/* $OpenBSD: ce4231.c,v 1.18 2005/04/15 13:05:14 mickey Exp $ */ /* * Copyright (c) 1999 Jason L. Wright (jason@thought.net) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Driver for CS4231 based audio found in some sun4m systems (cs4231) * based on ideas from the S/Linux project and the NetBSD project. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * */ #include "audio.h" #if NAUDIO > 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CSAUDIO_DAC_LVL 0 #define CSAUDIO_LINE_IN_LVL 1 #define CSAUDIO_MIC_LVL 2 #define CSAUDIO_CD_LVL 3 #define CSAUDIO_MONITOR_LVL 4 #define CSAUDIO_OUTPUT_LVL 5 #define CSAUDIO_LINE_IN_MUTE 6 #define CSAUDIO_DAC_MUTE 7 #define CSAUDIO_CD_MUTE 8 #define CSAUDIO_MIC_MUTE 9 #define CSAUDIO_MONITOR_MUTE 10 #define CSAUDIO_OUTPUT_MUTE 11 #define CSAUDIO_REC_LVL 12 #define CSAUDIO_RECORD_SOURCE 13 #define CSAUDIO_OUTPUT 14 #define CSAUDIO_INPUT_CLASS 15 #define CSAUDIO_OUTPUT_CLASS 16 #define CSAUDIO_RECORD_CLASS 17 #define CSAUDIO_MONITOR_CLASS 18 #define CSPORT_AUX2 0 #define CSPORT_AUX1 1 #define CSPORT_DAC 2 #define CSPORT_LINEIN 3 #define CSPORT_MONO 4 #define CSPORT_MONITOR 5 #define CSPORT_SPEAKER 6 #define CSPORT_LINEOUT 7 #define CSPORT_HEADPHONE 8 #define MIC_IN_PORT 0 #define LINE_IN_PORT 1 #define AUX1_IN_PORT 2 #define DAC_IN_PORT 3 #ifdef AUDIO_DEBUG #define DPRINTF(x) printf x #else #define DPRINTF(x) #endif #define CS_TIMEOUT 90000 #define CS_PC_LINEMUTE XCTL0_ENABLE #define CS_PC_HDPHMUTE XCTL1_ENABLE #define CS_AFS_PI 0x10 /* Read/write CS4231 direct registers */ #define CS_WRITE(sc,r,v) \ bus_space_write_1((sc)->sc_bustag, (sc)->sc_cshandle, (r) << 2, (v)) #define CS_READ(sc,r) \ bus_space_read_1((sc)->sc_bustag, (sc)->sc_cshandle, (r) << 2) /* Read/write EBDMA playback registers */ #define P_WRITE(sc,r,v) \ bus_space_write_4((sc)->sc_bustag, (sc)->sc_pdmahandle, (r), (v)) #define P_READ(sc,r) \ bus_space_read_4((sc)->sc_bustag, (sc)->sc_pdmahandle, (r)) /* Read/write EBDMA capture registers */ #define C_WRITE(sc,r,v) \ bus_space_write_4((sc)->sc_bustag, (sc)->sc_cdmahandle, (r), (v)) #define C_READ(sc,r) \ bus_space_read_4((sc)->sc_bustag, (sc)->sc_cdmahandle, (r)) int ce4231_match(struct device *, void *, void *); void ce4231_attach(struct device *, struct device *, void *); int ce4231_cintr(void *); int ce4231_pintr(void *); int ce4231_set_speed(struct ce4231_softc *, u_long *); void ce4231_setup_output(struct ce4231_softc *sc); void ce4231_write(struct ce4231_softc *, u_int8_t, u_int8_t); u_int8_t ce4231_read(struct ce4231_softc *, u_int8_t); /* Audio interface */ int ce4231_open(void *, int); void ce4231_close(void *); int ce4231_query_encoding(void *, struct audio_encoding *); int ce4231_set_params(void *, int, int, struct audio_params *, struct audio_params *); int ce4231_round_blocksize(void *, int); int ce4231_commit_settings(void *); int ce4231_halt_output(void *); int ce4231_halt_input(void *); int ce4231_getdev(void *, struct audio_device *); int ce4231_set_port(void *, mixer_ctrl_t *); int ce4231_get_port(void *, mixer_ctrl_t *); int ce4231_query_devinfo(void *addr, mixer_devinfo_t *); void * ce4231_alloc(void *, int, size_t, int, int); void ce4231_free(void *, void *, int); size_t ce4231_round_buffersize(void *, int, size_t); int ce4231_get_props(void *); int ce4231_trigger_output(void *, void *, void *, int, void (*intr)(void *), void *arg, struct audio_params *); int ce4231_trigger_input(void *, void *, void *, int, void (*intr)(void *), void *arg, struct audio_params *); struct audio_hw_if ce4231_sa_hw_if = { ce4231_open, ce4231_close, 0, ce4231_query_encoding, ce4231_set_params, ce4231_round_blocksize, ce4231_commit_settings, 0, 0, 0, 0, ce4231_halt_output, ce4231_halt_input, 0, ce4231_getdev, 0, ce4231_set_port, ce4231_get_port, ce4231_query_devinfo, ce4231_alloc, ce4231_free, ce4231_round_buffersize, 0, ce4231_get_props, ce4231_trigger_output, ce4231_trigger_input }; struct cfattach audioce_ca = { sizeof (struct ce4231_softc), ce4231_match, ce4231_attach }; struct cfdriver audioce_cd = { NULL, "audioce", DV_DULL }; struct audio_device ce4231_device = { "SUNW,CS4231", "b", "onboard1", }; int ce4231_match(parent, vcf, aux) struct device *parent; void *vcf, *aux; { struct ebus_attach_args *ea = aux; if (!strcmp("SUNW,CS4231", ea->ea_name) || !strcmp("audio", ea->ea_name)) return (1); return (0); } void ce4231_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct ebus_attach_args *ea = aux; struct ce4231_softc *sc = (struct ce4231_softc *)self; int node; node = ea->ea_node; sc->sc_last_format = 0xffffffff; /* Pass on the bus tags */ sc->sc_bustag = ea->ea_memtag; sc->sc_dmatag = ea->ea_dmatag; /* Make sure things are sane. */ if (ea->ea_nintrs != 2) { printf(": expected 2 interrupts, got %d\n", ea->ea_nintrs); return; } if (ea->ea_nregs != 4) { printf(": expected 4 register set, got %d\n", ea->ea_nregs); return; } sc->sc_cih = bus_intr_establish(sc->sc_bustag, ea->ea_intrs[0], IPL_AUDIO, 0, ce4231_cintr, sc, self->dv_xname); if (sc->sc_cih == NULL) { printf(": couldn't establish capture interrupt\n"); return; } sc->sc_pih = bus_intr_establish(sc->sc_bustag, ea->ea_intrs[1], IPL_AUDIO, 0, ce4231_pintr, sc, self->dv_xname); if (sc->sc_pih == NULL) { printf(": couldn't establish play interrupt1\n"); return; } /* XXX what if prom has already mapped?! */ if (ebus_bus_map(sc->sc_bustag, 0, EBUS_PADDR_FROM_REG(&ea->ea_regs[0]), ea->ea_regs[0].size, BUS_SPACE_MAP_LINEAR, 0, &sc->sc_cshandle) != 0) { printf(": couldn't map cs4231 registers\n"); return; } if (ebus_bus_map(sc->sc_bustag, 0, EBUS_PADDR_FROM_REG(&ea->ea_regs[1]), ea->ea_regs[1].size, BUS_SPACE_MAP_LINEAR, 0, &sc->sc_pdmahandle) != 0) { printf(": couldn't map dma1 registers\n"); return; } if (ebus_bus_map(sc->sc_bustag, 0, EBUS_PADDR_FROM_REG(&ea->ea_regs[2]), ea->ea_regs[2].size, BUS_SPACE_MAP_LINEAR, 0, &sc->sc_cdmahandle) != 0) { printf(": couldn't map dma2 registers\n"); return; } if (ebus_bus_map(sc->sc_bustag, 0, EBUS_PADDR_FROM_REG(&ea->ea_regs[3]), ea->ea_regs[3].size, BUS_SPACE_MAP_LINEAR, 0, &sc->sc_auxhandle) != 0) { printf(": couldn't map aux registers\n"); return; } printf(": nvaddrs %d\n", ea->ea_nvaddrs); audio_attach_mi(&ce4231_sa_hw_if, sc, &sc->sc_dev); /* Default to speaker, unmuted, reasonable volume */ sc->sc_out_port = CSPORT_SPEAKER; sc->sc_mute[CSPORT_SPEAKER] = 1; sc->sc_mute[CSPORT_MONITOR] = 1; sc->sc_volume[CSPORT_SPEAKER].left = 192; sc->sc_volume[CSPORT_SPEAKER].right = 192; /* XXX get real burst... */ sc->sc_burst = EBDCSR_BURST_8; } /* * Write to one of the indexed registers of cs4231. */ void ce4231_write(sc, r, v) struct ce4231_softc *sc; u_int8_t r, v; { CS_WRITE(sc, AD1848_IADDR, r); CS_WRITE(sc, AD1848_IDATA, v); } /* * Read from one of the indexed registers of cs4231. */ u_int8_t ce4231_read(sc, r) struct ce4231_softc *sc; u_int8_t r; { CS_WRITE(sc, AD1848_IADDR, r); return (CS_READ(sc, AD1848_IDATA)); } int ce4231_set_speed(sc, argp) struct ce4231_softc *sc; u_long *argp; { /* * The available speeds are in the following table. Keep the speeds in * the increasing order. */ typedef struct { int speed; u_char bits; } speed_struct; u_long arg = *argp; static speed_struct speed_table[] = { {5510, (0 << 1) | CLOCK_XTAL2}, {5510, (0 << 1) | CLOCK_XTAL2}, {6620, (7 << 1) | CLOCK_XTAL2}, {8000, (0 << 1) | CLOCK_XTAL1}, {9600, (7 << 1) | CLOCK_XTAL1}, {11025, (1 << 1) | CLOCK_XTAL2}, {16000, (1 << 1) | CLOCK_XTAL1}, {18900, (2 << 1) | CLOCK_XTAL2}, {22050, (3 << 1) | CLOCK_XTAL2}, {27420, (2 << 1) | CLOCK_XTAL1}, {32000, (3 << 1) | CLOCK_XTAL1}, {33075, (6 << 1) | CLOCK_XTAL2}, {33075, (4 << 1) | CLOCK_XTAL2}, {44100, (5 << 1) | CLOCK_XTAL2}, {48000, (6 << 1) | CLOCK_XTAL1}, }; int i, n, selected = -1; n = sizeof(speed_table) / sizeof(speed_struct); if (arg < speed_table[0].speed) selected = 0; if (arg > speed_table[n - 1].speed) selected = n - 1; for (i = 1; selected == -1 && i < n; i++) { if (speed_table[i].speed == arg) selected = i; else if (speed_table[i].speed > arg) { int diff1, diff2; diff1 = arg - speed_table[i - 1].speed; diff2 = speed_table[i].speed - arg; if (diff1 < diff2) selected = i - 1; else selected = i; } } if (selected == -1) selected = 3; sc->sc_speed_bits = speed_table[selected].bits; sc->sc_need_commit = 1; *argp = speed_table[selected].speed; return (0); } /* * Audio interface functions */ int ce4231_open(addr, flags) void *addr; int flags; { struct ce4231_softc *sc = addr; int tries; if (sc->sc_open) return (EBUSY); sc->sc_open = 1; sc->sc_locked = 0; sc->sc_rintr = 0; sc->sc_rarg = 0; sc->sc_pintr = 0; sc->sc_parg = 0; P_WRITE(sc, EBDMA_DCSR, EBDCSR_RESET); C_WRITE(sc, EBDMA_DCSR, EBDCSR_RESET); P_WRITE(sc, EBDMA_DCSR, sc->sc_burst); C_WRITE(sc, EBDMA_DCSR, sc->sc_burst); DELAY(20); for (tries = CS_TIMEOUT; tries && CS_READ(sc, AD1848_IADDR) == SP_IN_INIT; tries--) DELAY(10); if (tries == 0) printf("%s: timeout waiting for reset\n", sc->sc_dev.dv_xname); /* Turn on cs4231 mode */ ce4231_write(sc, SP_MISC_INFO, ce4231_read(sc, SP_MISC_INFO) | MODE2); ce4231_setup_output(sc); ce4231_write(sc, SP_PIN_CONTROL, ce4231_read(sc, SP_PIN_CONTROL) | INTERRUPT_ENABLE); return (0); } void ce4231_setup_output(sc) struct ce4231_softc *sc; { u_int8_t pc, mi, rm, lm; pc = ce4231_read(sc, SP_PIN_CONTROL) | CS_PC_HDPHMUTE | CS_PC_LINEMUTE; mi = ce4231_read(sc, CS_MONO_IO_CONTROL) | MONO_OUTPUT_MUTE; lm = ce4231_read(sc, SP_LEFT_OUTPUT_CONTROL); lm &= ~OUTPUT_ATTEN_BITS; lm |= ((~(sc->sc_volume[CSPORT_SPEAKER].left >> 2)) & OUTPUT_ATTEN_BITS) | OUTPUT_MUTE; rm = ce4231_read(sc, SP_RIGHT_OUTPUT_CONTROL); rm &= ~OUTPUT_ATTEN_BITS; rm |= ((~(sc->sc_volume[CSPORT_SPEAKER].right >> 2)) & OUTPUT_ATTEN_BITS) | OUTPUT_MUTE; if (sc->sc_mute[CSPORT_MONITOR]) { lm &= ~OUTPUT_MUTE; rm &= ~OUTPUT_MUTE; } switch (sc->sc_out_port) { case CSPORT_HEADPHONE: if (sc->sc_mute[CSPORT_SPEAKER]) pc &= ~CS_PC_HDPHMUTE; break; case CSPORT_SPEAKER: if (sc->sc_mute[CSPORT_SPEAKER]) mi &= ~MONO_OUTPUT_MUTE; break; case CSPORT_LINEOUT: if (sc->sc_mute[CSPORT_SPEAKER]) pc &= ~CS_PC_LINEMUTE; break; } ce4231_write(sc, SP_LEFT_OUTPUT_CONTROL, lm); ce4231_write(sc, SP_RIGHT_OUTPUT_CONTROL, rm); ce4231_write(sc, SP_PIN_CONTROL, pc); ce4231_write(sc, CS_MONO_IO_CONTROL, mi); } void ce4231_close(addr) void *addr; { struct ce4231_softc *sc = addr; ce4231_halt_input(sc); ce4231_halt_output(sc); ce4231_write(sc, SP_PIN_CONTROL, ce4231_read(sc, SP_PIN_CONTROL) & (~INTERRUPT_ENABLE)); sc->sc_open = 0; } int ce4231_query_encoding(addr, fp) void *addr; struct audio_encoding *fp; { int err = 0; switch (fp->index) { case 0: strlcpy(fp->name, AudioEmulaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = 0; break; case 1: strlcpy(fp->name, AudioEalaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ALAW; fp->precision = 8; fp->flags = 0; break; case 2: strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR_LE; fp->precision = 16; fp->flags = 0; break; case 3: strlcpy(fp->name, AudioEulinear, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = 0; break; case 4: strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR_BE; fp->precision = 16; fp->flags = 0; break; case 5: strlcpy(fp->name, AudioEslinear, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 6: strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR_LE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 7: strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 8: strlcpy(fp->name, AudioEadpcm, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ADPCM; fp->precision = 8; fp->flags = 0; break; default: err = EINVAL; } return (err); } int ce4231_set_params(addr, setmode, usemode, p, r) void *addr; int setmode, usemode; struct audio_params *p, *r; { struct ce4231_softc *sc = (struct ce4231_softc *)addr; int err, bits, enc = p->encoding; void (*pswcode)(void *, u_char *, int cnt) = NULL; void (*rswcode)(void *, u_char *, int cnt) = NULL; switch (enc) { case AUDIO_ENCODING_ULAW: if (p->precision != 8) return (EINVAL); bits = FMT_ULAW >> 5; break; case AUDIO_ENCODING_ALAW: if (p->precision != 8) return (EINVAL); bits = FMT_ALAW >> 5; break; case AUDIO_ENCODING_SLINEAR_LE: if (p->precision == 8) { bits = FMT_PCM8 >> 5; pswcode = rswcode = change_sign8; } else if (p->precision == 16) bits = FMT_TWOS_COMP >> 5; else return (EINVAL); break; case AUDIO_ENCODING_ULINEAR: if (p->precision != 8) return (EINVAL); bits = FMT_PCM8 >> 5; break; case AUDIO_ENCODING_SLINEAR_BE: if (p->precision == 8) { bits = FMT_PCM8 >> 5; pswcode = rswcode = change_sign8; } else if (p->precision == 16) bits = FMT_TWOS_COMP_BE >> 5; else return (EINVAL); break; case AUDIO_ENCODING_SLINEAR: if (p->precision != 8) return (EINVAL); bits = FMT_PCM8 >> 5; pswcode = rswcode = change_sign8; break; case AUDIO_ENCODING_ULINEAR_LE: if (p->precision == 8) bits = FMT_PCM8 >> 5; else if (p->precision == 16) { bits = FMT_TWOS_COMP >> 5; pswcode = rswcode = change_sign16_le; } else return (EINVAL); break; case AUDIO_ENCODING_ULINEAR_BE: if (p->precision == 8) bits = FMT_PCM8 >> 5; else if (p->precision == 16) { bits = FMT_TWOS_COMP_BE >> 5; pswcode = rswcode = change_sign16_be; } else return (EINVAL); break; case AUDIO_ENCODING_ADPCM: if (p->precision != 8) return (EINVAL); bits = FMT_ADPCM >> 5; break; default: return (EINVAL); } if (p->channels != 1 && p->channels != 2) return (EINVAL); err = ce4231_set_speed(sc, &p->sample_rate); if (err) return (err); p->sw_code = pswcode; r->sw_code = rswcode; sc->sc_format_bits = bits; sc->sc_channels = p->channels; sc->sc_precision = p->precision; sc->sc_need_commit = 1; return (0); } int ce4231_round_blocksize(addr, blk) void *addr; int blk; { return ((blk + 3) & (-4)); } int ce4231_commit_settings(addr) void *addr; { struct ce4231_softc *sc = (struct ce4231_softc *)addr; int s, tries; u_int8_t r, fs; if (sc->sc_need_commit == 0) return (0); fs = sc->sc_speed_bits | (sc->sc_format_bits << 5); if (sc->sc_channels == 2) fs |= FMT_STEREO; if (sc->sc_last_format == fs) { sc->sc_need_commit = 0; return (0); } s = splaudio(); r = ce4231_read(sc, SP_INTERFACE_CONFIG) | AUTO_CAL_ENABLE; CS_WRITE(sc, AD1848_IADDR, MODE_CHANGE_ENABLE); CS_WRITE(sc, AD1848_IADDR, MODE_CHANGE_ENABLE | SP_INTERFACE_CONFIG); CS_WRITE(sc, AD1848_IDATA, r); CS_WRITE(sc, AD1848_IADDR, MODE_CHANGE_ENABLE | SP_CLOCK_DATA_FORMAT); CS_WRITE(sc, AD1848_IDATA, fs); CS_READ(sc, AD1848_IDATA); CS_READ(sc, AD1848_IDATA); tries = CS_TIMEOUT; for (tries = CS_TIMEOUT; tries && CS_READ(sc, AD1848_IADDR) == SP_IN_INIT; tries--) DELAY(10); if (tries == 0) printf("%s: timeout committing fspb\n", sc->sc_dev.dv_xname); CS_WRITE(sc, AD1848_IADDR, MODE_CHANGE_ENABLE | CS_REC_FORMAT); CS_WRITE(sc, AD1848_IDATA, fs); CS_READ(sc, AD1848_IDATA); CS_READ(sc, AD1848_IDATA); for (tries = CS_TIMEOUT; tries && CS_READ(sc, AD1848_IADDR) == SP_IN_INIT; tries--) DELAY(10); if (tries == 0) printf("%s: timeout committing cdf\n", sc->sc_dev.dv_xname); CS_WRITE(sc, AD1848_IADDR, 0); for (tries = CS_TIMEOUT; tries && CS_READ(sc, AD1848_IADDR) == SP_IN_INIT; tries--) DELAY(10); if (tries == 0) printf("%s: timeout waiting for !mce\n", sc->sc_dev.dv_xname); CS_WRITE(sc, AD1848_IADDR, SP_TEST_AND_INIT); for (tries = CS_TIMEOUT; tries && CS_READ(sc, AD1848_IDATA) & AUTO_CAL_IN_PROG; tries--) DELAY(10); if (tries == 0) printf("%s: timeout waiting for autocalibration\n", sc->sc_dev.dv_xname); splx(s); sc->sc_need_commit = 0; return (0); } int ce4231_halt_output(addr) void *addr; { struct ce4231_softc *sc = (struct ce4231_softc *)addr; P_WRITE(sc, EBDMA_DCSR, P_READ(sc, EBDMA_DCSR) & ~EBDCSR_DMAEN); ce4231_write(sc, SP_INTERFACE_CONFIG, ce4231_read(sc, SP_INTERFACE_CONFIG) & (~PLAYBACK_ENABLE)); sc->sc_locked = 0; return (0); } int ce4231_halt_input(addr) void *addr; { struct ce4231_softc *sc = (struct ce4231_softc *)addr; C_WRITE(sc, EBDMA_DCSR, C_READ(sc, EBDMA_DCSR) & ~EBDCSR_DMAEN); ce4231_write(sc, SP_INTERFACE_CONFIG, ce4231_read(sc, SP_INTERFACE_CONFIG) & (~CAPTURE_ENABLE)); sc->sc_locked = 0; return (0); } int ce4231_getdev(addr, retp) void *addr; struct audio_device *retp; { *retp = ce4231_device; return (0); } int ce4231_set_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct ce4231_softc *sc = (struct ce4231_softc *)addr; int error = EINVAL; DPRINTF(("ce4231_set_port: port=%d type=%d\n", cp->dev, cp->type)); switch (cp->dev) { case CSAUDIO_DAC_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) ce4231_write(sc, SP_LEFT_AUX1_CONTROL, cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] & LINE_INPUT_ATTEN_BITS); else if (cp->un.value.num_channels == 2) { ce4231_write(sc, SP_LEFT_AUX1_CONTROL, cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] & LINE_INPUT_ATTEN_BITS); ce4231_write(sc, SP_RIGHT_AUX1_CONTROL, cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] & LINE_INPUT_ATTEN_BITS); } else break; error = 0; break; case CSAUDIO_LINE_IN_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) ce4231_write(sc, CS_LEFT_LINE_CONTROL, cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] & AUX_INPUT_ATTEN_BITS); else if (cp->un.value.num_channels == 2) { ce4231_write(sc, CS_LEFT_LINE_CONTROL, cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] & AUX_INPUT_ATTEN_BITS); ce4231_write(sc, CS_RIGHT_LINE_CONTROL, cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] & AUX_INPUT_ATTEN_BITS); } else break; error = 0; break; case CSAUDIO_MIC_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { #if 0 ce4231_write(sc, CS_MONO_IO_CONTROL, cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] & MONO_INPUT_ATTEN_BITS); #endif } else break; error = 0; break; case CSAUDIO_CD_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { ce4231_write(sc, SP_LEFT_AUX2_CONTROL, cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] & LINE_INPUT_ATTEN_BITS); } else if (cp->un.value.num_channels == 2) { ce4231_write(sc, SP_LEFT_AUX2_CONTROL, cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] & LINE_INPUT_ATTEN_BITS); ce4231_write(sc, SP_RIGHT_AUX2_CONTROL, cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] & LINE_INPUT_ATTEN_BITS); } else break; error = 0; break; case CSAUDIO_MONITOR_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) ce4231_write(sc, SP_DIGITAL_MIX, cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] << 2); else break; error = 0; break; case CSAUDIO_OUTPUT_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { sc->sc_volume[CSPORT_SPEAKER].left = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; sc->sc_volume[CSPORT_SPEAKER].right = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; } else if (cp->un.value.num_channels == 2) { sc->sc_volume[CSPORT_SPEAKER].left = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; sc->sc_volume[CSPORT_SPEAKER].right = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; } else break; ce4231_setup_output(sc); error = 0; break; case CSAUDIO_OUTPUT: if (cp->type != AUDIO_MIXER_ENUM) break; if (cp->un.ord != CSPORT_LINEOUT && cp->un.ord != CSPORT_SPEAKER && cp->un.ord != CSPORT_HEADPHONE) return (EINVAL); sc->sc_out_port = cp->un.ord; ce4231_setup_output(sc); error = 0; break; case CSAUDIO_LINE_IN_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; sc->sc_mute[CSPORT_LINEIN] = cp->un.ord ? 1 : 0; error = 0; break; case CSAUDIO_DAC_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; sc->sc_mute[CSPORT_AUX1] = cp->un.ord ? 1 : 0; error = 0; break; case CSAUDIO_CD_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; sc->sc_mute[CSPORT_AUX2] = cp->un.ord ? 1 : 0; error = 0; break; case CSAUDIO_MIC_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; sc->sc_mute[CSPORT_MONO] = cp->un.ord ? 1 : 0; error = 0; break; case CSAUDIO_MONITOR_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; sc->sc_mute[CSPORT_MONITOR] = cp->un.ord ? 1 : 0; error = 0; break; case CSAUDIO_OUTPUT_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; sc->sc_mute[CSPORT_SPEAKER] = cp->un.ord ? 1 : 0; ce4231_setup_output(sc); error = 0; break; case CSAUDIO_REC_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; break; case CSAUDIO_RECORD_SOURCE: if (cp->type != AUDIO_MIXER_ENUM) break; break; } return (error); } int ce4231_get_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct ce4231_softc *sc = (struct ce4231_softc *)addr; int error = EINVAL; DPRINTF(("ce4231_get_port: port=%d type=%d\n", cp->dev, cp->type)); switch (cp->dev) { case CSAUDIO_DAC_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]= ce4231_read(sc, SP_LEFT_AUX1_CONTROL) & LINE_INPUT_ATTEN_BITS; else if (cp->un.value.num_channels == 2) { cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = ce4231_read(sc, SP_LEFT_AUX1_CONTROL) & LINE_INPUT_ATTEN_BITS; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = ce4231_read(sc, SP_RIGHT_AUX1_CONTROL) & LINE_INPUT_ATTEN_BITS; } else break; error = 0; break; case CSAUDIO_LINE_IN_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = ce4231_read(sc, CS_LEFT_LINE_CONTROL) & AUX_INPUT_ATTEN_BITS; else if (cp->un.value.num_channels == 2) { cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = ce4231_read(sc, CS_LEFT_LINE_CONTROL) & AUX_INPUT_ATTEN_BITS; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = ce4231_read(sc, CS_RIGHT_LINE_CONTROL) & AUX_INPUT_ATTEN_BITS; } else break; error = 0; break; case CSAUDIO_MIC_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { #if 0 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = ce4231_read(sc, CS_MONO_IO_CONTROL) & MONO_INPUT_ATTEN_BITS; #endif } else break; error = 0; break; case CSAUDIO_CD_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = ce4231_read(sc, SP_LEFT_AUX2_CONTROL) & LINE_INPUT_ATTEN_BITS; else if (cp->un.value.num_channels == 2) { cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = ce4231_read(sc, SP_LEFT_AUX2_CONTROL) & LINE_INPUT_ATTEN_BITS; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = ce4231_read(sc, SP_RIGHT_AUX2_CONTROL) & LINE_INPUT_ATTEN_BITS; } else break; error = 0; break; case CSAUDIO_MONITOR_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels != 1) break; cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = ce4231_read(sc, SP_DIGITAL_MIX) >> 2; error = 0; break; case CSAUDIO_OUTPUT_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_volume[CSPORT_SPEAKER].left; else if (cp->un.value.num_channels == 2) { cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_volume[CSPORT_SPEAKER].left; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_volume[CSPORT_SPEAKER].right; } else break; error = 0; break; case CSAUDIO_LINE_IN_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_mute[CSPORT_LINEIN] ? 1 : 0; error = 0; break; case CSAUDIO_DAC_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_mute[CSPORT_AUX1] ? 1 : 0; error = 0; break; case CSAUDIO_CD_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_mute[CSPORT_AUX2] ? 1 : 0; error = 0; break; case CSAUDIO_MIC_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_mute[CSPORT_MONO] ? 1 : 0; error = 0; break; case CSAUDIO_MONITOR_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_mute[CSPORT_MONITOR] ? 1 : 0; error = 0; break; case CSAUDIO_OUTPUT_MUTE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_mute[CSPORT_SPEAKER] ? 1 : 0; error = 0; break; case CSAUDIO_REC_LVL: if (cp->type != AUDIO_MIXER_VALUE) break; if (cp->un.value.num_channels == 1) { cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = AUDIO_MIN_GAIN; } else if (cp->un.value.num_channels == 2) { cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = AUDIO_MIN_GAIN; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = AUDIO_MIN_GAIN; } else break; error = 0; break; case CSAUDIO_RECORD_SOURCE: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = MIC_IN_PORT; error = 0; break; case CSAUDIO_OUTPUT: if (cp->type != AUDIO_MIXER_ENUM) break; cp->un.ord = sc->sc_out_port; error = 0; break; } return (error); } int ce4231_query_devinfo(addr, dip) void *addr; mixer_devinfo_t *dip; { int err = 0; switch (dip->index) { case CSAUDIO_MIC_LVL: /* mono/microphone mixer */ dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_MIC_MUTE; strlcpy(dip->label.name, AudioNmicrophone, sizeof dip->label.name); dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_DAC_LVL: /* dacout */ dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_DAC_MUTE; strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name); dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_LINE_IN_LVL: /* line */ dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_LINE_IN_MUTE; strlcpy(dip->label.name, AudioNline, sizeof dip->label.name); dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_CD_LVL: /* cd */ dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_CD_MUTE; strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name); dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_MONITOR_LVL: /* monitor level */ dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_MONITOR_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_MONITOR_MUTE; strlcpy(dip->label.name, AudioNmonitor, sizeof dip->label.name); dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_OUTPUT_LVL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_OUTPUT_MUTE; strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name); dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_LINE_IN_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = CSAUDIO_LINE_IN_LVL; dip->next = AUDIO_MIXER_LAST; goto mute; case CSAUDIO_DAC_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = CSAUDIO_DAC_LVL; dip->next = AUDIO_MIXER_LAST; goto mute; case CSAUDIO_CD_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = CSAUDIO_CD_LVL; dip->next = AUDIO_MIXER_LAST; goto mute; case CSAUDIO_MIC_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = CSAUDIO_MIC_LVL; dip->next = AUDIO_MIXER_LAST; goto mute; case CSAUDIO_MONITOR_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = CSAUDIO_MONITOR_LVL; dip->next = AUDIO_MIXER_LAST; goto mute; case CSAUDIO_OUTPUT_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = CSAUDIO_OUTPUT_LVL; dip->next = AUDIO_MIXER_LAST; goto mute; mute: strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNon, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = 0; strlcpy(dip->un.e.member[1].label.name, AudioNoff, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = 1; break; case CSAUDIO_REC_LVL: /* record level */ dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_RECORD_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_RECORD_SOURCE; strlcpy(dip->label.name, AudioNrecord, sizeof dip->label.name); dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case CSAUDIO_RECORD_SOURCE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_RECORD_CLASS; dip->prev = CSAUDIO_REC_LVL; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); dip->un.e.num_mem = 3; strlcpy(dip->un.e.member[0].label.name, AudioNcd, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = DAC_IN_PORT; strlcpy(dip->un.e.member[1].label.name, AudioNmicrophone, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = MIC_IN_PORT; strlcpy(dip->un.e.member[2].label.name, AudioNdac, sizeof dip->un.e.member[2].label.name); dip->un.e.member[2].ord = AUX1_IN_PORT; strlcpy(dip->un.e.member[3].label.name, AudioNline, sizeof dip->un.e.member[3].label.name); dip->un.e.member[3].ord = LINE_IN_PORT; break; case CSAUDIO_OUTPUT: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_MONITOR_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name); dip->un.e.num_mem = 3; strlcpy(dip->un.e.member[0].label.name, AudioNspeaker, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = CSPORT_SPEAKER; strlcpy(dip->un.e.member[1].label.name, AudioNline, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = CSPORT_LINEOUT; strlcpy(dip->un.e.member[2].label.name, AudioNheadphone, sizeof dip->un.e.member[2].label.name); dip->un.e.member[2].ord = CSPORT_HEADPHONE; break; case CSAUDIO_INPUT_CLASS: /* input class descriptor */ dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name); break; case CSAUDIO_OUTPUT_CLASS: /* output class descriptor */ dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name); break; case CSAUDIO_MONITOR_CLASS: /* monitor class descriptor */ dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = CSAUDIO_MONITOR_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCmonitor, sizeof dip->label.name); break; case CSAUDIO_RECORD_CLASS: /* record class descriptor */ dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = CSAUDIO_RECORD_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name); break; default: err = ENXIO; } return (err); } size_t ce4231_round_buffersize(addr, direction, size) void *addr; int direction; size_t size; { return (size); } int ce4231_get_props(addr) void *addr; { return (AUDIO_PROP_FULLDUPLEX); } /* * Hardware interrupt handler */ int ce4231_cintr(v) void *v; { return (0); } int ce4231_pintr(v) void *v; { struct ce4231_softc *sc = (struct ce4231_softc *)v; u_int32_t csr; u_int8_t reg, status; struct cs_dma *p; int r = 0; csr = P_READ(sc, EBDMA_DCSR); status = CS_READ(sc, AD1848_STATUS); if (status & (INTERRUPT_STATUS | SAMPLE_ERROR)) { reg = ce4231_read(sc, CS_IRQ_STATUS); if (reg & CS_AFS_PI) { ce4231_write(sc, SP_LOWER_BASE_COUNT, 0xff); ce4231_write(sc, SP_UPPER_BASE_COUNT, 0xff); } CS_WRITE(sc, AD1848_STATUS, 0); } P_WRITE(sc, EBDMA_DCSR, csr); if (csr & EBDCSR_INT) r = 1; if ((csr & EBDCSR_TC) || ((csr & EBDCSR_A_LOADED) == 0)) { u_long nextaddr, togo; p = sc->sc_nowplaying; togo = sc->sc_playsegsz - sc->sc_playcnt; if (togo == 0) { nextaddr = (u_int32_t)p->dmamap->dm_segs[0].ds_addr; sc->sc_playcnt = togo = sc->sc_blksz; } else { nextaddr = sc->sc_lastaddr; if (togo > sc->sc_blksz) togo = sc->sc_blksz; sc->sc_playcnt += togo; } P_WRITE(sc, EBDMA_DCNT, togo); P_WRITE(sc, EBDMA_DADDR, nextaddr); sc->sc_lastaddr = nextaddr + togo; if (sc->sc_pintr != NULL) (*sc->sc_pintr)(sc->sc_parg); r = 1; } return (r); } void * ce4231_alloc(addr, direction, size, pool, flags) void *addr; int direction; size_t size; int pool; int flags; { struct ce4231_softc *sc = (struct ce4231_softc *)addr; bus_dma_tag_t dmat = sc->sc_dmatag; struct cs_dma *p; p = (struct cs_dma *)malloc(sizeof(struct cs_dma), pool, flags); if (p == NULL) return (NULL); if (bus_dmamap_create(dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &p->dmamap) != 0) goto fail; p->size = size; if (bus_dmamem_alloc(dmat, size, 64*1024, 0, p->segs, sizeof(p->segs)/sizeof(p->segs[0]), &p->nsegs, BUS_DMA_NOWAIT) != 0) goto fail1; if (bus_dmamem_map(dmat, p->segs, p->nsegs, p->size, &p->addr, BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0) goto fail2; if (bus_dmamap_load(dmat, p->dmamap, p->addr, size, NULL, BUS_DMA_NOWAIT) != 0) goto fail3; p->next = sc->sc_dmas; sc->sc_dmas = p; return (p->addr); fail3: bus_dmamem_unmap(dmat, p->addr, p->size); fail2: bus_dmamem_free(dmat, p->segs, p->nsegs); fail1: bus_dmamap_destroy(dmat, p->dmamap); fail: free(p, pool); return (NULL); } void ce4231_free(addr, ptr, pool) void *addr; void *ptr; int pool; { struct ce4231_softc *sc = addr; bus_dma_tag_t dmat = sc->sc_dmatag; struct cs_dma *p, **pp; for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &(*pp)->next) { if (p->addr != ptr) continue; bus_dmamap_unload(dmat, p->dmamap); bus_dmamem_unmap(dmat, p->addr, p->size); bus_dmamem_free(dmat, p->segs, p->nsegs); bus_dmamap_destroy(dmat, p->dmamap); *pp = p->next; free(p, pool); return; } printf("%s: attempt to free rogue pointer\n", sc->sc_dev.dv_xname); } int ce4231_trigger_output(addr, start, end, blksize, intr, arg, param) void *addr, *start, *end; int blksize; void (*intr)(void *); void *arg; struct audio_params *param; { struct ce4231_softc *sc = addr; struct cs_dma *p; u_int32_t csr; vaddr_t n; if (sc->sc_locked != 0) { printf("%s: trigger_output: already running\n", sc->sc_dev.dv_xname); return (EINVAL); } sc->sc_locked = 1; sc->sc_pintr = intr; sc->sc_parg = arg; for (p = sc->sc_dmas; p->addr != start; p = p->next) /*EMPTY*/; if (p == NULL) { printf("%s: trigger_output: bad addr: %p\n", sc->sc_dev.dv_xname, start); return (EINVAL); } n = (char *)end - (char *)start; /* * Do only `blksize' at a time, so audio_pint() is kept * synchronous with us... */ sc->sc_blksz = blksize; sc->sc_nowplaying = p; sc->sc_playsegsz = n; if (n > sc->sc_blksz) n = sc->sc_blksz; sc->sc_playcnt = n; csr = P_READ(sc, EBDMA_DCSR); if (csr & EBDCSR_DMAEN) { P_WRITE(sc, EBDMA_DCNT, (u_long)n); P_WRITE(sc, EBDMA_DADDR, (u_long)p->dmamap->dm_segs[0].ds_addr); } else { P_WRITE(sc, EBDMA_DCSR, EBDCSR_RESET); P_WRITE(sc, EBDMA_DCSR, sc->sc_burst); P_WRITE(sc, EBDMA_DCNT, (u_long)n); P_WRITE(sc, EBDMA_DADDR, (u_long)p->dmamap->dm_segs[0].ds_addr); P_WRITE(sc, EBDMA_DCSR, sc->sc_burst | EBDCSR_DMAEN | EBDCSR_INTEN | EBDCSR_CNTEN | EBDCSR_NEXTEN); ce4231_write(sc, SP_LOWER_BASE_COUNT, 0xff); ce4231_write(sc, SP_UPPER_BASE_COUNT, 0xff); ce4231_write(sc, SP_INTERFACE_CONFIG, ce4231_read(sc, SP_INTERFACE_CONFIG) | PLAYBACK_ENABLE); } sc->sc_lastaddr = p->dmamap->dm_segs[0].ds_addr + n; return (0); } int ce4231_trigger_input(addr, start, end, blksize, intr, arg, param) void *addr, *start, *end; int blksize; void (*intr)(void *); void *arg; struct audio_params *param; { return (ENXIO); } #endif /* NAUDIO > 0 */