/* $OpenBSD: zs.c,v 1.31 2002/01/30 20:45:34 nordin Exp $ */ /* $NetBSD: zs.c,v 1.49 1997/08/31 21:26:37 pk Exp $ */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)zs.c 8.1 (Berkeley) 7/19/93 */ /* * Zilog Z8530 (ZSCC) driver. * * Runs two tty ports (ttya and ttyb) on zs0, * and runs a keyboard and mouse on zs1, and * possibly two more tty ports (ttyc and ttyd) on zs2. * * This driver knows far too much about chip to usage mappings. */ #include "zs.h" #include "kbd.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #ifdef KGDB #include #include #endif #define DEVUNIT(x) (minor(x) & 0x7f) #define DEVCUA(x) (minor(x) & 0x80) #define ZSMAJOR 12 /* XXX */ #define ZS_KBD 2 /* XXX */ #define ZS_MOUSE 3 /* XXX */ /* the magic number below was stolen from the Sprite source. */ #define PCLK (19660800/4) /* PCLK pin input clock rate */ /* * Select software interrupt bit based on TTY ipl. */ #if PIL_TTY == 1 # define IE_ZSSOFT IE_L1 #elif PIL_TTY == 4 # define IE_ZSSOFT IE_L4 #elif PIL_TTY == 6 # define IE_ZSSOFT IE_L6 #else # error "no suitable software interrupt bit" #endif /* * Software state per found chip. */ struct zs_softc { struct device sc_dev; /* base device */ volatile struct zsdevice *sc_zs; /* chip registers */ struct evcnt sc_intrcnt; /* count interrupts */ struct zs_chanstate sc_cs[2]; /* chan A/B software state */ }; /* Definition of the driver for autoconfig. */ static int zsmatch __P((struct device *, void *, void *)); static void zsattach __P((struct device *, struct device *, void *)); struct cfattach zs_ca = { sizeof(struct zs_softc), zsmatch, zsattach }; struct cfdriver zs_cd = { NULL, "zs", DV_TTY }; /* Interrupt handlers. */ static int zshard __P((void *)); static struct intrhand levelhard = { zshard }; static int zssoft __P((void *)); static struct intrhand levelsoft = { zssoft }; struct zs_chanstate *zslist; /* Routines called from other code. */ static void zsiopen __P((struct tty *)); static void zsiclose __P((struct tty *)); static void zsstart __P((struct tty *)); static int zsparam __P((struct tty *, struct termios *)); /* Routines purely local to this driver. */ static int zs_getspeed __P((volatile struct zschan *)); #ifdef KGDB static void zs_reset __P((volatile struct zschan *, int, int)); #endif static void zs_modem __P((struct zs_chanstate *, int)); static void zs_loadchannelregs __P((volatile struct zschan *, u_char *)); static void tiocm_to_zs __P((struct zs_chanstate *, int how, int data)); /* Console stuff. */ static struct tty *zs_ctty; /* console `struct tty *' */ static int zs_consin = -1, zs_consout = -1; static struct zs_chanstate *zs_conscs = NULL; /*console channel state */ static void zscnputc __P((int)); /* console putc function */ static volatile struct zschan *zs_conschan; static struct tty *zs_checkcons __P((struct zs_softc *, int, struct zs_chanstate *)); #ifdef KGDB /* KGDB stuff. Must reboot to change zs_kgdbunit. */ extern int kgdb_dev, kgdb_rate; static int zs_kgdb_savedspeed; static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *)); void zskgdb __P((int)); static int zs_kgdb_getc __P((void *)); static void zs_kgdb_putc __P((void *, int)); #endif static int zsrint __P((struct zs_chanstate *, volatile struct zschan *)); static int zsxint __P((struct zs_chanstate *, volatile struct zschan *)); static int zssint __P((struct zs_chanstate *, volatile struct zschan *)); void zsabort __P((int)); static void zsoverrun __P((int, long *, char *)); static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */ /* * Console keyboard L1-A processing is done in the hardware interrupt code, * so we need to duplicate some of the console keyboard decode state. (We * must not use the regular state as the hardware code keeps ahead of the * software state: the software state tracks the most recent ring input but * the hardware state tracks the most recent ZSCC input.) See also kbd.h. */ static struct conk_state { /* console keyboard state */ char conk_id; /* true => ID coming up (console only) */ char conk_l1; /* true => L1 pressed (console only) */ } zsconk_state; int zshardscope; int zsshortcuts; /* number of "shortcut" software interrupts */ #ifdef SUN4 static u_int zs_read __P((volatile struct zschan *, u_int reg)); static u_int zs_write __P((volatile struct zschan *, u_int, u_int)); static u_int zs_read(zc, reg) volatile struct zschan *zc; u_int reg; { u_char val; zc->zc_csr = reg; ZS_DELAY(); val = zc->zc_csr; ZS_DELAY(); return val; } static u_int zs_write(zc, reg, val) volatile struct zschan *zc; u_int reg, val; { zc->zc_csr = reg; ZS_DELAY(); zc->zc_csr = val; ZS_DELAY(); return val; } #endif /* SUN4 */ /* * Match slave number to zs unit number, so that misconfiguration will * not set up the keyboard as ttya, etc. */ static int zsmatch(parent, vcf, aux) struct device *parent; void *vcf, *aux; { struct cfdata *cf = vcf; struct confargs *ca = aux; struct romaux *ra = &ca->ca_ra; if (strcmp(cf->cf_driver->cd_name, ra->ra_name)) return (0); if ((ca->ca_bustype == BUS_MAIN && !CPU_ISSUN4) || (ca->ca_bustype == BUS_OBIO && CPU_ISSUN4M)) { if (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit && findzs(cf->cf_unit)) return (1); return (0); } ra->ra_len = NBPG; return (probeget(ra->ra_vaddr, 1) != -1); } /* * Attach a found zs. * * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE? */ static void zsattach(parent, dev, aux) struct device *parent; struct device *dev; void *aux; { register int zs = dev->dv_unit, unit; register struct zs_softc *sc; register struct zs_chanstate *cs; register volatile struct zsdevice *addr; register struct tty *tp, *ctp; register struct confargs *ca = aux; register struct romaux *ra = &ca->ca_ra; int pri; static int didintr, prevpri; int ringsize; if ((addr = zsaddr[zs]) == NULL) addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs); if (ca->ca_bustype==BUS_MAIN) if ((void *)addr != ra->ra_vaddr) panic("zsattach"); if (ra->ra_nintr != 1) { printf(": expected 1 interrupt, got %d\n", ra->ra_nintr); return; } pri = ra->ra_intr[0].int_pri; printf(" pri %d, softpri %d\n", pri, PIL_TTY); if (!didintr) { didintr = 1; prevpri = pri; intr_establish(pri, &levelhard); intr_establish(PIL_TTY, &levelsoft); } else if (pri != prevpri) panic("broken zs interrupt scheme"); sc = (struct zs_softc *)dev; evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt); sc->sc_zs = addr; unit = zs * 2; cs = sc->sc_cs; /* link into interrupt list with order (A,B) (B=A+1) */ cs[0].cs_next = &cs[1]; cs[0].cs_sc = sc; cs[1].cs_next = zslist; cs[1].cs_sc = sc; zslist = cs; cs->cs_unit = unit; cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]); cs->cs_zc = &addr->zs_chan[ZS_CHAN_A]; if ((ctp = zs_checkcons(sc, unit, cs)) != NULL) tp = ctp; else { tp = ttymalloc(); tp->t_dev = makedev(ZSMAJOR, unit); tp->t_oproc = zsstart; tp->t_param = zsparam; } cs->cs_ttyp = tp; #ifdef KGDB if (ctp == NULL) zs_checkkgdb(unit, cs, tp); #endif if (unit == ZS_KBD) { /* * Keyboard: tell /dev/kbd driver how to talk to us. */ tp->t_ispeed = tp->t_ospeed = cs->cs_speed; tp->t_cflag = CS8; #if NKBD > 0 kbd_serial(tp, zsiopen, zsiclose); #endif cs->cs_conk = 1; /* do L1-A processing */ ringsize = 128; } else { if (tp != ctp) tty_attach(tp); ringsize = 4096; if (unit == zs_consout) zs_conscs = cs; } cs->cs_ringmask = ringsize - 1; cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf), M_DEVBUF, M_NOWAIT); if (cs->cs_rbuf == NULL) panic("zsattach"); unit++; cs++; cs->cs_unit = unit; cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]); cs->cs_zc = &addr->zs_chan[ZS_CHAN_B]; if ((ctp = zs_checkcons(sc, unit, cs)) != NULL) tp = ctp; else { tp = ttymalloc(); tp->t_dev = makedev(ZSMAJOR, unit); tp->t_oproc = zsstart; tp->t_param = zsparam; } cs->cs_ttyp = tp; #ifdef KGDB if (ctp == NULL) zs_checkkgdb(unit, cs, tp); #endif if (unit == ZS_MOUSE) { /* * Mouse: tell /dev/mouse driver how to talk to us. */ tp->t_ispeed = tp->t_ospeed = B1200; tp->t_cflag = CS8; ms_serial(tp, zsiopen, zsiclose); ringsize = 128; } else { if (tp != ctp) tty_attach(tp); ringsize = 4096; if (unit == zs_consout) zs_conscs = cs; } cs->cs_ringmask = ringsize - 1; cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf), M_DEVBUF, M_NOWAIT); if (cs->cs_rbuf == NULL) panic("zsattach"); } #ifdef KGDB /* * Put a channel in a known state. Interrupts may be left disabled * or enabled, as desired. */ static void zs_reset(zc, inten, speed) volatile struct zschan *zc; int inten, speed; { int tconst; static u_char reg[16] = { 0, 0, 0, ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, 0, 0, 0, ZSWR10_NRZ, ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 0, 0, ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA, ZSWR15_BREAK_IE | ZSWR15_DCD_IE, }; reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR; tconst = BPS_TO_TCONST(PCLK / 16, speed); reg[12] = tconst; reg[13] = tconst >> 8; zs_loadchannelregs(zc, reg); } #endif /* * Declare the given tty (which is in fact &cons) as a console input * or output. This happens before the zs chip is attached; the hookup * is finished later, in zs_setcons() below. * * This is used only for ports a and b. The console keyboard is decoded * independently (we always send unit-2 input to /dev/kbd, which will * direct it to /dev/console if appropriate). */ void zsconsole(tp, unit, out, fnstop) register struct tty *tp; register int unit; int out; int (**fnstop) __P((struct tty *, int)); { int zs; volatile struct zsdevice *addr; if (unit >= ZS_KBD) panic("zsconsole"); if (out) { zs_consout = unit; zs = unit >> 1; if ((addr = zsaddr[zs]) == NULL) addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs); zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B]; v_putc = zscnputc; } else zs_consin = unit; if (fnstop) *fnstop = &zsstop; zs_ctty = tp; } /* * Polled console output putchar. */ static void zscnputc(c) int c; { volatile struct zschan *zc = zs_conschan; int s; if (c == '\n') zscnputc('\r'); s = splzs(); while ((zc->zc_csr & ZSRR0_TX_READY) == 0) ZS_DELAY(); /* * If transmitter was busy doing regular tty I/O (ZSWR1_TIE on), * defer our output until the transmit interrupt runs. We still * sync with TX_READY so we can get by with a single-char "queue". */ if (zs_conscs != NULL && (zs_conscs->cs_creg[1] & ZSWR1_TIE)) { /* * If previous not yet done, send it now; zsxint() * will field the interrupt for our char, but doesn't * care. We're running at sufficiently high spl for * this to work. */ if (zs_conscs->cs_deferred_cc != 0) zc->zc_data = zs_conscs->cs_deferred_cc; zs_conscs->cs_deferred_cc = c; splx(s); return; } zc->zc_data = c; delay(2); splx(s); } /* * Set up the given unit as console input, output, both, or neither, as * needed. Return console tty if it is to receive console input. */ static struct tty * zs_checkcons(sc, unit, cs) struct zs_softc *sc; int unit; struct zs_chanstate *cs; { register struct tty *tp; char *i, *o; if ((tp = zs_ctty) == NULL) /* XXX */ return (0); i = zs_consin == unit ? "input" : NULL; o = zs_consout == unit ? "output" : NULL; if (i == NULL && o == NULL) return (0); /* rewire the minor device (gack) */ tp->t_dev = makedev(major(tp->t_dev), unit); /* * Rewire input and/or output. Note that baud rate reflects * input settings, not output settings, but we can do no better * if the console is split across two ports. * * XXX split consoles don't work anyway -- this needs to be * thrown away and redone */ if (i) { tp->t_param = zsparam; tp->t_ispeed = tp->t_ospeed = cs->cs_speed; tp->t_cflag = CS8; ttsetwater(tp); } if (o) { tp->t_oproc = zsstart; } printf("%s%c: console %s\n", sc->sc_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o); cs->cs_consio = 1; cs->cs_brkabort = 1; return (tp); } #ifdef KGDB /* * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init). * Pick up the current speed and character size and restore the original * speed. */ static void zs_checkkgdb(unit, cs, tp) int unit; struct zs_chanstate *cs; struct tty *tp; { if (kgdb_dev == makedev(ZSMAJOR, unit)) { tp->t_ispeed = tp->t_ospeed = kgdb_rate; tp->t_cflag = CS8; cs->cs_kgdb = 1; cs->cs_speed = zs_kgdb_savedspeed; (void) zsparam(tp, &tp->t_termios); } } #endif /* * Compute the current baud rate given a ZSCC channel. */ static int zs_getspeed(zc) register volatile struct zschan *zc; { register int tconst; tconst = ZS_READ(zc, 12); tconst |= ZS_READ(zc, 13) << 8; return (TCONST_TO_BPS(PCLK / 16, tconst)); } /* * Do an internal open. */ static void zsiopen(tp) struct tty *tp; { (void) zsparam(tp, &tp->t_termios); ttsetwater(tp); tp->t_state = TS_ISOPEN | TS_CARR_ON; } /* * Do an internal close. Eventually we should shut off the chip when both * ports on it are closed. */ static void zsiclose(tp) struct tty *tp; { ttylclose(tp, 0); /* ??? */ ttyclose(tp); /* ??? */ tp->t_state = 0; } /* * Open a zs serial port. This interface may not be used to open * the keyboard and mouse ports. (XXX) */ int zsopen(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { register struct tty *tp; register struct zs_chanstate *cs; struct zs_softc *sc; int unit = DEVUNIT(dev); int zs = unit >> 1, error, s; if (zs >= zs_cd.cd_ndevs || (sc = zs_cd.cd_devs[zs]) == NULL || unit == ZS_KBD || unit == ZS_MOUSE) return (ENXIO); cs = &sc->sc_cs[unit & 1]; if (cs->cs_consio) return (ENXIO); /* ??? */ tp = cs->cs_ttyp; s = spltty(); if ((tp->t_state & TS_ISOPEN) == 0) { ttychars(tp); if (tp->t_ispeed == 0) { tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_cflag = TTYDEF_CFLAG; tp->t_lflag = TTYDEF_LFLAG; tp->t_ispeed = tp->t_ospeed = cs->cs_speed; } (void) zsparam(tp, &tp->t_termios); ttsetwater(tp); /* XXX start CUA mods */ if (DEVCUA(dev)) SET(tp->t_state, TS_CARR_ON); else CLR(tp->t_state, TS_CARR_ON); /* end CUA mods */ } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) { splx(s); return (EBUSY); } /* XXX start CUA mods */ if (DEVCUA(dev)) { if (ISSET(tp->t_state, TS_ISOPEN)) { /* Ah, but someone already is dialed in... */ splx(s); return EBUSY; } cs->cs_cua = 1; /* We go into CUA mode */ } error = 0; /* wait for carrier if necessary */ if (ISSET(flags, O_NONBLOCK)) { if (!DEVCUA(dev) && cs->cs_cua) { /* Opening TTY non-blocking... but the CUA is busy */ splx(s); return EBUSY; } } else { while (cs->cs_cua || (!ISSET(tp->t_cflag, CLOCAL) && !ISSET(tp->t_state, TS_CARR_ON))) { register int rr0; error = 0; SET(tp->t_state, TS_WOPEN); if (!DEVCUA(dev) && !cs->cs_cua) { /* loop, turning on the device, until carrier present */ zs_modem(cs, 1); /* May never get status intr if carrier already on. -gwr */ rr0 = cs->cs_zc->zc_csr; ZS_DELAY(); if ((rr0 & ZSRR0_DCD) || cs->cs_softcar) tp->t_state |= TS_CARR_ON; } if ((tp->t_cflag & CLOCAL || tp->t_state & TS_CARR_ON) && !cs->cs_cua) break; error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH, ttopen, 0); if (!DEVCUA(dev) && cs->cs_cua && error == EINTR) { error=0; continue; } if (error) { if (!(tp->t_state & TS_ISOPEN)) { zs_modem(cs, 0); CLR(tp->t_state, TS_WOPEN); ttwakeup(tp); } /* XXX ordering of this might be important?? */ if (DEVCUA(dev)) cs->cs_cua = 0; CLR(tp->t_state, TS_WOPEN); splx(s); return error; } if (!DEVCUA(dev) && cs->cs_cua) continue; } } splx(s); /* end CUA mods */ if (error == 0) error = linesw[tp->t_line].l_open(dev, tp); if (error) zs_modem(cs, 0); return (error); } /* * Close a zs serial port. */ int zsclose(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { register struct zs_chanstate *cs; register struct tty *tp; struct zs_softc *sc; int unit = DEVUNIT(dev); int s, st; sc = zs_cd.cd_devs[unit >> 1]; cs = &sc->sc_cs[unit & 1]; tp = cs->cs_ttyp; linesw[tp->t_line].l_close(tp, flags); /* XXX start CUA mods */ st = spltty(); /* end CUA mods */ if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN || (tp->t_state & TS_ISOPEN) == 0) { zs_modem(cs, 0); /* hold low for 1 second */ (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz); } if (cs->cs_creg[5] & ZSWR5_BREAK) { s = splzs(); cs->cs_preg[5] &= ~ZSWR5_BREAK; cs->cs_creg[5] &= ~ZSWR5_BREAK; ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); splx(s); } /* XXX start CUA mods */ CLR(tp->t_state, TS_CARR_ON | TS_BUSY | TS_FLUSH); cs->cs_cua = 0; splx(st); /* end CUA mods */ ttyclose(tp); #ifdef KGDB /* Reset the speed if we're doing kgdb on this port */ if (cs->cs_kgdb) { tp->t_ispeed = tp->t_ospeed = kgdb_rate; (void) zsparam(tp, &tp->t_termios); } #endif return (0); } /* * Read/write zs serial port. */ int zsread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { register struct zs_chanstate *cs; register struct zs_softc *sc; register struct tty *tp; int unit = DEVUNIT(dev); sc = zs_cd.cd_devs[unit >> 1]; cs = &sc->sc_cs[unit & 1]; tp = cs->cs_ttyp; return (linesw[tp->t_line].l_read(tp, uio, flags)); } int zswrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { register struct zs_chanstate *cs; register struct zs_softc *sc; register struct tty *tp; int unit = DEVUNIT(dev); sc = zs_cd.cd_devs[unit >> 1]; cs = &sc->sc_cs[unit & 1]; tp = cs->cs_ttyp; return (linesw[tp->t_line].l_write(tp, uio, flags)); } struct tty * zstty(dev) dev_t dev; { register struct zs_chanstate *cs; register struct zs_softc *sc; int unit = DEVUNIT(dev); sc = zs_cd.cd_devs[unit >> 1]; cs = &sc->sc_cs[unit & 1]; return (cs->cs_ttyp); } static int zsrint __P((struct zs_chanstate *, volatile struct zschan *)); static int zsxint __P((struct zs_chanstate *, volatile struct zschan *)); static int zssint __P((struct zs_chanstate *, volatile struct zschan *)); /* * ZS hardware interrupt. Scan all ZS channels. NB: we know here that * channels are kept in (A,B) pairs. * * Do just a little, then get out; set a software interrupt if more * work is needed. * * We deliberately ignore the vectoring Zilog gives us, and match up * only the number of `reset interrupt under service' operations, not * the order. */ /* ARGSUSED */ int zshard(intrarg) void *intrarg; { struct zs_chanstate *a; #define b (a + 1) volatile struct zschan *zc; int rr3, intflags = 0, v, i, ringmask; #define ZSHARD_NEED_SOFTINTR 1 #define ZSHARD_WAS_SERVICED 2 #define ZSHARD_CHIP_GOTINTR 4 for (a = zslist; a != NULL; a = b->cs_next) { ringmask = a->cs_ringmask; rr3 = ZS_READ(a->cs_zc, 3); if (rr3) intflags |= ZSHARD_WAS_SERVICED; if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) { intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED); zc = a->cs_zc; i = a->cs_rbput; if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) { a->cs_rbuf[i++ & ringmask] = v; intflags |= ZSHARD_NEED_SOFTINTR; } if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) { a->cs_rbuf[i++ & ringmask] = v; intflags |= ZSHARD_NEED_SOFTINTR; } if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) { a->cs_rbuf[i++ & ringmask] = v; intflags |= ZSHARD_NEED_SOFTINTR; } a->cs_rbput = i; } if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) { intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED); zc = b->cs_zc; i = b->cs_rbput; if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) { b->cs_rbuf[i++ & ringmask] = v; intflags |= ZSHARD_NEED_SOFTINTR; } if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) { b->cs_rbuf[i++ & ringmask] = v; intflags |= ZSHARD_NEED_SOFTINTR; } if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) { b->cs_rbuf[i++ & ringmask] = v; intflags |= ZSHARD_NEED_SOFTINTR; } b->cs_rbput = i; } if (intflags & ZSHARD_CHIP_GOTINTR) { a->cs_sc->sc_intrcnt.ev_count++; intflags &= ~ZSHARD_CHIP_GOTINTR; } } #undef b if (intflags & ZSHARD_NEED_SOFTINTR) { #if 0 /* * seems to break things and will not work when spl* are * converted to be only raising. */ if (CPU_ISSUN4COR4M) { /* XXX -- but this will go away when zshard moves to locore.s */ struct clockframe *p = intrarg; if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) { zsshortcuts++; (void) spltty(); if (zshardscope) { LED_ON; LED_OFF; } return (zssoft(intrarg)); } } #endif #if defined(SUN4M) if (CPU_ISSUN4M) raise(0, PIL_TTY); else #endif ienab_bis(IE_ZSSOFT); } return (intflags & ZSHARD_WAS_SERVICED) ? 1 : -1 /* XXX */; } static int zsrint(cs, zc) register struct zs_chanstate *cs; register volatile struct zschan *zc; { register u_int c = zc->zc_data; ZS_DELAY(); if (cs->cs_conk) { register struct conk_state *conk = &zsconk_state; /* * Check here for console abort function, so that we * can abort even when interrupts are locking up the * machine. */ if (c == KBD_RESET) { conk->conk_id = 1; /* ignore next byte */ conk->conk_l1 = 0; } else if (conk->conk_id) conk->conk_id = 0; /* stop ignoring bytes */ else if (c == KBD_L1) conk->conk_l1 = 1; /* L1 went down */ else if (c == (KBD_L1|KBD_UP)) conk->conk_l1 = 0; /* L1 went up */ else if (c == KBD_A && conk->conk_l1) { zsabort(cs->cs_unit); conk->conk_l1 = 0; /* we never see the up */ goto clearit; /* eat the A after L1-A */ } } #ifdef KGDB if (c == FRAME_START && cs->cs_kgdb && (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) { zskgdb(cs->cs_unit); goto clearit; } #endif /* compose receive character and status */ c <<= 8; c |= ZS_READ(zc, 1); /* clear receive error & interrupt condition */ zc->zc_csr = ZSWR0_RESET_ERRORS; ZS_DELAY(); zc->zc_csr = ZSWR0_CLR_INTR; ZS_DELAY(); return (ZRING_MAKE(ZRING_RINT, c)); clearit: zc->zc_csr = ZSWR0_RESET_ERRORS; ZS_DELAY(); zc->zc_csr = ZSWR0_CLR_INTR; ZS_DELAY(); return (0); } static int zsxint(cs, zc) register struct zs_chanstate *cs; register volatile struct zschan *zc; { register int i = cs->cs_tbc; if (cs->cs_deferred_cc != 0) { /* Handle deferred zscnputc() output first */ zc->zc_data = cs->cs_deferred_cc; cs->cs_deferred_cc = 0; ZS_DELAY(); zc->zc_csr = ZSWR0_CLR_INTR; ZS_DELAY(); return (0); } if (i == 0) { zc->zc_csr = ZSWR0_RESET_TXINT; ZS_DELAY(); zc->zc_csr = ZSWR0_CLR_INTR; ZS_DELAY(); return (ZRING_MAKE(ZRING_XINT, 0)); } cs->cs_tbc = i - 1; zc->zc_data = *cs->cs_tba++; ZS_DELAY(); zc->zc_csr = ZSWR0_CLR_INTR; ZS_DELAY(); return (0); } static int zssint(cs, zc) register struct zs_chanstate *cs; register volatile struct zschan *zc; { register u_int rr0; rr0 = zc->zc_csr; ZS_DELAY(); zc->zc_csr = ZSWR0_RESET_STATUS; ZS_DELAY(); zc->zc_csr = ZSWR0_CLR_INTR; ZS_DELAY(); /* * The chip's hardware flow control is, as noted in zsreg.h, * busted---if the DCD line goes low the chip shuts off the * receiver (!). If we want hardware CTS flow control but do * not have it, and carrier is now on, turn HFC on; if we have * HFC now but carrier has gone low, turn it off. */ if (rr0 & ZSRR0_DCD) { if (cs->cs_ttyp->t_cflag & CCTS_OFLOW && (cs->cs_creg[3] & ZSWR3_HFC) == 0) { cs->cs_creg[3] |= ZSWR3_HFC; ZS_WRITE(zc, 3, cs->cs_creg[3]); } } else { if (cs->cs_creg[3] & ZSWR3_HFC) { cs->cs_creg[3] &= ~ZSWR3_HFC; ZS_WRITE(zc, 3, cs->cs_creg[3]); } } if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) { /* * XXX This might not be necessary. Test and * delete if it isn't. */ if (CPU_ISSUN4) { while (zc->zc_csr & ZSRR0_BREAK) ZS_DELAY(); } zsabort(cs->cs_unit); return (0); } return (ZRING_MAKE(ZRING_SINT, rr0)); } void zsabort(unit) int unit; { #if defined(KGDB) zskgdb(unit); #elif defined(DDB) if (db_console) Debugger(); #else printf("stopping on keyboard abort\n"); callrom(); #endif } #ifdef KGDB /* * KGDB framing character received: enter kernel debugger. This probably * should time out after a few seconds to avoid hanging on spurious input. */ void zskgdb(unit) int unit; { printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a'); kgdb_connect(1); } #endif /* * Print out a ring or fifo overrun error message. */ static void zsoverrun(unit, ptime, what) int unit; long *ptime; char *what; { if (*ptime != time.tv_sec) { *ptime = time.tv_sec; log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1, (unit & 1) + 'a', what); } } /* * ZS software interrupt. Scan all channels for deferred interrupts. */ int zssoft(arg) void *arg; { register struct zs_chanstate *cs; register volatile struct zschan *zc; register struct linesw *line; register struct tty *tp; register int get, n, c, cc, unit, s, ringmask, ringsize; int retval = 0; for (cs = zslist; cs != NULL; cs = cs->cs_next) { ringmask = cs->cs_ringmask; get = cs->cs_rbget; again: n = cs->cs_rbput; /* atomic */ if (get == n) /* nothing more on this line */ continue; retval = 1; unit = cs->cs_unit; /* set up to handle interrupts */ zc = cs->cs_zc; tp = cs->cs_ttyp; line = &linesw[tp->t_line]; /* * Compute the number of interrupts in the receive ring. * If the count is overlarge, we lost some events, and * must advance to the first valid one. It may get * overwritten if more data are arriving, but this is * too expensive to check and gains nothing (we already * lost out; all we can do at this point is trade one * kind of loss for another). */ ringsize = ringmask + 1; n -= get; if (n > ringsize) { zsoverrun(unit, &cs->cs_rotime, "ring"); get += n - ringsize; n = ringsize; } while (--n >= 0) { /* race to keep ahead of incoming interrupts */ c = cs->cs_rbuf[get++ & ringmask]; switch (ZRING_TYPE(c)) { case ZRING_RINT: c = ZRING_VALUE(c); if (c & ZSRR1_DO) zsoverrun(unit, &cs->cs_fotime, "fifo"); cc = c >> 8; if (c & ZSRR1_FE) cc |= TTY_FE; if (c & ZSRR1_PE) cc |= TTY_PE; /* * this should be done through * bstreams XXX gag choke */ if (unit == ZS_KBD) #if NKBD > 0 kbd_rint(cc); #else ; #endif else if (unit == ZS_MOUSE) ms_rint(cc); else line->l_rint(cc, tp); break; case ZRING_XINT: /* * Transmit done: change registers and resume, * or clear BUSY. */ if (cs->cs_heldchange) { s = splzs(); c = zc->zc_csr; ZS_DELAY(); if ((c & ZSRR0_DCD) == 0) cs->cs_preg[3] &= ~ZSWR3_HFC; bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16); zs_loadchannelregs(zc, cs->cs_creg); splx(s); cs->cs_heldchange = 0; if (cs->cs_heldtbc && (tp->t_state & TS_TTSTOP) == 0) { cs->cs_tbc = cs->cs_heldtbc - 1; zc->zc_data = *cs->cs_tba++; ZS_DELAY(); goto again; } } tp->t_state &= ~TS_BUSY; if (tp->t_state & TS_FLUSH) tp->t_state &= ~TS_FLUSH; else ndflush(&tp->t_outq, cs->cs_tba - (caddr_t)tp->t_outq.c_cf); line->l_start(tp); break; case ZRING_SINT: /* * Status line change. HFC bit is run in * hardware interrupt, to avoid locking * at splzs here. */ c = ZRING_VALUE(c); if ((c ^ cs->cs_rr0) & ZSRR0_DCD) { cc = (c & ZSRR0_DCD) != 0; if (line->l_modem(tp, cc) == 0) zs_modem(cs, cc); } cs->cs_rr0 = c; break; default: log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (0x%x)\n", unit >> 1, (unit & 1) + 'a', c); break; } } cs->cs_rbget = get; goto again; } return (retval); } int zsioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; caddr_t data; int flag; struct proc *p; { int unit = DEVUNIT(dev); struct zs_softc *sc = zs_cd.cd_devs[unit >> 1]; register struct zs_chanstate *cs = &sc->sc_cs[unit & 1]; register struct tty *tp = cs->cs_ttyp; register int error, s; error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p); if (error >= 0) return (error); error = ttioctl(tp, cmd, data, flag, p); if (error >= 0) return (error); switch (cmd) { case TIOCSBRK: s = splzs(); cs->cs_preg[5] |= ZSWR5_BREAK; cs->cs_creg[5] |= ZSWR5_BREAK; ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); splx(s); break; case TIOCCBRK: s = splzs(); cs->cs_preg[5] &= ~ZSWR5_BREAK; cs->cs_creg[5] &= ~ZSWR5_BREAK; ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); splx(s); break; case TIOCGFLAGS: { int bits = 0; if (cs->cs_softcar) bits |= TIOCFLAG_SOFTCAR; if (cs->cs_creg[15] & ZSWR15_DCD_IE) bits |= TIOCFLAG_CLOCAL; if (cs->cs_creg[3] & ZSWR3_HFC) bits |= TIOCFLAG_CRTSCTS; *(int *)data = bits; break; } case TIOCSFLAGS: { int userbits; error = suser(p->p_ucred, &p->p_acflag); if (error != 0) return (EPERM); userbits = *(int *)data; /* * can have `local' or `softcar', and `rtscts' or `mdmbuf' # defaulting to software flow control. */ if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL) return(EINVAL); if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */ return(ENXIO); s = splzs(); if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) { cs->cs_softcar = 1; /* turn on softcar */ cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */ cs->cs_creg[15] &= ~ZSWR15_DCD_IE; ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); } else if (userbits & TIOCFLAG_CLOCAL) { cs->cs_softcar = 0; /* turn off softcar */ cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */ cs->cs_creg[15] |= ZSWR15_DCD_IE; ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); tp->t_termios.c_cflag |= CLOCAL; } if (userbits & TIOCFLAG_CRTSCTS) { cs->cs_preg[15] |= ZSWR15_CTS_IE; cs->cs_creg[15] |= ZSWR15_CTS_IE; ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); cs->cs_preg[3] |= ZSWR3_HFC; cs->cs_creg[3] |= ZSWR3_HFC; ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]); tp->t_termios.c_cflag |= CRTSCTS; } else { /* no mdmbuf, so we must want software flow control */ cs->cs_preg[15] &= ~ZSWR15_CTS_IE; cs->cs_creg[15] &= ~ZSWR15_CTS_IE; ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); cs->cs_preg[3] &= ~ZSWR3_HFC; cs->cs_creg[3] &= ~ZSWR3_HFC; ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]); tp->t_termios.c_cflag &= ~CRTSCTS; } splx(s); break; } case TIOCSDTR: zs_modem(cs, 1); break; case TIOCCDTR: zs_modem(cs, 0); break; case TIOCMSET: tiocm_to_zs(cs, TIOCMSET, *(int *)data); break; case TIOCMBIS: tiocm_to_zs(cs, TIOCMBIS, *(int *)data); break; case TIOCMBIC: tiocm_to_zs(cs, TIOCMBIC, *(int *)data); break; case TIOCMGET: { int bits = 0; u_char m; m = cs->cs_preg[5]; if (ISSET(m, ZSWR5_DTR)) SET(bits, TIOCM_DTR); if (ISSET(m, ZSWR5_RTS)) SET(bits, TIOCM_RTS); m = cs->cs_zc->zc_csr; if (m & ZSRR0_DCD) SET(bits, TIOCM_CD); if (m & ZSRR0_CTS) SET(bits, TIOCM_CTS); *(int *)data = bits; break; } default: return (ENOTTY); } return (0); } /* * Start or restart transmission. */ static void zsstart(tp) register struct tty *tp; { register struct zs_chanstate *cs; register int s, ss, nch; int unit = DEVUNIT(tp->t_dev); struct zs_softc *sc = zs_cd.cd_devs[unit >> 1]; cs = &sc->sc_cs[unit & 1]; s = spltty(); /* * If currently active or delaying, no need to do anything. */ if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) goto out; /* * If there are sleepers, and output has drained below low * water mark, awaken. */ if (tp->t_outq.c_cc <= tp->t_lowat) { if (tp->t_state & TS_ASLEEP) { tp->t_state &= ~TS_ASLEEP; wakeup((caddr_t)&tp->t_outq); } selwakeup(&tp->t_wsel); } nch = ndqb(&tp->t_outq, 0); /* XXX */ ss = splzs(); if (nch) { register char *p = tp->t_outq.c_cf; /* mark busy, enable tx done interrupts, & send first byte */ tp->t_state |= TS_BUSY; cs->cs_preg[1] |= ZSWR1_TIE; cs->cs_creg[1] |= ZSWR1_TIE; ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); cs->cs_zc->zc_data = *p; ZS_DELAY(); cs->cs_tba = p + 1; cs->cs_tbc = nch - 1; } else { /* * Nothing to send, turn off transmit done interrupts. * This is useful if something is doing polled output. */ cs->cs_preg[1] &= ~ZSWR1_TIE; cs->cs_creg[1] &= ~ZSWR1_TIE; ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); } splx(ss); out: splx(s); } /* * Stop output, e.g., for ^S or output flush. */ int zsstop(tp, flag) register struct tty *tp; int flag; { register struct zs_chanstate *cs; register int s, unit = DEVUNIT(tp->t_dev); struct zs_softc *sc = zs_cd.cd_devs[unit >> 1]; cs = &sc->sc_cs[unit & 1]; s = splzs(); if (tp->t_state & TS_BUSY) { /* * Device is transmitting; must stop it. */ cs->cs_tbc = 0; if ((tp->t_state & TS_TTSTOP) == 0) tp->t_state |= TS_FLUSH; } splx(s); return 0; } /* * Set ZS tty parameters from termios. * * This routine makes use of the fact that only registers * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written. */ static int zsparam(tp, t) register struct tty *tp; register struct termios *t; { int unit = DEVUNIT(tp->t_dev); struct zs_softc *sc = zs_cd.cd_devs[unit >> 1]; register struct zs_chanstate *cs = &sc->sc_cs[unit & 1]; register int tmp, tmp5, cflag, s; /* * Because PCLK is only run at 4.9 MHz, the fastest we * can go is 51200 baud (this corresponds to TC=1). * This is somewhat unfortunate as there is no real * reason we should not be able to handle higher rates. */ tmp = t->c_ospeed; if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp)) return (EINVAL); if (tmp == 0) { /* stty 0 => drop DTR and RTS */ zs_modem(cs, 0); return (0); } tmp = BPS_TO_TCONST(PCLK / 16, tmp); #ifdef ALLOW_TC_EQUAL_ZERO if (tmp < 0) #else if (tmp < 1) #endif return (EINVAL); cflag = t->c_cflag; tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp); tp->t_cflag = cflag; /* * Block interrupts so that state will not * be altered until we are done setting it up. */ s = splzs(); cs->cs_preg[12] = tmp; cs->cs_preg[13] = tmp >> 8; cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE; switch (cflag & CSIZE) { case CS5: tmp = ZSWR3_RX_5; tmp5 = ZSWR5_TX_5; break; case CS6: tmp = ZSWR3_RX_6; tmp5 = ZSWR5_TX_6; break; case CS7: tmp = ZSWR3_RX_7; tmp5 = ZSWR5_TX_7; break; case CS8: default: tmp = ZSWR3_RX_8; tmp5 = ZSWR5_TX_8; break; } /* * Output hardware flow control on the chip is horrendous: if * carrier detect drops, the receiver is disabled. Hence we * can only do this when the carrier is on. */ tmp |= ZSWR3_RX_ENABLE; if (cflag & CCTS_OFLOW) { if (cs->cs_zc->zc_csr & ZSRR0_DCD) tmp |= ZSWR3_HFC; ZS_DELAY(); } cs->cs_preg[3] = tmp; cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS; tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB); if ((cflag & PARODD) == 0) tmp |= ZSWR4_EVENP; if (cflag & PARENB) tmp |= ZSWR4_PARENB; cs->cs_preg[4] = tmp; cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR; cs->cs_preg[10] = ZSWR10_NRZ; cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD; cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA; cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE; /* * If nothing is being transmitted, set up new current values, * else mark them as pending. */ if (cs->cs_heldchange == 0) { if (cs->cs_ttyp->t_state & TS_BUSY) { cs->cs_heldtbc = cs->cs_tbc; cs->cs_tbc = 0; cs->cs_heldchange = 1; } else { bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16); zs_loadchannelregs(cs->cs_zc, cs->cs_creg); } } splx(s); return (0); } /* * Raise or lower modem control (DTR/RTS) signals. If a character is * in transmission, the change is deferred. */ static void zs_modem(cs, onoff) struct zs_chanstate *cs; int onoff; { int s, bis, and; if (onoff) { bis = ZSWR5_DTR | ZSWR5_RTS; and = ~0; } else { bis = 0; and = ~(ZSWR5_DTR | ZSWR5_RTS); } s = splzs(); cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and; if (cs->cs_heldchange == 0) { if (cs->cs_ttyp->t_state & TS_BUSY) { cs->cs_heldtbc = cs->cs_tbc; cs->cs_tbc = 0; cs->cs_heldchange = 1; } else { cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and; ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); } } splx(s); } /* * Write the given register set to the given zs channel in the proper order. * The channel must not be transmitting at the time. The receiver will * be disabled for the time it takes to write all the registers. */ static void zs_loadchannelregs(zc, reg) volatile struct zschan *zc; u_char *reg; { int i; zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */ ZS_DELAY(); i = zc->zc_data; /* drain fifo */ ZS_DELAY(); i = zc->zc_data; ZS_DELAY(); i = zc->zc_data; ZS_DELAY(); ZS_WRITE(zc, 4, reg[4]); ZS_WRITE(zc, 10, reg[10]); ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE); ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE); ZS_WRITE(zc, 1, reg[1]); ZS_WRITE(zc, 9, reg[9]); ZS_WRITE(zc, 11, reg[11]); ZS_WRITE(zc, 12, reg[12]); ZS_WRITE(zc, 13, reg[13]); ZS_WRITE(zc, 14, reg[14]); ZS_WRITE(zc, 15, reg[15]); ZS_WRITE(zc, 3, reg[3]); ZS_WRITE(zc, 5, reg[5]); } static void tiocm_to_zs(cs, how, val) struct zs_chanstate *cs; int how, val; { int s; u_char bits = 0; if (ISSET(val,TIOCM_DTR)) SET(bits, ZSWR5_DTR); if (ISSET(val,TIOCM_RTS)) SET(bits, ZSWR5_RTS); s = splzs(); switch (how) { case TIOCMBIC: CLR(cs->cs_preg[5], bits); break; case TIOCMBIS: SET(cs->cs_preg[5], bits); break; case TIOCMSET: CLR(cs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR); SET(cs->cs_preg[5], bits); break; } if (cs->cs_heldchange == 0) { if (cs->cs_ttyp->t_state & TS_BUSY) { cs->cs_heldtbc = cs->cs_tbc; cs->cs_tbc = 0; cs->cs_heldchange = 1; } else { cs->cs_creg[5] = cs->cs_preg[5]; ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); } } splx(s); } #ifdef KGDB /* * Get a character from the given kgdb channel. Called at splhigh(). */ static int zs_kgdb_getc(arg) void *arg; { register volatile struct zschan *zc = (volatile struct zschan *)arg; u_char c; while ((zc->zc_csr & ZSRR0_RX_READY) == 0) ZS_DELAY(); c = zc->zc_data; ZS_DELAY(); return c; } /* * Put a character to the given kgdb channel. Called at splhigh(). */ static void zs_kgdb_putc(arg, c) void *arg; int c; { register volatile struct zschan *zc = (volatile struct zschan *)arg; while ((zc->zc_csr & ZSRR0_TX_READY) == 0) ZS_DELAY(); zc->zc_data = c; ZS_DELAY(); } /* * Set up for kgdb; called at boot time before configuration. * KGDB interrupts will be enabled later when zs0 is configured. */ void zs_kgdb_init() { volatile struct zsdevice *addr; volatile struct zschan *zc; int unit, zs; if (major(kgdb_dev) != ZSMAJOR) return; unit = DEVUNIT(kgdb_dev); /* * Unit must be 0 or 1 (zs0). */ if ((unsigned)unit >= ZS_KBD) { printf("zs_kgdb_init: bad minor dev %d\n", unit); return; } zs = unit >> 1; if ((addr = zsaddr[zs]) == NULL) addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs); unit &= 1; zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B]; zs_kgdb_savedspeed = zs_getspeed(zc); printf("zs_kgdb_init: attaching zs%d%c at %d baud\n", zs, unit + 'a', kgdb_rate); zs_reset(zc, 1, kgdb_rate); kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc); } #endif /* KGDB */