 *cd; int reg; { return(cd->cd_reg[reg]); } /* * write a value to a cd1400 register */ __inline void cd1400_write_reg(cd, reg, value) struct cd1400 *cd; int reg; u_char value; { cd->cd_reg[reg] = value; } /* * enable transmit service requests for cd1400 channel */ void cd1400_enable_transmitter(cd, channel) struct cd1400 *cd; int channel; { register int s, srer; s = spltty(); cd1400_write_reg(cd, CD1400_CAR, channel); srer = cd1400_read_reg(cd, CD1400_SRER); SET(srer, CD1400_SRER_TXRDY); cd1400_write_reg(cd, CD1400_SRER, srer); splx(s); } /************************************************************************ * * CD1190 Routines */ /* well, there are none yet */ /************************************************************************ * * Magma Routines * * magma_match reports if we have a magma board available * magma_attach attaches magma boards to the sbus * magma_hard hardware level interrupt routine * magma_soft software level interrupt routine */ int magma_match(parent, vcf, args) struct device *parent; void *vcf, *args; { register struct confargs *ca = args; register struct romaux *ra = &ca->ca_ra; /* is it a magma Sp card? */ if( strcmp(ra->ra_name, "MAGMA_Sp") != 0 ) return(0); #if defined(MAGMA_DEBUG) { int i; printf("magma: matched `%s', nvaddrs %d, nreg %d, nintr %d\n", ra->ra_name, ra->ra_nvaddrs, ra->ra_nreg, ra->ra_nintr); printf("magma: magma_prom `%s'\n", getpropstring(ra->ra_node, "magma_prom")); printf("magma: intlevels `%s'\n", getpropstring(ra->ra_node, "intlevels")); printf("magma: chiprev `%s'\n", getpropstring(ra->ra_node, "chiprev")); printf("magma: clock `%s'\n", getpropstring(ra->ra_node, "clock")); for( i = 0 ; i < ra->ra_nreg ; i++ ) printf("magma: reg %d; ra_iospace = %d, ra_paddr = 0x%x, ra_len = %d\n", i, ra->ra_reg[i].rr_iospace, (int)ra->ra_reg[i].rr_paddr, ra->ra_reg[i].rr_len); for( i = 0 ; i < ra->ra_nintr ; i++ ) printf("magma: intr %d; pri = %d, vec = %d\n", i, ra->ra_intr[i].int_pri, ra->ra_intr[i].int_vec); } #endif return (1); } void magma_attach(parent, dev, args) struct device *parent; struct device *dev; void *args; { struct confargs *ca = args; struct romaux *ra = &ca->ca_ra; struct magma_softc *sc = (struct magma_softc *)dev; struct magma_board_info *card = supported_cards; char *magma_prom = getpropstring(ra->ra_node, "magma_prom"); int chip; void *base; /* find the card type */ while( card->mb_name && strcmp(magma_prom, card->mb_name) ) card++; dprintf((" addr 0x%x", sc)); printf(" pri %d softpri %d:", ra->ra_intr[0].int_pri, PIL_TTY); if( card->mb_name == NULL ) { printf(" %s (unsupported)\n", magma_prom); return; } printf(" %s\n", card->mb_realname); sc->ms_board = card; sc->ms_ncd1400 = card->mb_ncd1400; sc->ms_ncd1190 = card->mb_ncd1190; base = mapiodev(&(ra->ra_reg[0]), 0, ra->ra_reg[0].rr_len); /* the SVCACK* lines are daisychained */ sc->ms_svcackr = base + card->mb_svcackr; sc->ms_svcackt = base + card->mb_svcackt; sc->ms_svcackm = base + card->mb_svcackm; /* init the cd1400 chips */ for( chip = 0 ; chip < card->mb_ncd1400 ; chip++ ) { struct cd1400 *cd = &sc->ms_cd1400[chip]; cd->cd_reg = base + card->mb_cd1400[chip]; /* XXX getpropstring(ra->ra_node, "clock") */ cd->cd_clock = 25; /* getpropstring(ra->ra_node, "chiprev"); */ /* seemingly the Magma drivers just ignore the propstring */ cd->cd_chiprev = cd1400_read_reg(cd, CD1400_GFRCR); dprintf(("%s attach CD1400 %d addr 0x%x rev %x clock %dMhz\n", sc->ms_dev.dv_xname, chip, cd->cd_reg, cd->cd_chiprev, cd->cd_clock)); /* clear GFRCR */ cd1400_write_reg(cd, CD1400_GFRCR, 0x00); /* reset whole chip */ cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FULLRESET); /* wait for revision code to be restored */ while( cd1400_read_reg(cd, CD1400_GFRCR) != cd->cd_chiprev ) ; /* set the Prescaler Period Register to tick at 1ms */ cd1400_write_reg(cd, CD1400_PPR, ((cd->cd_clock * 1000000 / CD1400_PPR_PRESCALER + 500) / 1000)); /* The LC2+1Sp card is the only card that doesn't have a CD1190 for the * parallel port, but uses channel 0 of the CD1400, so we make a note * of it for later and set up the CD1400 for parallel mode operation. */ if( card->mb_npar && card->mb_ncd1190 == 0 ) { cd1400_write_reg(cd, CD1400_GCR, CD1400_GCR_PARALLEL); cd->cd_parmode = 1; } } /* init the cd1190 chips */ for( chip = 0 ; chip < card->mb_ncd1190 ; chip++ ) { struct cd1190 *cd = &sc->ms_cd1190[chip]; cd->cd_reg = base + card->mb_cd1190[chip]; dprintf(("%s attach CD1190 %d addr 0x%x (failed)\n", sc->ms_dev.dv_xname, chip, cd->cd_reg)); /* XXX don't know anything about these chips yet */ } /* configure the children */ (void)config_found(dev, mtty_match, NULL); (void)config_found(dev, mbpp_match, NULL); /* * enable the interrupt handlers */ sc->ms_hardint.ih_fun = magma_hard; sc->ms_hardint.ih_arg = sc; intr_establish(ra->ra_intr[0].int_pri, &sc->ms_hardint); sc->ms_softint.ih_fun = magma_soft; sc->ms_softint.ih_arg = sc; intr_establish(PIL_TTY, &sc->ms_softint); } /* * hard interrupt routine * * returns 1 if it handled it, otherwise 0 * * runs at interrupt priority */ int magma_hard(arg) void *arg; { struct magma_softc *sc = arg; struct cd1400 *cd; int chip, status = 0; int serviced = 0; int needsoftint = 0; /* * check status of all the CD1400 chips */ for( chip = 0 ; chip < sc->ms_ncd1400 ; chip++ ) status |= cd1400_read_reg(&sc->ms_cd1400[chip], CD1400_SVRR); if( ISSET(status, CD1400_SVRR_RXRDY) ) { u_char rivr = *sc->ms_svcackr; /* enter rx service context */ int port = rivr >> 4; if( rivr & (1<<3) ) { /* parallel port */ struct mbpp_port *mbpp; int n_chars; mbpp = &sc->ms_mbpp->ms_port[port]; cd = mbpp->mp_cd1400; /* don't think we have to handle exceptions */ n_chars = cd1400_read_reg(cd, CD1400_RDCR); while( n_chars-- ) { if( mbpp->mp_cnt == 0 ) { SET(mbpp->mp_flags, MBPPF_WAKEUP); needsoftint = 1; break; } *mbpp->mp_ptr = cd1400_read_reg(cd, CD1400_RDSR); mbpp->mp_ptr++; mbpp->mp_cnt--; } } else { /* serial port */ register struct mtty_port *mtty; register u_char *ptr, n_chars, line_stat; mtty = &sc->ms_mtty->ms_port[port]; cd = mtty->mp_cd1400; if( ISSET(rivr, CD1400_RIVR_EXCEPTION) ) { line_stat = cd1400_read_reg(cd, CD1400_RDSR); n_chars = 1; } else { /* no exception, received data OK */ line_stat = 0; n_chars = cd1400_read_reg(cd, CD1400_RDCR); } ptr = mtty->mp_rput; while( n_chars-- ) { *ptr++ = line_stat; *ptr++ = cd1400_read_reg(cd, CD1400_RDSR); if( ptr == mtty->mp_rend ) ptr = mtty->mp_rbuf; if( ptr == mtty->mp_rget ) { if( ptr == mtty->mp_rbuf ) ptr = mtty->mp_rend; ptr -= 2; SET(mtty->mp_flags, MTTYF_RING_OVERFLOW); break; } } mtty->mp_rput = ptr; needsoftint = 1; } cd1400_write_reg(cd, CD1400_EOSRR, 0); /* end service context */ serviced = 1; } /* if(rx_service...) */ if( ISSET(status, CD1400_SVRR_MDMCH) ) { u_char mivr = *sc->ms_svcackm; /* enter mdm service context */ int port = mivr >> 4; struct mtty_port *mtty; int carrier; u_char msvr; /* * Handle CD (LC2+1Sp = DSR) changes. */ mtty = &sc->ms_mtty->ms_port[port]; cd = mtty->mp_cd1400; msvr = cd1400_read_reg(cd, CD1400_MSVR2); carrier = ISSET(msvr, cd->cd_parmode ? CD1400_MSVR2_DSR : CD1400_MSVR2_CD); if( mtty->mp_carrier != carrier ) { SET(mtty->mp_flags, MTTYF_CARRIER_CHANGED); mtty->mp_carrier = carrier; needsoftint = 1; } cd1400_write_reg(cd, CD1400_EOSRR, 0); /* end service context */ serviced = 1; } /* if(mdm_service...) */ if( ISSET(status, CD1400_SVRR_TXRDY) ) { u_char tivr = *sc->ms_svcackt; /* enter tx service context */ int port = tivr >> 4; if( tivr & (1<<3) ) { /* parallel port */ struct mbpp_port *mbpp; mbpp = &sc->ms_mbpp->ms_port[port]; cd = mbpp->mp_cd1400; if( mbpp->mp_cnt ) { int count = 0; /* fill the fifo */ while( mbpp->mp_cnt && count++ < CD1400_PAR_FIFO_SIZE ) { cd1400_write_reg(cd, CD1400_TDR, *mbpp->mp_ptr); mbpp->mp_ptr++; mbpp->mp_cnt--; } } else { /* fifo is empty and we got no more data to send, so shut * off interrupts and signal for a wakeup, which can't be * done here in case we beat mbpp_send to the tsleep call * (we are running at >spltty) */ cd1400_write_reg(cd, CD1400_SRER, 0); SET(mbpp->mp_flags, MBPPF_WAKEUP); needsoftint = 1; } } else { /* serial port */ struct mtty_port *mtty; struct tty *tp; mtty = &sc->ms_mtty->ms_port[port]; cd = mtty->mp_cd1400; tp = mtty->mp_tty; if( !ISSET(mtty->mp_flags, MTTYF_STOP) ) { register int count = 0; /* check if we should start/stop a break */ if( ISSET(mtty->mp_flags, MTTYF_SET_BREAK) ) { cd1400_write_reg(cd, CD1400_TDR, 0); cd1400_write_reg(cd, CD1400_TDR, 0x81); /* should we delay too? */ CLR(mtty->mp_flags, MTTYF_SET_BREAK); count += 2; } if( ISSET(mtty->mp_flags, MTTYF_CLR_BREAK) ) { cd1400_write_reg(cd, CD1400_TDR, 0); cd1400_write_reg(cd, CD1400_TDR, 0x83); CLR(mtty->mp_flags, MTTYF_CLR_BREAK); count += 2; } /* I don't quite fill the fifo in case the last one is a * NULL which I have to double up because its the escape * code for embedded transmit characters. */ while( mtty->mp_txc > 0 && count < CD1400_TX_FIFO_SIZE - 1 ) { register u_char ch; ch = *mtty->mp_txp; mtty->mp_txc--; mtty->mp_txp++; if( ch == 0 ) { cd1400_write_reg(cd, CD1400_TDR, ch); count++; } cd1400_write_reg(cd, CD1400_TDR, ch); count++; } } /* if we ran out of work or are requested to STOP then * shut off the txrdy interrupts and signal DONE to flush * out the chars we have sent. */ if( mtty->mp_txc == 0 || ISSET(mtty->mp_flags, MTTYF_STOP) ) { register int srer; srer = cd1400_read_reg(cd, CD1400_SRER); CLR(srer, CD1400_SRER_TXRDY); cd1400_write_reg(cd, CD1400_SRER, srer); CLR(mtty->mp_flags, MTTYF_STOP); SET(mtty->mp_flags, MTTYF_DONE); needsoftint = 1; } } cd1400_write_reg(cd, CD1400_EOSRR, 0); /* end service context */ serviced = 1; } /* if(tx_service...) */ /* XXX service CD1190 interrupts too for( chip = 0 ; chip < sc->ms_ncd1190 ; chip++ ) { } */ if( needsoftint ) { /* trigger the soft interrupt */ #if defined(SUN4M) if( CPU_ISSUN4M ) raise(0, PIL_TTY); else #endif ienab_bis(IE_MSOFT); } return(serviced); } /* * magma soft interrupt handler * * returns 1 if it handled it, 0 otherwise * * runs at spltty() */ int magma_soft(arg) void *arg; { struct magma_softc *sc = arg; struct mtty_softc *mtty = sc->ms_mtty; struct mbpp_softc *mbpp = sc->ms_mbpp; int port; int serviced = 0; int s, flags; /* * check the tty ports (if any) to see what needs doing */ if( mtty ) { for( port = 0 ; port < mtty->ms_nports ; port++ ) { struct mtty_port *mp = &mtty->ms_port[port]; struct tty *tp = mp->mp_tty; if( !ISSET(tp->t_state, TS_ISOPEN) ) continue; /* * handle any received data */ while( mp->mp_rget != mp->mp_rput ) { u_char stat; int data; stat = mp->mp_rget[0]; data = mp->mp_rget[1]; mp->mp_rget = ((mp->mp_rget + 2) == mp->mp_rend) ? mp->mp_rbuf : (mp->mp_rget + 2); if( stat & (CD1400_RDSR_BREAK | CD1400_RDSR_FE) ) data |= TTY_FE; if( stat & CD1400_RDSR_PE ) data |= TTY_PE; if( stat & CD1400_RDSR_OE ) log(LOG_WARNING, "%s%x: fifo overflow\n", mtty->ms_dev.dv_xname, port); (*linesw[tp->t_line].l_rint)(data, tp); serviced = 1; } s = splhigh(); /* block out hard interrupt routine */ flags = mp->mp_flags; CLR(mp->mp_flags, MTTYF_DONE | MTTYF_CARRIER_CHANGED | MTTYF_RING_OVERFLOW); splx(s); /* ok */ if( ISSET(flags, MTTYF_CARRIER_CHANGED) ) { dprintf(("%s%x: cd %s\n", mtty->ms_dev.dv_xname, port, mp->mp_carrier ? "on" : "off")); (*linesw[tp->t_line].l_modem)(tp, mp->mp_carrier); serviced = 1; } if( ISSET(flags, MTTYF_RING_OVERFLOW) ) { log(LOG_WARNING, "%s%x: ring buffer overflow\n", mtty->ms_dev.dv_xname, port); serviced = 1; } if( ISSET(flags, MTTYF_DONE) ) { ndflush(&tp->t_outq, mp->mp_txp - tp->t_outq.c_cf); CLR(tp->t_state, TS_BUSY); (*linesw[tp->t_line].l_start)(tp); /* might be some more */ serviced = 1; } } /* for(each mtty...) */ } /* * check the bpp ports (if any) to see what needs doing */ if( mbpp ) { for( port = 0 ; port < mbpp->ms_nports ; port++ ) { struct mbpp_port *mp = &mbpp->ms_port[port]; if( !ISSET(mp->mp_flags, MBPPF_OPEN) ) continue; s = splhigh(); /* block out hard intr routine */ flags = mp->mp_flags; CLR(mp->mp_flags, MBPPF_WAKEUP); splx(s); if( ISSET(flags, MBPPF_WAKEUP) ) { wakeup(mp); serviced = 1; } } /* for(each mbpp...) */ } return(serviced); } /************************************************************************ * * MTTY Routines * * mtty_match match one mtty device * mtty_attach attach mtty devices * mttyopen open mtty device * mttyclose close mtty device * mttyread read from mtty * mttywrite write to mtty * mttyioctl do ioctl on mtty * mttytty return tty pointer for mtty * mttystop stop mtty device * mtty_start start mtty device * mtty_param set mtty parameters * mtty_modem_control set modem control lines */ int mtty_match(parent, vcf, args) struct device *parent; void *vcf, *args; { struct magma_softc *sc = (struct magma_softc *)parent; return( args == mtty_match && sc->ms_board->mb_nser && sc->ms_mtty == NULL ); } void mtty_attach(parent, dev, args) struct device *parent; struct device *dev; void *args; { struct magma_softc *sc = (struct magma_softc *)parent; struct mtty_softc *ms = (struct mtty_softc *)dev; int port, chip, chan; sc->ms_mtty = ms; dprintf((" addr 0x%x", ms)); for( port = 0, chip = 0, chan = 0 ; port < sc->ms_board->mb_nser ; port++ ) { struct mtty_port *mp = &ms->ms_port[port]; struct tty *tp; mp->mp_cd1400 = &sc->ms_cd1400[chip]; if( mp->mp_cd1400->cd_parmode && chan == 0 ) chan = 1; /* skip channel 0 if parmode */ mp->mp_channel = chan; tp = ttymalloc(); if( tp == NULL ) break; tty_attach(tp); tp->t_oproc = mtty_start; tp->t_param = mtty_param; mp->mp_tty = tp; mp->mp_rbuf = malloc(MTTY_RBUF_SIZE, M_DEVBUF, M_NOWAIT); if( mp->mp_rbuf == NULL ) break; mp->mp_rend = mp->mp_rbuf + MTTY_RBUF_SIZE; chan = (chan + 1) % CD1400_NO_OF_CHANNELS; if( chan == 0 ) chip++; } ms->ms_nports = port; printf(": %d tty%s\n", port, port == 1 ? "" : "s"); } /* * open routine. returns zero if successful, else error code */ int mttyopen(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { int card = MAGMA_CARD(dev); int port = MAGMA_PORT(dev); struct mtty_softc *ms; struct mtty_port *mp; struct tty *tp; struct cd1400 *cd; int s; if( card >= mtty_cd.cd_ndevs || (ms = mtty_cd.cd_devs[card]) == NULL || port >= ms->ms_nports ) return(ENXIO); /* device not configured */ mp = &ms->ms_port[port]; tp = mp->mp_tty; tp->t_dev = dev; if( !ISSET(tp->t_state, TS_ISOPEN) ) { SET(tp->t_state, TS_WOPEN); /* set defaults */ ttychars(tp); tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_cflag = TTYDEF_CFLAG; if( ISSET(mp->mp_openflags, TIOCFLAG_CLOCAL) ) SET(tp->t_cflag, CLOCAL); if( ISSET(mp->mp_openflags, TIOCFLAG_CRTSCTS) ) SET(tp->t_cflag, CRTSCTS); if( ISSET(mp->mp_openflags, TIOCFLAG_MDMBUF) ) SET(tp->t_cflag, MDMBUF); tp->t_lflag = TTYDEF_LFLAG; tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED; /* init ring buffer */ mp->mp_rput = mp->mp_rget = mp->mp_rbuf; s = spltty(); /* reset CD1400 channel */ cd = mp->mp_cd1400; cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel); cd1400_write_ccr(cd, CD1400_CCR_CMDRESET); /* encode the port number in top half of LIVR */ cd1400_write_reg(cd, CD1400_LIVR, port << 4 ); /* sets parameters and raises DTR */ (void)mtty_param(tp, &tp->t_termios); /* set tty watermarks */ ttsetwater(tp); /* enable service requests */ cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_RXDATA | CD1400_SRER_MDMCH); /* tell the tty about the carrier status */ if( ISSET(mp->mp_openflags, TIOCFLAG_SOFTCAR) || mp->mp_carrier ) SET(tp->t_state, TS_CARR_ON); else CLR(tp->t_state, TS_CARR_ON); } else if( ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 ) { return(EBUSY); /* superuser can break exclusive access */ } else { s = spltty(); } /* wait for carrier if necessary */ if( !ISSET(flags, O_NONBLOCK) ) { while( !ISSET(tp->t_cflag, CLOCAL) && !ISSET(tp->t_state, TS_CARR_ON) ) { int error; SET(tp->t_state, TS_WOPEN); error = ttysleep(tp, &tp->t_rawq, TTIPRI | PCATCH, "mttydcd", 0); if( error != 0 ) { splx(s); CLR(tp->t_state, TS_WOPEN); return(error); } } } splx(s); return( (*linesw[tp->t_line].l_open)(dev, tp) ); } /* * close routine. returns zero if successful, else error code */ int mttyclose(dev, flag, mode, p) dev_t dev; int flag; int mode; struct proc *p; { struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)]; struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)]; struct tty *tp = mp->mp_tty; int s; (*linesw[tp->t_line].l_close)(tp, flag); s = spltty(); /* if HUPCL is set, and the tty is no longer open * shut down the port */ if( ISSET(tp->t_cflag, HUPCL) || !ISSET(tp->t_state, TS_ISOPEN) ) { /* XXX wait until FIFO is empty before turning off the channel struct cd1400 *cd = mp->mp_cd1400; */ /* drop DTR and RTS */ (void)mtty_modem_control(mp, 0, DMSET); /* turn off the channel cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel); cd1400_write_ccr(cd, CD1400_CCR_CMDRESET); */ } splx(s); ttyclose(tp); return(0); } /* * Read routine */ int mttyread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)]; struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)]; struct tty *tp = mp->mp_tty; return( (*linesw[tp->t_line].l_read)(tp, uio, flags) ); } /* * Write routine */ int mttywrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)]; struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)]; struct tty *tp = mp->mp_tty; return( (*linesw[tp->t_line].l_write)(tp, uio, flags) ); } /* * return tty pointer */ struct tty * mttytty(dev) dev_t dev; { struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)]; struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)]; return(mp->mp_tty); } /* * ioctl routine */ int mttyioctl(dev, cmd, data, flags, p) dev_t dev; u_long cmd; caddr_t data; int flags; struct proc *p; { struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)]; struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)]; struct tty *tp = mp->mp_tty; int error; error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flags, p); if( error >= 0 ) return(error); error = ttioctl(tp, cmd, data, flags, p); if( error >= 0 ) return(error); error = 0; switch(cmd) { case TIOCSBRK: /* set break */ SET(mp->mp_flags, MTTYF_SET_BREAK); cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel); break; case TIOCCBRK: /* clear break */ SET(mp->mp_flags, MTTYF_CLR_BREAK); cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel); break; case TIOCSDTR: /* set DTR */ mtty_modem_control(mp, TIOCM_DTR, DMBIS); break; case TIOCCDTR: /* clear DTR */ mtty_modem_control(mp, TIOCM_DTR, DMBIC); break; case TIOCMSET: /* set modem lines */ mtty_modem_control(mp, *((int *)data), DMSET); break; case TIOCMBIS: /* bit set modem lines */ mtty_modem_control(mp, *((int *)data), DMBIS); break; case TIOCMBIC: /* bit clear modem lines */ mtty_modem_control(mp, *((int *)data), DMBIC); break; case TIOCMGET: /* get modem lines */ *((int *)data) = mtty_modem_control(mp, 0, DMGET); break; case TIOCGFLAGS: *((int *)data) = mp->mp_openflags; break; case TIOCSFLAGS: if( suser(p->p_ucred, &p->p_acflag) ) error = EPERM; else mp->mp_openflags = *((int *)data) & (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL | TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF); break; default: error = ENOTTY; } return(error); } /* * Stop output, e.g., for ^S or output flush. */ int mttystop(tp, flags) struct tty *tp; int flags; { struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)]; struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)]; int s; s = spltty(); if( ISSET(tp->t_state, TS_BUSY) ) { if( !ISSET(tp->t_state, TS_TTSTOP) ) SET(tp->t_state, TS_FLUSH); /* * the transmit interrupt routine will disable transmit when it * notices that MTTYF_STOP has been set. */ SET(mp->mp_flags, MTTYF_STOP); } splx(s); return(0); } /* * Start output, after a stop. */ void mtty_start(tp) struct tty *tp; { struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)]; struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)]; int s; s = spltty(); /* we only need to do something if we are not already busy * or delaying or stopped */ if( !ISSET(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) { /* if we are sleeping and output has drained below * low water mark, awaken */ if( tp->t_outq.c_cc <= tp->t_lowat ) { if( ISSET(tp->t_state, TS_ASLEEP) ) { CLR(tp->t_state, TS_ASLEEP); wakeup(&tp->t_outq); } selwakeup(&tp->t_wsel); } /* if something to send, start transmitting */ if( tp->t_outq.c_cc ) { mp->mp_txc = ndqb(&tp->t_outq, 0); mp->mp_txp = tp->t_outq.c_cf; SET(tp->t_state, TS_BUSY); cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel); } } splx(s); } /* * set/get modem line status * * bits can be: TIOCM_DTR, TIOCM_RTS, TIOCM_CTS, TIOCM_CD, TIOCM_RI, TIOCM_DSR * * note that DTR and RTS lines are exchanged, and that DSR is * not available on the LC2+1Sp card (used as CD) * * only let them fiddle with RTS if CRTSCTS is not enabled */ int mtty_modem_control(mp, bits, howto) struct mtty_port *mp; int bits; int howto; { struct cd1400 *cd = mp->mp_cd1400; struct tty *tp = mp->mp_tty; int s, msvr; s = spltty(); cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel); switch(howto) { case DMGET: /* get bits */ bits = 0; bits |= TIOCM_LE; msvr = cd1400_read_reg(cd, CD1400_MSVR1); if( msvr & CD1400_MSVR1_RTS ) bits |= TIOCM_DTR; msvr = cd1400_read_reg(cd, CD1400_MSVR2); if( msvr & CD1400_MSVR2_DTR ) bits |= TIOCM_RTS; if( msvr & CD1400_MSVR2_CTS ) bits |= TIOCM_CTS; if( msvr & CD1400_MSVR2_RI ) bits |= TIOCM_RI; if( msvr & CD1400_MSVR2_DSR ) bits |= (cd->cd_parmode ? TIOCM_CD : TIOCM_DSR); if( msvr & CD1400_MSVR2_CD ) bits |= (cd->cd_parmode ? 0 : TIOCM_CD); break; case DMSET: /* reset bits */ if( !ISSET(tp->t_cflag, CRTSCTS) ) cd1400_write_reg(cd, CD1400_MSVR2, ((bits & TIOCM_RTS) ? CD1400_MSVR2_DTR : 0)); cd1400_write_reg(cd, CD1400_MSVR1, ((bits & TIOCM_DTR) ? CD1400_MSVR1_RTS : 0)); break; case DMBIS: /* set bits */ if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) ) cd1400_write_reg(cd, CD1400_MSVR2, CD1400_MSVR2_DTR); if( bits & TIOCM_DTR ) cd1400_write_reg(cd, CD1400_MSVR1, CD1400_MSVR1_RTS); break; case DMBIC: /* clear bits */ if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) ) cd1400_write_reg(cd, CD1400_MSVR2, 0); if( bits & TIOCM_DTR ) cd1400_write_reg(cd, CD1400_MSVR1, 0); break; } splx(s); return(bits); } /* * Set tty parameters, returns error or 0 on success */ int mtty_param(tp, t) struct tty *tp; struct termios *t; { struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)]; struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)]; struct cd1400 *cd = mp->mp_cd1400; int rbpr, tbpr, rcor, tcor; u_char mcor1 = 0, mcor2 = 0; int s, opt; if( t->c_ospeed && cd1400_compute_baud(t->c_ospeed, cd->cd_clock, &tcor, &tbpr) ) return(EINVAL); if( t->c_ispeed && cd1400_compute_baud(t->c_ispeed, cd->cd_clock, &rcor, &rbpr) ) return(EINVAL); s = spltty(); /* hang up the line if ospeed is zero, else raise DTR */ (void)mtty_modem_control(mp, TIOCM_DTR, (t->c_ospeed == 0 ? DMBIC : DMBIS)); /* select channel, done in mtty_modem_control() */ /* cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel); */ /* set transmit speed */ if( t->c_ospeed ) { cd1400_write_reg(cd, CD1400_TCOR, tcor); cd1400_write_reg(cd, CD1400_TBPR, tbpr); } /* set receive speed */ if( t->c_ispeed ) { cd1400_write_reg(cd, CD1400_RCOR, rcor); cd1400_write_reg(cd, CD1400_RBPR, rbpr); } /* enable transmitting and receiving on this channel */ opt = CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN | CD1400_CCR_RCVEN; cd1400_write_ccr(cd, opt); /* set parity, data and stop bits */ opt = 0; if( ISSET(t->c_cflag, PARENB) ) opt |= (ISSET(t->c_cflag, PARODD) ? CD1400_COR1_PARODD : CD1400_COR1_PARNORMAL); if( !ISSET(t->c_iflag, INPCK) ) opt |= CD1400_COR1_NOINPCK; /* no parity checking */ if( ISSET(t->c_cflag, CSTOPB) ) opt |= CD1400_COR1_STOP2; switch( t->c_cflag & CSIZE ) { case CS5: opt |= CD1400_COR1_CS5; break; case CS6: opt |= CD1400_COR1_CS6; break; case CS7: opt |= CD1400_COR1_CS7; break; default: opt |= CD1400_COR1_CS8; break; } cd1400_write_reg(cd, CD1400_COR1, opt); /* * enable Embedded Transmit Commands (for breaks) * use the CD1400 automatic CTS flow control if CRTSCTS is set */ opt = CD1400_COR2_ETC; if( ISSET(t->c_cflag, CRTSCTS) ) opt |= CD1400_COR2_CCTS_OFLOW; cd1400_write_reg(cd, CD1400_COR2, opt); cd1400_write_reg(cd, CD1400_COR3, MTTY_RX_FIFO_THRESHOLD); cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR1 | CD1400_CCR_COR2 | CD1400_CCR_COR3); cd1400_write_reg(cd, CD1400_COR4, CD1400_COR4_PFO_EXCEPTION); cd1400_write_reg(cd, CD1400_COR5, 0); /* * if automatic RTS handshaking enabled, set DTR threshold * (RTS and DTR lines are switched, CD1400 thinks its DTR) */ if( ISSET(t->c_cflag, CRTSCTS) ) mcor1 = MTTY_RX_DTR_THRESHOLD; /* set up `carrier detect' interrupts */ if( cd->cd_parmode ) { SET(mcor1, CD1400_MCOR1_DSRzd); SET(mcor2, CD1400_MCOR2_DSRod); } else { SET(mcor1, CD1400_MCOR1_CDzd); SET(mcor2, CD1400_MCOR2_CDod); } cd1400_write_reg(cd, CD1400_MCOR1, mcor1); cd1400_write_reg(cd, CD1400_MCOR2, mcor2); /* receive timeout 2ms */ cd1400_write_reg(cd, CD1400_RTPR, 2); splx(s); return(0); } /************************************************************************ * * MBPP Routines * * mbpp_match match one mbpp device * mbpp_attach attach mbpp devices * mbppopen open mbpp device * mbppclose close mbpp device * mbppread read from mbpp * mbppwrite write to mbpp * mbppioctl do ioctl on mbpp * mbppselect do select on mbpp * mbpp_rw general rw routine * mbpp_timeout rw timeout * mbpp_start rw start after delay * mbpp_send send data * mbpp_recv recv data */ int mbpp_match(parent, vcf, args) struct device *parent; void *vcf, *args; { register struct magma_softc *sc = (struct magma_softc *)parent; return( args == mbpp_match && sc->ms_board->mb_npar && sc->ms_mbpp == NULL ); } void mbpp_attach(parent, dev, args) struct device *parent; struct device *dev; void *args; { struct magma_softc *sc = (struct magma_softc *)parent; struct mbpp_softc *ms = (struct mbpp_softc *)dev; struct mbpp_port *mp; int port; sc->ms_mbpp = ms; dprintf((" addr 0x%x", ms)); for( port = 0 ; port < sc->ms_board->mb_npar ; port++ ) { mp = &ms->ms_port[port]; if( sc->ms_ncd1190 ) mp->mp_cd1190 = &sc->ms_cd1190[port]; else mp->mp_cd1400 = &sc->ms_cd1400[0]; timeout_set(&mp->mp_timeout_tmo, mbpp_timeout, mp); timeout_set(&mp->mp_start_tmo, mbpp_start, mp); } ms->ms_nports = port; printf(": %d port%s\n", port, port == 1 ? "" : "s"); } /* * open routine. returns zero if successful, else error code */ int mbppopen(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { int card = MAGMA_CARD(dev); int port = MAGMA_PORT(dev); struct mbpp_softc *ms; struct mbpp_port *mp; int s; if( card >= mbpp_cd.cd_ndevs || (ms = mbpp_cd.cd_devs[card]) == NULL || port >= ms->ms_nports ) return(ENXIO); mp = &ms->ms_port[port]; s = spltty(); if( ISSET(mp->mp_flags, MBPPF_OPEN) ) { splx(s); return(EBUSY); } SET(mp->mp_flags, MBPPF_OPEN); splx(s); /* set defaults */ mp->mp_burst = BPP_BURST; mp->mp_timeout = mbpp_mstohz(BPP_TIMEOUT); mp->mp_delay = mbpp_mstohz(BPP_DELAY); /* init chips */ if( mp->mp_cd1400 ) { /* CD1400 */ struct cd1400 *cd = mp->mp_cd1400; /* set up CD1400 channel */ s = spltty(); cd1400_write_reg(cd, CD1400_CAR, 0); cd1400_write_ccr(cd, CD1400_CCR_CMDRESET); cd1400_write_reg(cd, CD1400_LIVR, (1<<3)); splx(s); } else { /* CD1190 */ mp->mp_flags = 0; return(ENXIO); } return(0); } /* * close routine. returns zero if successful, else error code */ int mbppclose(dev, flag, mode, p) dev_t dev; int flag; int mode; struct proc *p; { struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)]; struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)]; mp->mp_flags = 0; return(0); } /* * Read routine */ int mbppread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return( mbpp_rw(dev, uio) ); } /* * Write routine */ int mbppwrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return( mbpp_rw(dev, uio) ); } /* * ioctl routine */ int mbppioctl(dev, cmd, data, flags, p) dev_t dev; u_long cmd; caddr_t data; int flags; struct proc *p; { struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)]; register struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)]; struct bpp_param *bp; int error = 0; int s; switch(cmd) { case BPPIOCSPARAM: bp = (struct bpp_param *)data; if( bp->bp_burst < BPP_BURST_MIN || bp->bp_burst > BPP_BURST_MAX || bp->bp_delay < BPP_DELAY_MIN || bp->bp_delay > BPP_DELAY_MIN ) { error = EINVAL; } else { mp->mp_burst = bp->bp_burst; mp->mp_timeout = mbpp_mstohz(bp->bp_timeout); mp->mp_delay = mbpp_mstohz(bp->bp_delay); } break; case BPPIOCGPARAM: bp = (struct bpp_param *)data; bp->bp_burst = mp->mp_burst; bp->bp_timeout = mbpp_hztoms(mp->mp_timeout); bp->bp_delay = mbpp_hztoms(mp->mp_delay); break; case BPPIOCGSTAT: /* XXX make this more generic */ s = spltty(); cd1400_write_reg(mp->mp_cd1400, CD1400_CAR, 0); *(int *)data = cd1400_read_reg(mp->mp_cd1400, CD1400_PSVR); splx(s); break; default: error = ENOTTY; } return(error); } /* * select routine */ int mbppselect(dev, rw, p) dev_t dev; int rw; struct proc *p; { return(ENODEV); } int mbpp_rw(dev, uio) dev_t dev; struct uio *uio; { int card = MAGMA_CARD(dev); int port = MAGMA_PORT(dev); struct mbpp_softc *ms = mbpp_cd.cd_devs[card]; register struct mbpp_port *mp = &ms->ms_port[port]; caddr_t buffer, ptr; int buflen, cnt, len; int s, error = 0; int gotdata = 0; if( uio->uio_resid == 0 ) return(0); buflen = min(uio->uio_resid, mp->mp_burst); buffer = malloc(buflen, M_DEVBUF, M_WAITOK); if( buffer == NULL ) return(ENOMEM); SET(mp->mp_flags, MBPPF_UIO); /* * start timeout, if needed */ if( mp->mp_timeout > 0 ) { SET(mp->mp_flags, MBPPF_TIMEOUT); timeout_add(&mp->mp_timeout_tmo, mp->mp_timeout); } len = cnt = 0; while( uio->uio_resid > 0 ) { len = min(buflen, uio->uio_resid); ptr = buffer; if( uio->uio_rw == UIO_WRITE ) { error = uiomove(ptr, len, uio); if( error ) break; } again: /* goto bad */ /* timed out? */ if( !ISSET(mp->mp_flags, MBPPF_UIO) ) break; /* * perform the operation */ if( uio->uio_rw == UIO_WRITE ) { cnt = mbpp_send(mp, ptr, len); } else { cnt = mbpp_recv(mp, ptr, len); } if( uio->uio_rw == UIO_READ ) { if( cnt ) { error = uiomove(ptr, cnt, uio); if( error ) break; gotdata++; } else if( gotdata ) /* consider us done */ break; } /* timed out? */ if( !ISSET(mp->mp_flags, MBPPF_UIO) ) break; /* * poll delay? */ if( mp->mp_delay > 0 ) { s = spltty(); /* XXX */ SET(mp->mp_flags, MBPPF_DELAY); timeout_add(&mp->mp_start_tmo, mp->mp_delay); error = tsleep(mp, PCATCH | PZERO, "mbppdelay", 0); splx(s); if( error ) break; } /* * don't call uiomove again until we used all the data we grabbed */ if( uio->uio_rw == UIO_WRITE && cnt != len ) { ptr += cnt; len -= cnt; cnt = 0; goto again; } } /* * clear timeouts */ s = spltty(); /* XXX */ if( ISSET(mp->mp_flags, MBPPF_TIMEOUT) ) { timeout_del(&mp->mp_timeout_tmo); CLR(mp->mp_flags, MBPPF_TIMEOUT); } if( ISSET(mp->mp_flags, MBPPF_DELAY) ) { timeout_del(&mp->mp_start_tmo); CLR(mp->mp_flags, MBPPF_DELAY); } splx(s); /* * adjust for those chars that we uiomoved but never actually wrote */ if( uio->uio_rw == UIO_WRITE && cnt != len ) { uio->uio_resid += (len - cnt); } free(buffer, M_DEVBUF); return(error); } void mbpp_timeout(arg) void *arg; { struct mbpp_port *mp = arg; CLR(mp->mp_flags, MBPPF_UIO | MBPPF_TIMEOUT); wakeup(mp); } void mbpp_start(arg) void *arg; { struct mbpp_port *mp = arg; CLR(mp->mp_flags, MBPPF_DELAY); wakeup(mp); } int mbpp_send(mp, ptr, len) struct mbpp_port *mp; caddr_t ptr; int len; { int s; struct cd1400 *cd = mp->mp_cd1400; /* set up io information */ mp->mp_ptr = ptr; mp->mp_cnt = len; /* start transmitting */ s = spltty(); if( cd ) { cd1400_write_reg(cd, CD1400_CAR, 0); /* output strobe width ~1microsecond */ cd1400_write_reg(cd, CD1400_TBPR, 10); /* enable channel */ cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN); cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_TXRDY); } /* ZZzzz... */ tsleep(mp, PCATCH | PZERO, "mbpp_send", 0); /* stop transmitting */ if( cd ) { cd1400_write_reg(cd, CD1400_CAR, 0); /* disable transmitter */ cd1400_write_reg(cd, CD1400_SRER, 0); cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTDIS); /* flush fifo */ cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FTF); } splx(s); /* return number of chars sent */ return(len - mp->mp_cnt); } int mbpp_recv(mp, ptr, len) struct mbpp_port *mp; caddr_t ptr; int len; { int s; struct cd1400 *cd = mp->mp_cd1400; /* set up io information */ mp->mp_ptr = ptr; mp->mp_cnt = len; /* start receiving */ s = spltty(); if( cd ) { int rcor, rbpr; cd1400_write_reg(cd, CD1400_CAR, 0); /* input strobe at 100kbaud (10microseconds) */ cd1400_compute_baud(100000, cd->cd_clock, &rcor, &rbpr); cd1400_write_reg(cd, CD1400_RCOR, rcor); cd1400_write_reg(cd, CD1400_RBPR, rbpr); /* rx threshold */ cd1400_write_reg(cd, CD1400_COR3, MBPP_RX_FIFO_THRESHOLD); cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR3); /* enable channel */ cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVEN); cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_RXDATA); } /* ZZzzz... */ tsleep(mp, PCATCH | PZERO, "mbpp_recv", 0); /* stop receiving */ if( cd ) { cd1400_write_reg(cd, CD1400_CAR, 0); /* disable receiving */ cd1400_write_reg(cd, CD1400_SRER, 0); cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVDIS); } splx(s); /* return number of chars received */ return(len - mp->mp_cnt); } int mbpp_hztoms(h) int h; { int m = h; if( m > 0 ) m = m * 1000 / hz; return(m); } int mbpp_mstohz(m) int m; { int h = m; if( h > 0 ) { h = h * hz / 1000; if( h == 0 ) h = 1000 / hz; } return(h); } #endif /* NMAGMA */