/* $OpenBSD: si.c,v 1.17 2002/04/30 01:12:29 art Exp $ */ /* $NetBSD: si.c,v 1.38 1997/08/27 11:24:20 bouyer Exp $ */ /*- * Copyright (c) 1996 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Adam Glass, David Jones, Gordon W. Ross, and Jason R. Thorpe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * This file contains only the machine-dependent parts of the * Sun4 SCSI driver. (Autoconfig stuff and DMA functions.) * The machine-independent parts are in ncr5380sbc.c * * Supported hardware includes: * Sun "SCSI Weird" on OBIO (sw: Sun 4/100-series) * Sun SCSI-3 on VME (si: Sun 4/200-series, others) * * The VME variant has a bit to enable or disable the DMA engine, * but that bit also gates the interrupt line from the NCR5380! * Therefore, in order to get any interrupt from the 5380, (i.e. * for reselect) one must clear the DMA engine transfer count and * then enable DMA. This has the further complication that you * CAN NOT touch the NCR5380 while the DMA enable bit is set, so * we have to turn DMA back off before we even look at the 5380. * * What wonderfully whacky hardware this is! * * David Jones wrote the initial version of this module for NetBSD/sun3, * which included support for the VME adapter only. (no reselection). * * Gordon Ross added support for the Sun 3 OBIO adapter, and re-worked * both the VME and OBIO code to support disconnect/reselect. * (Required figuring out the hardware "features" noted above.) * * The autoconfiguration boilerplate came from Adam Glass. * * Jason R. Thorpe ported the autoconfiguration and VME portions to * NetBSD/sparc, and added initial support for the 4/100 "SCSI Weird", * a wacky OBIO variant of the VME SCSI-3. Many thanks to Chuck Cranor * for lots of helpful tips and suggestions. Thanks also to Paul Kranenburg * and Chris Torek for bits of insight needed along the way. Thanks to * David Gilbert and Andrew Gillham who risked filesystem life-and-limb * for the sake of testing. Andrew Gillham helped work out the bugs * the the 4/100 DMA code. */ /* * NOTE: support for the 4/100 "SCSI Weird" is not complete! DMA * works, but interrupts (and, thus, reselection) don't. I don't know * why, and I don't have a machine to test this on further. * * DMA, DMA completion interrupts, and reselection work fine on my * 4/260 with modern SCSI-II disks attached. I've had reports of * reselection failing on Sun Shoebox-type configurations where * there are multiple non-SCSI devices behind Emulex or Adaptec * bridges. These devices pre-date the SCSI-I spec, and might not * bahve the way the 5380 code expects. For this reason, only * DMA is enabled by default in this driver. * * Jason R. Thorpe * December 8, 1995 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef DDB #define Debugger() #endif #ifndef DEBUG #define DEBUG XXX #endif #define COUNT_SW_LEFTOVERS XXX /* See sw DMA completion code */ #include #include #include /* * Transfers smaller than this are done using PIO * (on assumption they're not worth DMA overhead) */ #define MIN_DMA_LEN 128 /* * Transfers lager than 65535 bytes need to be split-up. * (Some of the FIFO logic has only 16 bits counters.) * Make the size an integer multiple of the page size * to avoid buf/cluster remap problems. (paranoid?) */ #define MAX_DMA_LEN 0xE000 #ifdef DEBUG int si_debug = 0; static int si_link_flags = 0 /* | SDEV_DB2 */ ; #endif /* * This structure is used to keep track of mapped DMA requests. */ struct si_dma_handle { int dh_flags; #define SIDH_BUSY 0x01 /* This DH is in use */ #define SIDH_OUT 0x02 /* DMA does data out (write) */ u_char * dh_addr; /* KVA of start of buffer */ int dh_maplen; /* Original data length */ long dh_dvma; /* VA of buffer in DVMA space */ long dh_startingpa; /* PA of buffer; for "sw" */ }; /* * The first structure member has to be the ncr5380_softc * so we can just cast to go back and fourth between them. */ struct si_softc { struct ncr5380_softc ncr_sc; volatile struct si_regs *sc_regs; struct intrhand sc_ih; int sc_adapter_type; int sc_adapter_iv_am; /* int. vec + address modifier */ struct si_dma_handle *sc_dma; int sc_xlen; /* length of current DMA segment. */ int sc_options; /* options for this instance. */ }; /* * Options. By default, DMA is enabled and DMA completion interrupts * and reselect are disabled. You may enable additional features * the `flags' directive in your kernel's configuration file. * * Alternatively, you can patch your kernel with DDB or some other * mechanism. The sc_options member of the softc is OR'd with * the value in si_options. * * On the "sw", interrupts (and thus) reselection don't work, so they're * disabled by default. DMA is still a little dangerous, too. * * Note, there's a separate sw_options to make life easier. */ #define SI_ENABLE_DMA 0x01 /* Use DMA (maybe polled) */ #define SI_DMA_INTR 0x02 /* DMA completion interrupts */ #define SI_DO_RESELECT 0x04 /* Allow disconnect/reselect */ #define SI_OPTIONS_MASK (SI_ENABLE_DMA|SI_DMA_INTR|SI_DO_RESELECT) #define SI_OPTIONS_BITS "\10\3RESELECT\2DMA_INTR\1DMA" int si_options = SI_ENABLE_DMA; int sw_options = SI_ENABLE_DMA; /* How long to wait for DMA before declaring an error. */ int si_dma_intr_timo = 500; /* ticks (sec. X 100) */ static int si_match(struct device *, void *, void *); static void si_attach(struct device *, struct device *, void *); static int si_intr(void *); static void si_reset_adapter(struct ncr5380_softc *); static void si_minphys(struct buf *); void si_dma_alloc(struct ncr5380_softc *); void si_dma_free(struct ncr5380_softc *); void si_dma_poll(struct ncr5380_softc *); void si_vme_dma_setup(struct ncr5380_softc *); void si_vme_dma_start(struct ncr5380_softc *); void si_vme_dma_eop(struct ncr5380_softc *); void si_vme_dma_stop(struct ncr5380_softc *); void si_vme_intr_on(struct ncr5380_softc *); void si_vme_intr_off(struct ncr5380_softc *); void si_obio_dma_setup(struct ncr5380_softc *); void si_obio_dma_start(struct ncr5380_softc *); void si_obio_dma_eop(struct ncr5380_softc *); void si_obio_dma_stop(struct ncr5380_softc *); void si_obio_intr_on(struct ncr5380_softc *); void si_obio_intr_off(struct ncr5380_softc *); static struct scsi_adapter si_ops = { ncr5380_scsi_cmd, /* scsi_cmd() */ si_minphys, /* scsi_minphys() */ NULL, /* open_target_lu() */ NULL, /* close_target_lu() */ }; /* This is copied from julian's bt driver */ /* "so we have a default dev struct for our link struct." */ static struct scsi_device si_dev = { NULL, /* Use default error handler. */ NULL, /* Use default start handler. */ NULL, /* Use default async handler. */ NULL, /* Use default "done" routine. */ }; /* The Sun SCSI-3 VME controller. */ struct cfattach si_ca = { sizeof(struct si_softc), si_match, si_attach }; struct cfdriver si_cd = { NULL, "si", DV_DULL }; /* The Sun "SCSI Weird" 4/100 obio controller. */ struct cfattach sw_ca = { sizeof(struct si_softc), si_match, si_attach }; struct cfdriver sw_cd = { NULL, "sw", DV_DULL }; static int si_match(parent, vcf, aux) struct device *parent; void *vcf, *aux; { struct cfdata *cf = vcf; struct confargs *ca = aux; struct romaux *ra = &ca->ca_ra; /* Are we looking for the right thing? */ if (strcmp(cf->cf_driver->cd_name, ra->ra_name)) return (0); /* Nothing but a Sun 4 is going to have these devices. */ if (!CPU_ISSUN4) return (0); /* * Default interrupt priority always is 3. At least, that's * what my board seems to be at. --thorpej */ if (ra->ra_intr[0].int_pri == -1) ra->ra_intr[0].int_pri = 3; /* Figure out the bus type and look for the appropriate adapter. */ switch (ca->ca_bustype) { case BUS_VME16: /* AFAIK, the `si' can only exist on the vmes. */ if (strcmp(ra->ra_name, "si") || cpuinfo.cpu_type == CPUTYP_4_100) return (0); break; case BUS_OBIO: /* AFAIK, an `sw' can only exist on the obio. */ if (strcmp(ra->ra_name, "sw") || cpuinfo.cpu_type != CPUTYP_4_100) return (0); break; default: /* Don't know what we ended up with ... */ return (0); } /* Make sure there is something there... */ if (probeget(ra->ra_vaddr + 1, 1) == -1) return (0); /* * If this is a VME SCSI board, we have to determine whether * it is an "sc" (Sun2) or "si" (Sun3) SCSI board. This can * be determined using the fact that the "sc" board occupies * 4K bytes in VME space but the "si" board occupies 2K bytes. */ if (strcmp(cf->cf_driver->cd_name, "si") == 0) if (probeget(ra->ra_vaddr + 0x801, 1) != -1) return(0); return (1); } static void si_attach(parent, self, args) struct device *parent, *self; void *args; { struct si_softc *sc = (struct si_softc *) self; struct ncr5380_softc *ncr_sc = (struct ncr5380_softc *)sc; volatile struct si_regs *regs; struct confargs *ca = args; struct romaux *ra = &ca->ca_ra; struct bootpath *bp; int i; /* * Pull in the options flags. Allow the user to completely * override the default values. */ if ((ncr_sc->sc_dev.dv_cfdata->cf_flags & SI_OPTIONS_MASK) != 0) sc->sc_options = (ncr_sc->sc_dev.dv_cfdata->cf_flags & SI_OPTIONS_MASK); else sc->sc_options = (ca->ca_bustype == BUS_OBIO) ? sw_options : si_options; /* Map the controller registers. */ regs = (struct si_regs *) mapiodev(ra->ra_reg, 0, sizeof(struct si_regs)); /* * Fill in the prototype scsi_link. */ ncr_sc->sc_link.adapter_softc = sc; ncr_sc->sc_link.adapter_target = 7; ncr_sc->sc_link.adapter = &si_ops; ncr_sc->sc_link.device = &si_dev; ncr_sc->sc_link.openings = 4; /* * Initialize fields used by the MI code */ ncr_sc->sci_r0 = ®s->sci.sci_r0; ncr_sc->sci_r1 = ®s->sci.sci_r1; ncr_sc->sci_r2 = ®s->sci.sci_r2; ncr_sc->sci_r3 = ®s->sci.sci_r3; ncr_sc->sci_r4 = ®s->sci.sci_r4; ncr_sc->sci_r5 = ®s->sci.sci_r5; ncr_sc->sci_r6 = ®s->sci.sci_r6; ncr_sc->sci_r7 = ®s->sci.sci_r7; /* * MD function pointers used by the MI code. */ ncr_sc->sc_pio_out = ncr5380_pio_out; ncr_sc->sc_pio_in = ncr5380_pio_in; ncr_sc->sc_dma_alloc = si_dma_alloc; ncr_sc->sc_dma_free = si_dma_free; ncr_sc->sc_dma_poll = si_dma_poll; switch (ca->ca_bustype) { case BUS_VME16: ncr_sc->sc_dma_setup = si_vme_dma_setup; ncr_sc->sc_dma_start = si_vme_dma_start; ncr_sc->sc_dma_eop = si_vme_dma_stop; ncr_sc->sc_dma_stop = si_vme_dma_stop; if (sc->sc_options & SI_DO_RESELECT) { /* * Need to enable interrupts (and DMA!) * on this H/W for reselect to work. */ ncr_sc->sc_intr_on = si_vme_intr_on; ncr_sc->sc_intr_off = si_vme_intr_off; } break; case BUS_OBIO: ncr_sc->sc_dma_setup = si_obio_dma_setup; ncr_sc->sc_dma_start = si_obio_dma_start; ncr_sc->sc_dma_eop = si_obio_dma_stop; ncr_sc->sc_dma_stop = si_obio_dma_stop; ncr_sc->sc_intr_on = si_obio_intr_on; ncr_sc->sc_intr_off = si_obio_intr_off; break; default: panic("\nsi_attach: impossible bus type 0x%x", ca->ca_bustype); /* NOTREACHED */ } ncr_sc->sc_flags = 0; if ((sc->sc_options & SI_DO_RESELECT) == 0) ncr_sc->sc_flags |= NCR5380_PERMIT_RESELECT; if ((sc->sc_options & SI_DMA_INTR) == 0) ncr_sc->sc_flags |= NCR5380_FORCE_POLLING; ncr_sc->sc_min_dma_len = MIN_DMA_LEN; /* * Initialize fields used only here in the MD code. */ sc->sc_regs = regs; sc->sc_adapter_type = ca->ca_bustype; /* sc_adapter_iv_am = (was set above) */ /* * Allocate DMA handles. */ i = SCI_OPENINGS * sizeof(struct si_dma_handle); sc->sc_dma = (struct si_dma_handle *)malloc(i, M_DEVBUF, M_NOWAIT); if (sc->sc_dma == NULL) panic("si: dma handle malloc failed"); for (i = 0; i < SCI_OPENINGS; i++) sc->sc_dma[i].dh_flags = 0; sc->sc_regs = regs; sc->sc_adapter_type = ca->ca_bustype; /* Establish the interrupt. */ sc->sc_ih.ih_fun = si_intr; sc->sc_ih.ih_arg = sc; switch (ca->ca_bustype) { case BUS_OBIO: /* * This will be an "sw" controller. */ intr_establish(ra->ra_intr[0].int_pri, &sc->sc_ih, IPL_BIO); break; case BUS_VME16: /* * This will be an "si" controller. */ vmeintr_establish(ra->ra_intr[0].int_vec, ra->ra_intr[0].int_pri, &sc->sc_ih, IPL_BIO); sc->sc_adapter_iv_am = VME_SUPV_DATA_24 | (ra->ra_intr[0].int_vec & 0xFF); break; default: /* Impossible case handled above. */ break; } printf(" pri %d\n", ra->ra_intr[0].int_pri); if (sc->sc_options) { printf("%s: options=%b\n", ncr_sc->sc_dev.dv_xname, sc->sc_options, SI_OPTIONS_BITS); } #ifdef DEBUG if (si_debug) printf("si: Set TheSoftC=%p TheRegs=%p\n", sc, regs); ncr_sc->sc_link.flags |= si_link_flags; #endif /* * Initialize si board itself. */ si_reset_adapter(ncr_sc); ncr5380_init(ncr_sc); ncr5380_reset_scsibus(ncr_sc); /* * If the boot path is "sw" or "si" at the moment and it's me, then * walk out pointer to the sub-device, ready for the config * below. */ bp = ra->ra_bp; if (bp != NULL && strcmp(bp->name, ra->ra_name) == 0 && bp->val[0] == -1 && bp->val[1] == ncr_sc->sc_dev.dv_unit) bootpath_store(1, bp + 1); /* Configure sub-devices */ config_found(self, &(ncr_sc->sc_link), scsiprint); bootpath_store(1, NULL); } static void si_minphys(struct buf *bp) { if (bp->b_bcount > MAX_DMA_LEN) { #ifdef DEBUG if (si_debug) { printf("si_minphys len = 0x%x.\n", MAX_DMA_LEN); Debugger(); } #endif bp->b_bcount = MAX_DMA_LEN; } return (minphys(bp)); } #define CSR_WANT (SI_CSR_SBC_IP | SI_CSR_DMA_IP | \ SI_CSR_DMA_CONFLICT | SI_CSR_DMA_BUS_ERR ) static int si_intr(void *arg) { struct si_softc *sc = arg; volatile struct si_regs *si = sc->sc_regs; int dma_error, claimed; u_short csr; claimed = 0; dma_error = 0; /* SBC interrupt? DMA interrupt? */ if (sc->sc_adapter_type == BUS_OBIO) csr = si->sw_csr; else csr = si->si_csr; NCR_TRACE("si_intr: csr=0x%x\n", csr); if (csr & SI_CSR_DMA_CONFLICT) { dma_error |= SI_CSR_DMA_CONFLICT; printf("si_intr: DMA conflict\n"); } if (csr & SI_CSR_DMA_BUS_ERR) { dma_error |= SI_CSR_DMA_BUS_ERR; printf("si_intr: DMA bus error\n"); } if (dma_error) { if (sc->ncr_sc.sc_state & NCR_DOINGDMA) sc->ncr_sc.sc_state |= NCR_ABORTING; /* Make sure we will call the main isr. */ csr |= SI_CSR_DMA_IP; } if (csr & (SI_CSR_SBC_IP | SI_CSR_DMA_IP)) { claimed = ncr5380_intr(&sc->ncr_sc); #ifdef DEBUG if (!claimed) { printf("si_intr: spurious from SBC\n"); if (si_debug & 4) { Debugger(); /* XXX */ } } #endif } return (claimed); } static void si_reset_adapter(struct ncr5380_softc *ncr_sc) { struct si_softc *sc = (struct si_softc *)ncr_sc; volatile struct si_regs *si = sc->sc_regs; #ifdef DEBUG if (si_debug) { printf("si_reset_adapter\n"); } #endif /* * The SCSI3 controller has an 8K FIFO to buffer data between the * 5380 and the DMA. Make sure it starts out empty. * * The reset bits in the CSR are active low. */ switch(sc->sc_adapter_type) { case BUS_VME16: si->si_csr = 0; delay(10); si->si_csr = SI_CSR_FIFO_RES | SI_CSR_SCSI_RES | SI_CSR_INTR_EN; delay(10); si->fifo_count = 0; si->dma_addrh = 0; si->dma_addrl = 0; si->dma_counth = 0; si->dma_countl = 0; si->si_iv_am = sc->sc_adapter_iv_am; si->fifo_cnt_hi = 0; break; case BUS_OBIO: si->sw_csr = 0; delay(10); si->sw_csr = SI_CSR_SCSI_RES; si->dma_addr = 0; si->dma_count = 0; delay(10); si->sw_csr |= SI_CSR_INTR_EN; break; } SCI_CLR_INTR(ncr_sc); } /***************************************************************** * Common functions for DMA ****************************************************************/ /* * Allocate a DMA handle and put it in sc->sc_dma. Prepare * for DMA transfer. On the Sun4, this means mapping the buffer * into DVMA space. */ void si_dma_alloc(ncr_sc) struct ncr5380_softc *ncr_sc; { struct si_softc *sc = (struct si_softc *)ncr_sc; struct sci_req *sr = ncr_sc->sc_current; struct scsi_xfer *xs = sr->sr_xs; struct si_dma_handle *dh; int i, xlen; u_long addr; #ifdef DIAGNOSTIC if (sr->sr_dma_hand != NULL) panic("si_dma_alloc: already have DMA handle"); #endif #if 1 /* XXX - Temporary */ /* XXX - In case we think DMA is completely broken... */ if ((sc->sc_options & SI_ENABLE_DMA) == 0) return; #endif addr = (u_long) ncr_sc->sc_dataptr; xlen = ncr_sc->sc_datalen; /* If the DMA start addr is misaligned then do PIO */ if ((addr & 1) || (xlen & 1)) { printf("si_dma_alloc: misaligned.\n"); return; } /* Make sure our caller checked sc_min_dma_len. */ if (xlen < MIN_DMA_LEN) panic("si_dma_alloc: xlen=0x%x", xlen); /* Find free DMA handle. Guaranteed to find one since we have as many DMA handles as the driver has processes. */ for (i = 0; i < SCI_OPENINGS; i++) { if ((sc->sc_dma[i].dh_flags & SIDH_BUSY) == 0) goto found; } panic("si: no free DMA handles."); found: dh = &sc->sc_dma[i]; dh->dh_flags = SIDH_BUSY; dh->dh_addr = (u_char *) addr; dh->dh_maplen = xlen; dh->dh_dvma = 0; /* Copy the "write" flag for convenience. */ if (xs->flags & SCSI_DATA_OUT) dh->dh_flags |= SIDH_OUT; /* * Double-map the buffer into DVMA space. If we can't re-map * the buffer, we print a warning and fall back to PIO mode. * * NOTE: it is not safe to sleep here! */ dh->dh_dvma = (long)kdvma_mapin((caddr_t)addr, xlen, 0); if (dh->dh_dvma == 0) { /* Can't remap segment */ printf("si_dma_alloc: can't remap %p/0x%x, doing PIO\n", dh->dh_addr, dh->dh_maplen); dh->dh_flags = 0; return; } /* success */ sr->sr_dma_hand = dh; return; } void si_dma_free(ncr_sc) struct ncr5380_softc *ncr_sc; { struct sci_req *sr = ncr_sc->sc_current; struct si_dma_handle *dh = sr->sr_dma_hand; #ifdef DIAGNOSTIC if (dh == NULL) panic("si_dma_free: no DMA handle"); #endif if (ncr_sc->sc_state & NCR_DOINGDMA) panic("si_dma_free: free while in progress"); if (dh->dh_flags & SIDH_BUSY) { /* XXX - Should separate allocation and mapping. */ /* Give back the DVMA space. */ dvma_mapout((vaddr_t)dh->dh_dvma, (vaddr_t)dh->dh_addr, dh->dh_maplen); dh->dh_dvma = 0; dh->dh_flags = 0; } sr->sr_dma_hand = NULL; } /* * Poll (spin-wait) for DMA completion. * Called right after xx_dma_start(), and * xx_dma_stop() will be called next. * Same for either VME or OBIO. */ void si_dma_poll(ncr_sc) struct ncr5380_softc *ncr_sc; { struct si_softc *sc = (struct si_softc *)ncr_sc; struct sci_req *sr = ncr_sc->sc_current; volatile struct si_regs *si = sc->sc_regs; int tmo, csr_mask, csr; /* Make sure DMA started successfully. */ if (ncr_sc->sc_state & NCR_ABORTING) return; csr_mask = SI_CSR_SBC_IP | SI_CSR_DMA_IP | SI_CSR_DMA_CONFLICT | SI_CSR_DMA_BUS_ERR; tmo = 50000; /* X100 = 5 sec. */ for (;;) { if (sc->sc_adapter_type == BUS_OBIO) csr = si->sw_csr; else csr = si->si_csr; if (csr & csr_mask) break; if (--tmo <= 0) { printf("%s: DMA timeout (while polling)\n", ncr_sc->sc_dev.dv_xname); /* Indicate timeout as MI code would. */ sr->sr_flags |= SR_OVERDUE; break; } delay(100); } #ifdef DEBUG if (si_debug) { printf("si_dma_poll: done, csr=0x%x\n", csr); } #endif } /***************************************************************** * VME functions for DMA ****************************************************************/ /* * This is called when the bus is going idle, * so we want to enable the SBC interrupts. * That is controlled by the DMA enable! * Who would have guessed! * What a NASTY trick! */ void si_vme_intr_on(ncr_sc) struct ncr5380_softc *ncr_sc; { struct si_softc *sc = (struct si_softc *)ncr_sc; volatile struct si_regs *si = sc->sc_regs; si_vme_dma_setup(ncr_sc); si->si_csr |= SI_CSR_DMA_EN; } /* * This is called when the bus is idle and we are * about to start playing with the SBC chip. */ void si_vme_intr_off(ncr_sc) struct ncr5380_softc *ncr_sc; { struct si_softc *sc = (struct si_softc *)ncr_sc; volatile struct si_regs *si = sc->sc_regs; si->si_csr &= ~SI_CSR_DMA_EN; } /* * This function is called during the COMMAND or MSG_IN phase * that preceeds a DATA_IN or DATA_OUT phase, in case we need * to setup the DMA engine before the bus enters a DATA phase. * * XXX: The VME adapter appears to suppress SBC interrupts * when the FIFO is not empty or the FIFO count is non-zero! * * On the VME version we just clear the DMA count and address * here (to make sure it stays idle) and do the real setup * later, in dma_start. */ void si_vme_dma_setup(ncr_sc) struct ncr5380_softc *ncr_sc; { struct si_softc *sc = (struct si_softc *)ncr_sc; volatile struct si_regs *si = sc->sc_regs; /* Reset the FIFO */ si->si_csr &= ~SI_CSR_FIFO_RES; /* active low */ si->si_csr |= SI_CSR_FIFO_RES; /* Set direction (assume recv here) */ si->si_csr &= ~SI_CSR_SEND; /* Assume worst alignment */ si->si_csr |= SI_CSR_BPCON; si->dma_addrh = 0; si->dma_addrl = 0; si->dma_counth = 0; si->dma_countl = 0; /* Clear FIFO counter. (also hits dma_count) */ si->fifo_cnt_hi = 0; si->fifo_count = 0; } void si_vme_dma_start(ncr_sc) struct ncr5380_softc *ncr_sc; { struct si_softc *sc = (struct si_softc *)ncr_sc; struct sci_req *sr = ncr_sc->sc_current; struct si_dma_handle *dh = sr->sr_dma_hand; volatile struct si_regs *si = sc->sc_regs; u_long data_pa; int xlen; /* * Get the DVMA mapping for this segment. * XXX - Should separate allocation and mapin. */ data_pa = (u_long)(dh->dh_dvma - DVMA_BASE); if (data_pa & 1) panic("si_dma_start: bad pa=0x%lx", data_pa); xlen = ncr_sc->sc_datalen; xlen &= ~1; sc->sc_xlen = xlen; /* XXX: or less... */ #ifdef DEBUG if (si_debug & 2) { printf("si_dma_start: dh=%p, pa=0x%lx, xlen=%d\n", dh, data_pa, xlen); } #endif /* * Set up the DMA controller. * Note that (dh->dh_len < sc_datalen) */ si->si_csr &= ~SI_CSR_FIFO_RES; /* active low */ si->si_csr |= SI_CSR_FIFO_RES; /* Set direction (send/recv) */ if (dh->dh_flags & SIDH_OUT) { si->si_csr |= SI_CSR_SEND; } else { si->si_csr &= ~SI_CSR_SEND; } if (data_pa & 2) { si->si_csr |= SI_CSR_BPCON; } else { si->si_csr &= ~SI_CSR_BPCON; } si->dma_addrh = (u_short)(data_pa >> 16); si->dma_addrl = (u_short)(data_pa & 0xFFFF); si->dma_counth = (u_short)(xlen >> 16); si->dma_countl = (u_short)(xlen & 0xFFFF); #if 1 /* Set it anyway, even though dma_count hits it? */ si->fifo_cnt_hi = (u_short)(xlen >> 16); si->fifo_count = (u_short)(xlen & 0xFFFF); #endif #ifdef DEBUG if (si->fifo_count != xlen) { printf("si_dma_start: Fifo_count=0x%x, xlen=0x%x\n", si->fifo_count, xlen); Debugger(); } #endif /* * Acknowledge the phase change. (After DMA setup!) * Put the SBIC into DMA mode, and start the transfer. */ if (dh->dh_flags & SIDH_OUT) { *ncr_sc->sci_tcmd = PHASE_DATA_OUT; SCI_CLR_INTR(ncr_sc); *ncr_sc->sci_icmd = SCI_ICMD_DATA; *ncr_sc->sci_mode |= (SCI_MODE_DMA | SCI_MODE_DMA_IE); *ncr_sc->sci_dma_send = 0; /* start it */ } else { *ncr_sc->sci_tcmd = PHASE_DATA_IN; SCI_CLR_INTR(ncr_sc); *ncr_sc->sci_icmd = 0; *ncr_sc->sci_mode |= (SCI_MODE_DMA | SCI_MODE_DMA_IE); *ncr_sc->sci_irecv = 0; /* start it */ } /* Let'er rip! */ si->si_csr |= SI_CSR_DMA_EN; ncr_sc->sc_state |= NCR_DOINGDMA; #ifdef DEBUG if (si_debug & 2) { printf("si_dma_start: started, flags=0x%x\n", ncr_sc->sc_state); } #endif } void si_vme_dma_eop(ncr_sc) struct ncr5380_softc *ncr_sc; { /* Not needed - DMA was stopped prior to examining sci_csr */ } void si_vme_dma_stop(ncr_sc) struct ncr5380_softc *ncr_sc; { struct si_softc *sc = (struct si_softc *)ncr_sc; struct sci_req *sr = ncr_sc->sc_current; struct si_dma_handle *dh = sr->sr_dma_hand; volatile struct si_regs *si = sc->sc_regs; int resid, ntrans; if ((ncr_sc->sc_state & NCR_DOINGDMA) == 0) { #ifdef DEBUG printf("si_dma_stop: dma not running\n"); #endif return; } ncr_sc->sc_state &= ~NCR_DOINGDMA; /* First, halt the DMA engine. */ si->si_csr &= ~SI_CSR_DMA_EN; /* VME only */ if (si->si_csr & (SI_CSR_DMA_CONFLICT | SI_CSR_DMA_BUS_ERR)) { printf("si: DMA error, csr=0x%x, reset\n", si->si_csr); sr->sr_xs->error = XS_DRIVER_STUFFUP; ncr_sc->sc_state |= NCR_ABORTING; si_reset_adapter(ncr_sc); } /* Note that timeout may have set the error flag. */ if (ncr_sc->sc_state & NCR_ABORTING) goto out; /* * Now try to figure out how much actually transferred * * The fifo_count does not reflect how many bytes were * actually transferred for VME. * * SCSI-3 VME interface is a little funny on writes: * if we have a disconnect, the dma has overshot by * one byte and the resid needs to be incremented. * Only happens for partial transfers. * (Thanks to Matt Jacob) */ resid = si->fifo_count & 0xFFFF; if (dh->dh_flags & SIDH_OUT) if ((resid > 0) && (resid < sc->sc_xlen)) resid++; ntrans = sc->sc_xlen - resid; #ifdef DEBUG if (si_debug & 2) { printf("si_dma_stop: resid=0x%x ntrans=0x%x\n", resid, ntrans); } #endif if (ntrans < MIN_DMA_LEN) { printf("si: fifo count: 0x%x\n", resid); ncr_sc->sc_state |= NCR_ABORTING; goto out; } if (ntrans > ncr_sc->sc_datalen) panic("si_dma_stop: excess transfer"); /* Adjust data pointer */ ncr_sc->sc_dataptr += ntrans; ncr_sc->sc_datalen -= ntrans; #ifdef DEBUG if (si_debug & 2) { printf("si_dma_stop: ntrans=0x%x\n", ntrans); } #endif /* * After a read, we may need to clean-up * "Left-over bytes" (yuck!) */ if (((dh->dh_flags & SIDH_OUT) == 0) && ((si->si_csr & SI_CSR_LOB) != 0)) { char *cp = ncr_sc->sc_dataptr; #ifdef DEBUG printf("si: Got Left-over bytes!\n"); #endif if (si->si_csr & SI_CSR_BPCON) { /* have SI_CSR_BPCON */ cp[-1] = (si->si_bprl & 0xff00) >> 8; } else { switch (si->si_csr & SI_CSR_LOB) { case SI_CSR_LOB_THREE: cp[-3] = (si->si_bprh & 0xff00) >> 8; cp[-2] = (si->si_bprh & 0x00ff); cp[-1] = (si->si_bprl & 0xff00) >> 8; break; case SI_CSR_LOB_TWO: cp[-2] = (si->si_bprh & 0xff00) >> 8; cp[-1] = (si->si_bprh & 0x00ff); break; case SI_CSR_LOB_ONE: cp[-1] = (si->si_bprh & 0xff00) >> 8; break; } } } out: si->dma_addrh = 0; si->dma_addrl = 0; si->dma_counth = 0; si->dma_countl = 0; si->fifo_cnt_hi = 0; si->fifo_count = 0; /* Put SBIC back in PIO mode. */ *ncr_sc->sci_mode &= ~(SCI_MODE_DMA | SCI_MODE_DMA_IE); *ncr_sc->sci_icmd = 0; } /***************************************************************** * OBIO functions for DMA ****************************************************************/ /* * This is called when the bus is going idle, * so we want to enable the SBC interrupts. * That is controlled by the DMA enable! * Who would have guessed! * What a NASTY trick! * * XXX THIS MIGHT NOT WORK RIGHT! */ void si_obio_intr_on(ncr_sc) struct ncr5380_softc *ncr_sc; { struct si_softc *sc = (struct si_softc *)ncr_sc; volatile struct si_regs *si = sc->sc_regs; si_obio_dma_setup(ncr_sc); si->sw_csr |= SI_CSR_DMA_EN; } /* * This is called when the bus is idle and we are * about to start playing with the SBC chip. * * XXX THIS MIGHT NOT WORK RIGHT! */ void si_obio_intr_off(ncr_sc) struct ncr5380_softc *ncr_sc; { struct si_softc *sc = (struct si_softc *)ncr_sc; volatile struct si_regs *si = sc->sc_regs; si->sw_csr &= ~SI_CSR_DMA_EN; } /* * This function is called during the COMMAND or MSG_IN phase * that preceeds a DATA_IN or DATA_OUT phase, in case we need * to setup the DMA engine before the bus enters a DATA phase. * * On the OBIO version we just clear the DMA count and address * here (to make sure it stays idle) and do the real setup * later, in dma_start. */ void si_obio_dma_setup(ncr_sc) struct ncr5380_softc *ncr_sc; { struct si_softc *sc = (struct si_softc *)ncr_sc; volatile struct si_regs *si = sc->sc_regs; /* No FIFO to reset on "sw". */ /* Set direction (assume recv here) */ si->sw_csr &= ~SI_CSR_SEND; si->dma_addr = 0; si->dma_count = 0; } void si_obio_dma_start(ncr_sc) struct ncr5380_softc *ncr_sc; { struct si_softc *sc = (struct si_softc *)ncr_sc; struct sci_req *sr = ncr_sc->sc_current; struct si_dma_handle *dh = sr->sr_dma_hand; volatile struct si_regs *si = sc->sc_regs; u_long data_pa; int xlen, adj, adjlen; /* * Get the DVMA mapping for this segment. * XXX - Should separate allocation and mapin. */ data_pa = (u_long)(dh->dh_dvma - DVMA_BASE); if (data_pa & 1) panic("si_dma_start: bad pa=0x%lx", data_pa); xlen = ncr_sc->sc_datalen; xlen &= ~1; sc->sc_xlen = xlen; /* XXX: or less... */ #ifdef DEBUG if (si_debug & 2) { printf("si_dma_start: dh=%p, pa=0x%lx, xlen=%d\n", dh, data_pa, xlen); } #endif /* * Set up the DMA controller. * Note that (dh->dh_len < sc_datalen) */ /* Set direction (send/recv) */ if (dh->dh_flags & SIDH_OUT) { si->sw_csr |= SI_CSR_SEND; } else { si->sw_csr &= ~SI_CSR_SEND; } /* * The "sw" needs longword aligned transfers. We * detect a shortword aligned transfer here, and adjust the * DMA transfer by 2 bytes. These two bytes are read/written * in PIO mode just before the DMA is started. */ adj = 0; if (data_pa & 2) { adj = 2; #ifdef DEBUG if (si_debug & 2) printf("si_dma_start: adjusted up %d bytes\n", adj); #endif } /* We have to frob the address on the "sw". */ dh->dh_startingpa = (data_pa | 0xF00000); si->dma_addr = (int)(dh->dh_startingpa + adj); si->dma_count = (xlen - adj); /* * Acknowledge the phase change. (After DMA setup!) * Put the SBIC into DMA mode, and start the transfer. */ if (dh->dh_flags & SIDH_OUT) { *ncr_sc->sci_tcmd = PHASE_DATA_OUT; if (adj) { adjlen = ncr5380_pio_out(ncr_sc, PHASE_DATA_OUT, adj, dh->dh_addr); if (adjlen != adj) printf("%s: bad outgoing adj, %d != %d\n", ncr_sc->sc_dev.dv_xname, adjlen, adj); } SCI_CLR_INTR(ncr_sc); *ncr_sc->sci_icmd = SCI_ICMD_DATA; *ncr_sc->sci_mode |= (SCI_MODE_DMA | SCI_MODE_DMA_IE); *ncr_sc->sci_dma_send = 0; /* start it */ } else { *ncr_sc->sci_tcmd = PHASE_DATA_IN; if (adj) { adjlen = ncr5380_pio_in(ncr_sc, PHASE_DATA_IN, adj, dh->dh_addr); if (adjlen != adj) printf("%s: bad incoming adj, %d != %d\n", ncr_sc->sc_dev.dv_xname, adjlen, adj); } SCI_CLR_INTR(ncr_sc); *ncr_sc->sci_icmd = 0; *ncr_sc->sci_mode |= (SCI_MODE_DMA | SCI_MODE_DMA_IE); *ncr_sc->sci_irecv = 0; /* start it */ } /* Let'er rip! */ si->sw_csr |= SI_CSR_DMA_EN; ncr_sc->sc_state |= NCR_DOINGDMA; #ifdef DEBUG if (si_debug & 2) { printf("si_dma_start: started, flags=0x%x\n", ncr_sc->sc_state); } #endif } void si_obio_dma_eop(ncr_sc) struct ncr5380_softc *ncr_sc; { /* Not needed - DMA was stopped prior to examining sci_csr */ } #if (defined(DEBUG) || defined(DIAGNOSTIC)) && !defined(COUNT_SW_LEFTOVERS) #define COUNT_SW_LEFTOVERS #endif #ifdef COUNT_SW_LEFTOVERS /* * Let's find out how often these occur. Read these with DDB from time * to time. */ int sw_3_leftover = 0; int sw_2_leftover = 0; int sw_1_leftover = 0; int sw_0_leftover = 0; #endif void si_obio_dma_stop(ncr_sc) struct ncr5380_softc *ncr_sc; { struct si_softc *sc = (struct si_softc *)ncr_sc; struct sci_req *sr = ncr_sc->sc_current; struct si_dma_handle *dh = sr->sr_dma_hand; volatile struct si_regs *si = sc->sc_regs; int ntrans = 0, Dma_addr; if ((ncr_sc->sc_state & NCR_DOINGDMA) == 0) { #ifdef DEBUG printf("si_dma_stop: dma not running\n"); #endif return; } ncr_sc->sc_state &= ~NCR_DOINGDMA; /* First, halt the DMA engine. */ si->sw_csr &= ~SI_CSR_DMA_EN; /* * XXX HARDWARE BUG! * Apparently, some early 4/100 SCSI controllers had a hardware * bug that caused the controller to do illegal memory access. * We see this as SI_CSR_DMA_BUS_ERR (makes sense). To work around * this, we simply need to clean up after ourselves ... there will * be as many as 3 bytes left over. Since we clean up "left-over" * bytes on every read anyway, we just continue to chug along * if SI_CSR_DMA_BUS_ERR is asserted. (This was probably worked * around in hardware later with the "left-over byte" indicator * in the VME controller.) */ #if 0 if (si->sw_csr & (SI_CSR_DMA_CONFLICT | SI_CSR_DMA_BUS_ERR)) { #else if (si->sw_csr & (SI_CSR_DMA_CONFLICT)) { #endif printf("sw: DMA error, csr=0x%x, reset\n", si->sw_csr); sr->sr_xs->error = XS_DRIVER_STUFFUP; ncr_sc->sc_state |= NCR_ABORTING; si_reset_adapter(ncr_sc); } /* Note that timeout may have set the error flag. */ if (ncr_sc->sc_state & NCR_ABORTING) goto out; /* * Now try to figure out how much actually transferred * * The "sw" doesn't have a FIFO or a bcr, so we've stored * the starting PA of the transfer in the DMA handle, * and subtract it from the ending PA left in the dma_addr * register. */ Dma_addr = si->dma_addr; ntrans = (Dma_addr - dh->dh_startingpa); #ifdef DEBUG if (si_debug & 2) { printf("si_dma_stop: ntrans=0x%x\n", ntrans); } #endif if (ntrans < MIN_DMA_LEN) { printf("sw: short transfer\n"); ncr_sc->sc_state |= NCR_ABORTING; goto out; } if (ntrans > ncr_sc->sc_datalen) panic("si_dma_stop: excess transfer"); /* Adjust data pointer */ ncr_sc->sc_dataptr += ntrans; ncr_sc->sc_datalen -= ntrans; /* * After a read, we may need to clean-up * "Left-over bytes" (yuck!) The "sw" doesn't * have a "left-over" indicator, so we have to so * this no matter what. Ick. */ if ((dh->dh_flags & SIDH_OUT) == 0) { char *cp = ncr_sc->sc_dataptr; switch (Dma_addr & 3) { case 3: cp[0] = (si->sw_bpr & 0xff000000) >> 24; cp[1] = (si->sw_bpr & 0x00ff0000) >> 16; cp[2] = (si->sw_bpr & 0x0000ff00) >> 8; #ifdef COUNT_SW_LEFTOVERS ++sw_3_leftover; #endif break; case 2: cp[0] = (si->sw_bpr & 0xff000000) >> 24; cp[1] = (si->sw_bpr & 0x00ff0000) >> 16; #ifdef COUNT_SW_LEFTOVERS ++sw_2_leftover; #endif break; case 1: cp[0] = (si->sw_bpr & 0xff000000) >> 24; #ifdef COUNT_SW_LEFTOVERS ++sw_1_leftover; #endif break; #ifdef COUNT_SW_LEFTOVERS default: ++sw_0_leftover; break; #endif } } out: si->dma_addr = 0; si->dma_count = 0; /* Put SBIC back in PIO mode. */ *ncr_sc->sci_mode &= ~(SCI_MODE_DMA | SCI_MODE_DMA_IE); *ncr_sc->sci_icmd = 0; #ifdef DEBUG if (si_debug & 2) { printf("si_dma_stop: ntrans=0x%x\n", ntrans); } #endif }