/* $OpenBSD: zs.c,v 1.42 2005/07/08 12:38:31 miod Exp $ */ /* $NetBSD: zs.c,v 1.50 1997/10/18 00:00:40 gwr Exp $ */ /*- * Copyright (c) 1996 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Gordon W. Ross. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * Runs two serial lines per chip using slave drivers. * Plain tty/async lines use the zs_async slave. * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(SUN4) #include #endif #include #include #include #include #include #include #include #ifdef solbourne #include #endif #include #include "zskbd.h" #include "zs.h" /* Make life easier for the initialized arrays here. */ #if NZS < 3 #undef NZS #define NZS 3 #endif /* * Some warts needed by z8530tty.c - * The default parity REALLY needs to be the same as the PROM uses, * or you can not see messages done with printf during boot-up... */ int zs_def_cflag = (CREAD | CS8 | HUPCL); int zs_major = 12; /* * The Sun provides a 4.9152 MHz clock to the ZS chips. */ #define PCLK (9600 * 512) /* PCLK pin input clock rate */ /* * Select software interrupt bit based on TTY ipl. */ #if IPL_TTY == 1 # define IE_ZSSOFT IE_L1 #elif IPL_TTY == 4 # define IE_ZSSOFT IE_L4 #elif IPL_TTY == 6 # define IE_ZSSOFT IE_L6 #else # error "no suitable software interrupt bit" #endif #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2)) /* The layout of this is hardware-dependent (padding, order). */ struct zschan { #if defined(SUN4) || defined(SUN4C) || defined(SUN4M) volatile u_char zc_csr; /* ctrl,status, and indirect access */ u_char zc_xxx0; volatile u_char zc_data; /* data */ u_char zc_xxx1; #endif #if defined(solbourne) volatile u_char zc_csr; /* ctrl,status, and indirect access */ u_char zc_xxx0[7]; volatile u_char zc_data; /* data */ u_char zc_xxx1[7]; #endif }; struct zsdevice { /* Yes, they are backwards. */ struct zschan zs_chan_b; struct zschan zs_chan_a; }; /* Saved PROM mappings */ struct zsdevice *zsaddr[NZS]; /* Flags from cninit() */ int zs_hwflags[NZS][2]; /* Default speed for each channel */ int zs_defspeed[NZS][2] = { { 9600, /* ttya */ 9600 }, /* ttyb */ { 1200, /* keyboard */ 1200 }, /* mouse */ { 9600, /* ttyc */ 9600 }, /* ttyd */ }; u_char zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ 0, /* 1: No interrupts yet. */ 0, /* 2: IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR, 0, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */ 0, /*13: BAUDHI (default=9600) */ ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, ZSWR15_BREAK_IE /* | ZSWR15_DCD_IE */, }; struct zschan * zs_get_chan_addr(zs_unit, channel) int zs_unit, channel; { struct zsdevice *addr; struct zschan *zc; if (zs_unit >= NZS) return NULL; addr = zsaddr[zs_unit]; if (addr == NULL) addr = zsaddr[zs_unit] = findzs(zs_unit); if (addr == NULL) return NULL; if (channel == 0) { zc = &addr->zs_chan_a; } else { zc = &addr->zs_chan_b; } return (zc); } /**************************************************************** * Autoconfig ****************************************************************/ /* Definition of the driver for autoconfig. */ int zs_match(struct device *, void *, void *); void zs_attach(struct device *, struct device *, void *); int zs_print(void *, const char *nam); /* Power management hooks (for Tadpole SPARCbooks) */ void zs_disable(struct zs_chanstate *); int zs_enable(struct zs_chanstate *); struct cfattach zs_ca = { sizeof(struct zsc_softc), zs_match, zs_attach }; struct cfdriver zs_cd = { NULL, "zs", DV_DULL }; /* Interrupt handlers. */ int zshard(void *); int zssoft(void *); struct intrhand levelhard = { zshard }; struct intrhand levelsoft = { zssoft }; int zs_get_speed(struct zs_chanstate *); /* * Is the zs chip present? */ int zs_match(parent, vcf, aux) struct device *parent; void *vcf, *aux; { struct cfdata *cf = (struct cfdata *)vcf; struct confargs *ca = (struct confargs *)aux; struct romaux *ra = &ca->ca_ra; if (strcmp(cf->cf_driver->cd_name, ra->ra_name)) return (0); #ifdef solbourne if (CPU_ISKAP) return (ca->ca_bustype == BUS_OBIO); #endif if ((ca->ca_bustype == BUS_MAIN && !CPU_ISSUN4) || (ca->ca_bustype == BUS_OBIO && CPU_ISSUN4M)) return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit); ra->ra_len = NBPG; return (probeget(ra->ra_vaddr, 1) != -1); } /* * Attach a found zs. * * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE? */ void zs_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct zsc_softc *zsc = (void *) self; struct confargs *ca = aux; struct romaux *ra = &ca->ca_ra; struct zsc_attach_args zsc_args; volatile struct zschan *zc; struct zs_chanstate *cs; int pri, s, zs_unit, channel; static int didintr, prevpri; zs_unit = zsc->zsc_dev.dv_unit; /* Use the mapping setup by the Sun PROM. */ if (zsaddr[zs_unit] == NULL) zsaddr[zs_unit] = findzs(zs_unit); if (ca->ca_bustype==BUS_MAIN) if ((void*)zsaddr[zs_unit] != ra->ra_vaddr) panic("zsattach"); if (ra->ra_nintr != 1) { printf(": expected 1 interrupt, got %d\n", ra->ra_nintr); return; } pri = ra->ra_intr[0].int_pri; printf(" pri %d, softpri %d\n", pri, IPL_TTY); /* * Initialize software state for each channel. */ for (channel = 0; channel < 2; channel++) { zsc_args.type = "serial"; /* XXX hardcoded */ if (zs_unit == 1) { if (channel == 0) zsc_args.type = "keyboard"; if (channel == 1) zsc_args.type = "mouse"; } zsc_args.channel = channel; zsc_args.hwflags = zs_hwflags[zs_unit][channel]; cs = &zsc->zsc_cs[channel]; cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; cs->cs_brg_clk = PCLK / 16; zc = zs_get_chan_addr(zs_unit, channel); cs->cs_reg_csr = &zc->zc_csr; cs->cs_reg_data = &zc->zc_data; bcopy(zs_init_reg, cs->cs_creg, 16); bcopy(zs_init_reg, cs->cs_preg, 16); /* XXX: Get these from the PROM properties! */ /* XXX: See the mvme167 code. Better. */ if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) cs->cs_defspeed = zs_get_speed(cs); else cs->cs_defspeed = zs_defspeed[zs_unit][channel]; cs->cs_defcflag = zs_def_cflag; /* Make these correspond to cs_defcflag (-crtscts) */ cs->cs_rr0_dcd = ZSRR0_DCD; cs->cs_rr0_cts = 0; cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; /* * Clear the master interrupt enable. * The INTENA is common to both channels, * so just do it on the A channel. */ if (channel == 0) { zs_write_reg(cs, 9, 0); } /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ if (!config_found(self, (void *)&zsc_args, zs_print)) { /* No sub-driver. Just reset it. */ u_char reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splzs(); zs_write_reg(cs, 9, reset); splx(s); } } /* * Now safe to install interrupt handlers. Note the arguments * to the interrupt handlers aren't used. Note, we only do this * once since both SCCs interrupt at the same level and vector. */ if (!didintr) { didintr = 1; prevpri = pri; intr_establish(pri, &levelhard, IPL_ZS, self->dv_xname); intr_establish(IPL_TTY, &levelsoft, IPL_TTY, self->dv_xname); } else if (pri != prevpri) panic("broken zs interrupt scheme"); /* * Set the master interrupt enable and interrupt vector. * (common to both channels, do it on A) */ cs = &zsc->zsc_cs[0]; s = splhigh(); /* interrupt vector */ zs_write_reg(cs, 2, zs_init_reg[2]); /* master interrupt control (enable) */ zs_write_reg(cs, 9, zs_init_reg[9]); splx(s); #ifdef SUN4M /* register power management routines if necessary */ if (CPU_ISSUN4M) { if (getpropint(ra->ra_node, "pwr-on-auxio2", 0)) for (channel = 0; channel < 2; channel++) { cs = &zsc->zsc_cs[channel]; cs->disable = zs_disable; cs->enable = zs_enable; cs->enabled = 0; } } #endif #if 0 /* * XXX: L1A hack - We would like to be able to break into * the debugger during the rest of autoconfiguration, so * lower interrupts just enough to let zs interrupts in. * This is done after both zs devices are attached. */ if (zs_unit == 1) { printf("zs1: enabling zs interrupts\n"); (void)splfd(); /* XXX: splzs - 1 */ } #endif } int zs_print(aux, name) void *aux; const char *name; { struct zsc_attach_args *args = aux; if (name != NULL) printf("%s:", name); if (args->channel != -1) printf(" channel %d", args->channel); return UNCONF; } volatile int zssoftpending; /* * Our ZS chips all share a common, autovectored interrupt, * so we have to look at all of them on each interrupt. */ int zshard(arg) void *arg; { struct zsc_softc *zsc; int unit, rr3, rval, softreq; rval = softreq = 0; for (unit = 0; unit < zs_cd.cd_ndevs; unit++) { zsc = zs_cd.cd_devs[unit]; if (zsc == NULL) continue; rr3 = zsc_intr_hard(zsc); /* Count up the interrupts. */ if (rr3) { rval |= rr3; } softreq |= zsc->zsc_cs[0].cs_softreq; softreq |= zsc->zsc_cs[1].cs_softreq; } /* We are at splzs here, so no need to lock. */ if (softreq && (zssoftpending == 0)) { zssoftpending = IE_ZSSOFT; #if defined(SUN4M) if (CPU_ISSUN4M) raise(0, IPL_TTY); else #endif ienab_bis(IE_ZSSOFT); } return (rval); } /* * Similar scheme as for zshard (look at all of them) */ int zssoft(arg) void *arg; { struct zsc_softc *zsc; int s, unit; /* This is not the only ISR on this IPL. */ if (zssoftpending == 0) return (0); /* * The soft intr. bit will be set by zshard only if * the variable zssoftpending is zero. The order of * these next two statements prevents our clearing * the soft intr bit just after zshard has set it. */ /* ienab_bic(IE_ZSSOFT); */ zssoftpending = 0; /* Make sure we call the tty layer at spltty. */ s = spltty(); for (unit = 0; unit < zs_cd.cd_ndevs; unit++) { zsc = zs_cd.cd_devs[unit]; if (zsc == NULL) continue; (void)zsc_intr_soft(zsc); } splx(s); return (1); } /* * Compute the current baud rate given a ZS channel. */ int zs_get_speed(cs) struct zs_chanstate *cs; { int tconst; tconst = zs_read_reg(cs, 12); tconst |= zs_read_reg(cs, 13) << 8; return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); } /* * MD functions for setting the baud rate and control modes. */ int zs_set_speed(cs, bps) struct zs_chanstate *cs; int bps; /* bits per second */ { int tconst, real_bps; if (bps == 0) return (0); #ifdef DIAGNOSTIC if (cs->cs_brg_clk == 0) panic("zs_set_speed"); #endif tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); if (tconst < 0) return (EINVAL); /* Convert back to make sure we can do it. */ real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); /* XXX - Allow some tolerance here? */ if (real_bps != bps) return (EINVAL); cs->cs_preg[12] = tconst; cs->cs_preg[13] = tconst >> 8; /* Caller will stuff the pending registers. */ return (0); } int zs_set_modes(cs, cflag) struct zs_chanstate *cs; int cflag; /* bits per second */ { int s; /* * Output hardware flow control on the chip is horrendous: * if carrier detect drops, the receiver is disabled, and if * CTS drops, the transmitter is stoped IN MID CHARACTER! * Therefore, NEVER set the HFC bit, and instead use the * status interrupt to detect CTS changes. */ s = splzs(); cs->cs_rr0_pps = 0; if ((cflag & (CLOCAL | MDMBUF)) != 0) { cs->cs_rr0_dcd = 0; if ((cflag & MDMBUF) == 0) cs->cs_rr0_pps = ZSRR0_DCD; } else cs->cs_rr0_dcd = ZSRR0_DCD; if ((cflag & CRTSCTS) != 0) { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = ZSWR5_RTS; cs->cs_rr0_cts = ZSRR0_CTS; #if 0 /* JLW */ } else if ((cflag & CDTRCTS) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_CTS; #endif } else if ((cflag & MDMBUF) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_DCD; } else { cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = 0; } splx(s); /* Caller will stuff the pending registers. */ return (0); } /* * Read or write the chip with suitable delays. */ u_char zs_read_reg(cs, reg) struct zs_chanstate *cs; u_char reg; { u_char val; *cs->cs_reg_csr = reg; ZS_DELAY(); val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_reg(cs, reg, val) struct zs_chanstate *cs; u_char reg, val; { *cs->cs_reg_csr = reg; ZS_DELAY(); *cs->cs_reg_csr = val; ZS_DELAY(); } u_char zs_read_csr(cs) struct zs_chanstate *cs; { register u_char val; val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_csr(cs, val) struct zs_chanstate *cs; u_char val; { *cs->cs_reg_csr = val; ZS_DELAY(); } u_char zs_read_data(cs) struct zs_chanstate *cs; { register u_char val; val = *cs->cs_reg_data; ZS_DELAY(); return val; } void zs_write_data(cs, val) struct zs_chanstate *cs; u_char val; { *cs->cs_reg_data = val; ZS_DELAY(); } #ifdef SUN4M /* * Power management hooks for zsopen() and zsclose(). * We use them to power on/off the ports on the Tadpole SPARCbook machines * (on other sun4m machines, this is a no-op). */ /* * Since the serial power control is global, we need to remember which channels * have their ports open, so as not to power off when closing one channel if * both were open. Simply xor'ing the zs_chanstate pointers is enough to let us * know if the serial lines are used or not. */ static vaddr_t zs_sb_enable = 0; int zs_enable(struct zs_chanstate *cs) { if (cs->enabled == 0) { if (zs_sb_enable == 0) sb_auxregbisc(1, AUXIO2_SERIAL, 0); zs_sb_enable ^= (vaddr_t)cs; cs->enabled = 1; } return (0); } void zs_disable(struct zs_chanstate *cs) { if (cs->enabled != 0) { cs->enabled = 0; zs_sb_enable ^= (vaddr_t)cs; if (zs_sb_enable == 0) sb_auxregbisc(1, 0, AUXIO2_SERIAL); } } #endif /* SUN4M */ /**************************************************************** * Console support functions (Sun specific!) * Note: this code is allowed to know about the layout of * the chip registers, and uses that to keep things simple. * XXX - I think I like the mvme167 code better. -gwr ****************************************************************/ extern void Debugger(void); void *zs_conschan; /* * Handle user request to enter kernel debugger. */ void zs_abort(cs) struct zs_chanstate *cs; { volatile struct zschan *zc = zs_conschan; int rr0; /* Wait for end of break to avoid PROM abort. */ /* XXX - Limit the wait? */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while (rr0 & ZSRR0_BREAK); #if defined(KGDB) zskgdb(cs); #elif defined(DDB) { extern int db_active; if (!db_active) Debugger(); else /* Debugger is probably hosed */ callrom(); } #else printf("stopping on keyboard abort\n"); callrom(); #endif } /* * Polled input char. */ int zs_getc(arg) void *arg; { volatile struct zschan *zc = arg; int s, c, rr0; s = splhigh(); /* Wait for a character to arrive. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); c = zc->zc_data; ZS_DELAY(); splx(s); /* * This is used by the kd driver to read scan codes, * so don't translate '\r' ==> '\n' here... */ return (c); } /* * Polled output char. */ void zs_putc(arg, c) void *arg; int c; { volatile struct zschan *zc = arg; int s, rr0; s = splhigh(); /* Wait for transmitter to become ready. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_TX_READY) == 0); /* * Send the next character. * Now you'd think that this could be followed by a ZS_DELAY() * just like all the other chip accesses, but it turns out that * the `transmit-ready' interrupt isn't de-asserted until * some period of time after the register write completes * (more than a couple instructions). So to avoid stray * interrupts we put in the 2us delay regardless of cpu model. */ zc->zc_data = c; delay(2); splx(s); } /*****************************************************************/ cons_decl(zs); /* * Console table shared by ttya, ttyb */ struct consdev consdev_tty = { zscnprobe, zscninit, zscngetc, zscnputc, zscnpollc, }; int zstty_unit; /* set in consinit() */ void zscnprobe(cn) struct consdev *cn; { cn->cn_dev = makedev(zs_major, zstty_unit); cn->cn_pri = CN_REMOTE; } void zscninit(cn) struct consdev *cn; { } /* * Polled console input putchar. */ int zscngetc(dev) dev_t dev; { return (zs_getc(zs_conschan)); } /* * Polled console output putchar. */ void zscnputc(dev, c) dev_t dev; int c; { zs_putc(zs_conschan, c); } int swallow_zsintrs; void zscnpollc(dev, on) dev_t dev; int on; { /* * Need to tell zs driver to acknowledge all interrupts or we get * annoying spurious interrupt messages. This is because mucking * with spl() levels during polling does not prevent interrupts from * being generated. */ if (on) swallow_zsintrs++; else swallow_zsintrs--; } /*****************************************************************/ #if defined(SUN4) || defined(SUN4C) || defined(SUN4M) cons_decl(prom); /* * The console is set to this one initially, * which lets us use the PROM until consinit() * is called to select a real console. */ struct consdev consdev_prom = { promcnprobe, promcninit, promcngetc, promcnputc, nullcnpollc, }; /* * The console table pointer is statically initialized * to point to the PROM (output only) table, so that * early calls to printf will work. */ struct consdev *cn_tab = &consdev_prom; void promcnprobe(cn) struct consdev *cn; { cn->cn_dev = makedev(0, 0); cn->cn_pri = CN_INTERNAL; } void promcninit(cn) struct consdev *cn; { } /* * PROM console input putchar. */ int promcngetc(dev) dev_t dev; { int s, c; if (promvec->pv_romvec_vers > 2) { int n = 0; unsigned char c0; s = splhigh(); while (n <= 0) { n = (*promvec->pv_v2devops.v2_read) (*promvec->pv_v2bootargs.v2_fd0, &c0, 1); } splx(s); c = c0; } else { #if defined(SUN4) /* SUN4 PROM: must turn off local echo */ extern struct om_vector *oldpvec; int saveecho = 0; #endif s = splhigh(); #if defined(SUN4) if (CPU_ISSUN4) { saveecho = *(oldpvec->echo); *(oldpvec->echo) = 0; } #endif c = (*promvec->pv_getchar)(); #if defined(SUN4) if (CPU_ISSUN4) *(oldpvec->echo) = saveecho; #endif splx(s); } if (c == '\r') c = '\n'; return (c); } /* * PROM console output putchar. */ void promcnputc(dev, c) dev_t dev; int c; { int s; char c0 = (c & 0x7f); s = splhigh(); if (promvec->pv_romvec_vers > 2) (*promvec->pv_v2devops.v2_write) (*promvec->pv_v2bootargs.v2_fd1, &c0, 1); else (*promvec->pv_putchar)(c); splx(s); } #endif /* SUN4 || SUN4C || SUN4M */ /*****************************************************************/ #if 0 extern struct consdev consdev_kd; #endif char *prom_inSrc_name[] = { "keyboard/display", "ttya", "ttyb", "ttyc", "ttyd" }; /* * This function replaces sys/dev/cninit.c * Determine which device is the console using * the PROM "input source" and "output sink". */ void consinit() { struct zschan *zc; struct consdev *console = cn_tab; int channel, zs_unit; int inSource, outSink; #if defined(SUN4) || defined(SUN4C) || defined(SUN4M) if (promvec->pv_romvec_vers > 2) { /* We need to probe the PROM device tree */ int node,fd; char buffer[128]; struct nodeops *no; struct v2devops *op; char *cp; extern int fbnode; inSource = outSink = -1; no = promvec->pv_nodeops; op = &promvec->pv_v2devops; node = findroot(); if (no->no_proplen(node, "stdin-path") >= sizeof(buffer)) { printf("consinit: increase buffer size and recompile\n"); goto setup_output; } /* XXX: fix above */ no->no_getprop(node, "stdin-path",buffer); /* * Open an "instance" of this device. * You'd think it would be appropriate to call v2_close() * on the handle when we're done with it. But that seems * to cause the device to shut down somehow; for the moment, * we simply leave it open... */ if ((fd = op->v2_open(buffer)) == 0 || (node = op->v2_fd_phandle(fd)) == 0) { printf("consinit: bogus stdin path %s.\n",buffer); goto setup_output; } if (no->no_proplen(node,"keyboard") >= 0) { inSource = PROMDEV_KBD; goto setup_output; } if (strcmp(getpropstring(node,"device_type"),"serial") != 0) { /* not a serial, not keyboard. what is it?!? */ inSource = -1; goto setup_output; } /* * At this point we assume the device path is in the form * ....device@x,y:a for ttya and ...device@x,y:b for ttyb. * If it isn't, we defer to the ROM */ cp = buffer; while (*cp) cp++; cp -= 2; #ifdef DEBUG if (cp < buffer) panic("consinit: bad stdin path %s",buffer); #endif /* XXX: only allows tty's a->z, assumes PROMDEV_TTYx contig */ if (cp[0]==':' && cp[1] >= 'a' && cp[1] <= 'z') inSource = PROMDEV_TTYA + (cp[1] - 'a'); /* else use rom */ setup_output: node = findroot(); if (no->no_proplen(node, "stdout-path") >= sizeof(buffer)) { printf("consinit: increase buffer size and recompile\n"); goto setup_console; } /* XXX: fix above */ no->no_getprop(node, "stdout-path", buffer); if ((fd = op->v2_open(buffer)) == 0 || (node = op->v2_fd_phandle(fd)) == 0) { printf("consinit: bogus stdout path %s.\n",buffer); goto setup_output; } if (strcmp(getpropstring(node,"device_type"),"display") == 0) { /* frame buffer output */ outSink = PROMDEV_SCREEN; fbnode = node; } else if (strcmp(getpropstring(node,"device_type"), "serial") != 0) { /* not screen, not serial. Whatzit? */ outSink = -1; } else { /* serial console. which? */ /* * At this point we assume the device path is in the * form: * ....device@x,y:a for ttya, etc. * If it isn't, we defer to the ROM */ cp = buffer; while (*cp) cp++; cp -= 2; #ifdef DEBUG if (cp < buffer) panic("consinit: bad stdout path %s",buffer); #endif /* XXX: only allows tty's a->z, assumes PROMDEV_TTYx contig */ if (cp[0]==':' && cp[1] >= 'a' && cp[1] <= 'z') outSink = PROMDEV_TTYA + (cp[1] - 'a'); else outSink = -1; } } else { inSource = *promvec->pv_stdin; outSink = *promvec->pv_stdout; } #endif /* SUN4 || SUN4C || SUN4M */ #ifdef solbourne if (CPU_ISKAP) { const char *dev; inSource = PROMDEV_TTYA; /* default */ dev = prom_getenv(ENV_INPUTDEVICE); if (dev != NULL) { if (strcmp(dev, "ttyb") == 0) inSource = PROMDEV_TTYB; if (strcmp(dev, "keyboard") == 0) inSource = PROMDEV_KBD; } outSink = PROMDEV_TTYA; /* default */ dev = prom_getenv(ENV_OUTPUTDEVICE); if (dev != NULL) { if (strcmp(dev, "ttyb") == 0) outSink = PROMDEV_TTYB; if (strcmp(dev, "screen") == 0) outSink = PROMDEV_SCREEN; } } #endif #if defined(SUN4) || defined(SUN4C) || defined(SUN4M) setup_console: #endif if (inSource != outSink) { printf("cninit: mismatched PROM output selector\n"); } switch (inSource) { default: printf("cninit: invalid inSource=%d\n", inSource); callrom(); inSource = PROMDEV_KBD; /* FALLTHROUGH */ case PROMDEV_KBD: /* keyboard/display */ #if NZSKBD > 0 zs_unit = 1; channel = 0; break; #else /* NZSKBD */ printf("cninit: kdb/display not configured\n"); callrom(); inSource = PROMDEV_TTYA; /* FALLTHROUGH */ #endif /* NZSKBD */ case PROMDEV_TTYA: case PROMDEV_TTYB: zstty_unit = inSource - PROMDEV_TTYA; zs_unit = 0; channel = zstty_unit & 1; console = &consdev_tty; break; } /* Now that inSource has been validated, print it. */ printf("console is %s\n", prom_inSrc_name[inSource]); zc = zs_get_chan_addr(zs_unit, channel); if (zc == NULL) { printf("cninit: zs not mapped.\n"); return; } zs_conschan = zc; zs_hwflags[zs_unit][channel] = ZS_HWFLAG_CONSOLE; /* switch to selected console */ cn_tab = console; (*cn_tab->cn_probe)(cn_tab); (*cn_tab->cn_init)(cn_tab); #ifdef KGDB zs_kgdb_init(); #endif }