/* $OpenBSD: ce4231.c,v 1.36 2018/12/27 11:06:38 claudio Exp $ */ /* * Copyright (c) 1999 Jason L. Wright (jason@thought.net) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Driver for CS4231 based audio found in some sun4u systems (cs4231) * based on ideas from the S/Linux project and the NetBSD project. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* AD1418 provides basic registers, CS4231 extends with more */ #include #include /* Mixer classes and mixer knobs */ #define CSAUDIO_INPUT_CLASS 0 #define CSAUDIO_OUTPUT_CLASS 1 #define CSAUDIO_RECORD_CLASS 2 #define CSAUDIO_DAC_LVL 3 #define CSAUDIO_DAC_MUTE 4 #define CSAUDIO_OUTPUTS 5 #define CSAUDIO_CD_LVL 6 #define CSAUDIO_CD_MUTE 7 #define CSAUDIO_LINE_IN_LVL 8 #define CSAUDIO_LINE_IN_MUTE 9 #define CSAUDIO_MONITOR_LVL 10 #define CSAUDIO_MONITOR_MUTE 11 #define CSAUDIO_REC_LVL 12 #define CSAUDIO_RECORD_SOURCE 13 #define CSAUDIO_MIC_PREAMP 14 /* Recording sources */ #define REC_PORT_LINE 0 #define REC_PORT_CD 1 #define REC_PORT_MIC 2 #define REC_PORT_MIX 3 /* Output ports. */ #define OUT_PORT_LINE 0x1 #define OUT_PORT_HP 0x2 #define OUT_PORT_SPKR 0x4 /* Bits on the ADC reg that determine recording source */ #define CS_REC_SRC_BITS 0xc0 #ifdef AUDIO_DEBUG #define DPRINTF(x) printf x #else #define DPRINTF(x) #endif #define CS_TIMEOUT 90000 /* Read/write CS4231 direct registers */ #define CS_WRITE(sc,r,v) \ bus_space_write_1((sc)->sc_bustag, (sc)->sc_cshandle, (r) << 2, (v)) #define CS_READ(sc,r) \ bus_space_read_1((sc)->sc_bustag, (sc)->sc_cshandle, (r) << 2) /* Read/write EBDMA playback registers */ #define P_WRITE(sc,r,v) \ bus_space_write_4((sc)->sc_bustag, (sc)->sc_pdmahandle, (r), (v)) #define P_READ(sc,r) \ bus_space_read_4((sc)->sc_bustag, (sc)->sc_pdmahandle, (r)) /* Read/write EBDMA capture registers */ #define C_WRITE(sc,r,v) \ bus_space_write_4((sc)->sc_bustag, (sc)->sc_cdmahandle, (r), (v)) #define C_READ(sc,r) \ bus_space_read_4((sc)->sc_bustag, (sc)->sc_cdmahandle, (r)) int ce4231_match(struct device *, void *, void *); void ce4231_attach(struct device *, struct device *, void *); int ce4231_cintr(void *); int ce4231_pintr(void *); int ce4231_set_speed(struct ce4231_softc *, u_long *); void ce4231_set_outputs(struct ce4231_softc *, int); int ce4231_get_outputs(struct ce4231_softc *); void ce4231_write(struct ce4231_softc *, u_int8_t, u_int8_t); u_int8_t ce4231_read(struct ce4231_softc *, u_int8_t); /* Audio interface */ int ce4231_open(void *, int); void ce4231_close(void *); int ce4231_set_params(void *, int, int, struct audio_params *, struct audio_params *); int ce4231_round_blocksize(void *, int); int ce4231_commit_settings(void *); int ce4231_halt_output(void *); int ce4231_halt_input(void *); int ce4231_set_port(void *, mixer_ctrl_t *); int ce4231_get_port(void *, mixer_ctrl_t *); int ce4231_query_devinfo(void *addr, mixer_devinfo_t *); void * ce4231_alloc(void *, int, size_t, int, int); void ce4231_free(void *, void *, int); int ce4231_get_props(void *); int ce4231_trigger_output(void *, void *, void *, int, void (*intr)(void *), void *arg, struct audio_params *); int ce4231_trigger_input(void *, void *, void *, int, void (*intr)(void *), void *arg, struct audio_params *); struct audio_hw_if ce4231_sa_hw_if = { ce4231_open, ce4231_close, ce4231_set_params, ce4231_round_blocksize, ce4231_commit_settings, 0, 0, 0, 0, ce4231_halt_output, ce4231_halt_input, 0, 0, ce4231_set_port, ce4231_get_port, ce4231_query_devinfo, ce4231_alloc, ce4231_free, 0, ce4231_get_props, ce4231_trigger_output, ce4231_trigger_input }; struct cfattach audioce_ca = { sizeof (struct ce4231_softc), ce4231_match, ce4231_attach }; struct cfdriver audioce_cd = { NULL, "audioce", DV_DULL }; int ce4231_match(struct device *parent, void *vcf, void *aux) { struct ebus_attach_args *ea = aux; if (!strcmp("SUNW,CS4231", ea->ea_name) || !strcmp("audio", ea->ea_name)) return (1); return (0); } void ce4231_attach(struct device *parent, struct device *self, void *aux) { struct ebus_attach_args *ea = aux; struct ce4231_softc *sc = (struct ce4231_softc *)self; mixer_ctrl_t cp; int node; node = ea->ea_node; sc->sc_last_format = 0xffffffff; /* Pass on the bus tags */ sc->sc_bustag = ea->ea_memtag; sc->sc_dmatag = ea->ea_dmatag; /* Make sure things are sane. */ if (ea->ea_nintrs != 2) { printf(": expected 2 interrupts, got %d\n", ea->ea_nintrs); return; } if (ea->ea_nregs != 4) { printf(": expected 4 register set, got %d\n", ea->ea_nregs); return; } sc->sc_cih = bus_intr_establish(sc->sc_bustag, ea->ea_intrs[0], IPL_AUDIO, BUS_INTR_ESTABLISH_MPSAFE, ce4231_cintr, sc, self->dv_xname); if (sc->sc_cih == NULL) { printf(": couldn't establish capture interrupt\n"); return; } sc->sc_pih = bus_intr_establish(sc->sc_bustag, ea->ea_intrs[1], IPL_AUDIO, BUS_INTR_ESTABLISH_MPSAFE, ce4231_pintr, sc, self->dv_xname); if (sc->sc_pih == NULL) { printf(": couldn't establish play interrupt1\n"); return; } /* XXX what if prom has already mapped?! */ if (ebus_bus_map(sc->sc_bustag, 0, EBUS_PADDR_FROM_REG(&ea->ea_regs[0]), ea->ea_regs[0].size, BUS_SPACE_MAP_LINEAR, 0, &sc->sc_cshandle) != 0) { printf(": couldn't map cs4231 registers\n"); return; } if (ebus_bus_map(sc->sc_bustag, 0, EBUS_PADDR_FROM_REG(&ea->ea_regs[1]), ea->ea_regs[1].size, BUS_SPACE_MAP_LINEAR, 0, &sc->sc_pdmahandle) != 0) { printf(": couldn't map dma1 registers\n"); return; } if (ebus_bus_map(sc->sc_bustag, 0, EBUS_PADDR_FROM_REG(&ea->ea_regs[2]), ea->ea_regs[2].size, BUS_SPACE_MAP_LINEAR, 0, &sc->sc_cdmahandle) != 0) { printf(": couldn't map dma2 registers\n"); return; } if (ebus_bus_map(sc->sc_bustag, 0, EBUS_PADDR_FROM_REG(&ea->ea_regs[3]), ea->ea_regs[3].size, BUS_SPACE_MAP_LINEAR, 0, &sc->sc_auxhandle) != 0) { printf(": couldn't map aux registers\n"); return; } printf(": nvaddrs %d\n", ea->ea_nvaddrs); audio_attach_mi(&ce4231_sa_hw_if, sc, &sc->sc_dev); /* Enable mode 2. */ ce4231_write(sc, SP_MISC_INFO, ce4231_read(sc, SP_MISC_INFO) | MODE2); /* Attenuate DAC, CD and line-in. -22.5 dB for all. */ cp.dev = CSAUDIO_DAC_LVL; cp.type = AUDIO_MIXER_VALUE; cp.un.value.num_channels = 2; cp.un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 195; cp.un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 195; ce4231_set_port(sc, &cp); cp.dev = CSAUDIO_CD_LVL; cp.un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 135; cp.un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 135; ce4231_set_port(sc, &cp); cp.dev = CSAUDIO_LINE_IN_LVL; ce4231_set_port(sc, &cp); /* Unmute DAC, CD and line-in */ cp.dev = CSAUDIO_DAC_MUTE; cp.type = AUDIO_MIXER_ENUM; cp.un.ord = 0; ce4231_set_port(sc, &cp); cp.dev = CSAUDIO_CD_MUTE; ce4231_set_port(sc, &cp); cp.dev = CSAUDIO_LINE_IN_MUTE; ce4231_set_port(sc, &cp); /* XXX get real burst... */ sc->sc_burst = EBDCSR_BURST_8; } /* * Write to one of the indexed registers of cs4231. */ void ce4231_write(struct ce4231_softc *sc, u_int8_t r, u_int8_t v) { CS_WRITE(sc, AD1848_IADDR, r); CS_WRITE(sc, AD1848_IDATA, v); } /* * Read from one of the indexed registers of cs4231. */ u_int8_t ce4231_read(struct ce4231_softc *sc, u_int8_t r) { CS_WRITE(sc, AD1848_IADDR, r); return (CS_READ(sc, AD1848_IDATA)); } int ce4231_set_speed(struct ce4231_softc *sc, u_long *argp) { /* * The available speeds are in the following table. Keep the speeds in * the increasing order. */ typedef struct { int speed; u_char bits; } speed_struct; u_long arg = *argp; static speed_struct speed_table[] = { {5510, (0 << 1) | CLOCK_XTAL2}, {5510, (0 << 1) | CLOCK_XTAL2}, {6620, (7 << 1) | CLOCK_XTAL2}, {8000, (0 << 1) | CLOCK_XTAL1}, {9600, (7 << 1) | CLOCK_XTAL1}, {11025, (1 << 1) | CLOCK_XTAL2}, {16000, (1 << 1) | CLOCK_XTAL1}, {18900, (2 << 1) | CLOCK_XTAL2}, {22050, (3 << 1) | CLOCK_XTAL2}, {27420, (2 << 1) | CLOCK_XTAL1}, {32000, (3 << 1) | CLOCK_XTAL1}, {33075, (6 << 1) | CLOCK_XTAL2}, {33075, (4 << 1) | CLOCK_XTAL2}, {44100, (5 << 1) | CLOCK_XTAL2}, {48000, (6 << 1) | CLOCK_XTAL1}, }; int i, n, selected = -1; n = sizeof(speed_table) / sizeof(speed_struct); if (arg < speed_table[0].speed) selected = 0; if (arg > speed_table[n - 1].speed) selected = n - 1; for (i = 1; selected == -1 && i < n; i++) { if (speed_table[i].speed == arg) selected = i; else if (speed_table[i].speed > arg) { int diff1, diff2; diff1 = arg - speed_table[i - 1].speed; diff2 = speed_table[i].speed - arg; if (diff1 < diff2) selected = i - 1; else selected = i; } } if (selected == -1) selected = 3; sc->sc_speed_bits = speed_table[selected].bits; sc->sc_need_commit = 1; *argp = speed_table[selected].speed; return (0); } /* * Audio interface functions */ int ce4231_open(void *addr, int flags) { struct ce4231_softc *sc = addr; int tries; DPRINTF(("ce4231_open\n")); if (sc->sc_open) return (EBUSY); sc->sc_open = 1; sc->sc_rintr = 0; sc->sc_rarg = 0; sc->sc_pintr = 0; sc->sc_parg = 0; P_WRITE(sc, EBDMA_DCSR, EBDCSR_RESET); C_WRITE(sc, EBDMA_DCSR, EBDCSR_RESET); P_WRITE(sc, EBDMA_DCSR, sc->sc_burst); C_WRITE(sc, EBDMA_DCSR, sc->sc_burst); DELAY(20); for (tries = CS_TIMEOUT; tries && CS_READ(sc, AD1848_IADDR) == SP_IN_INIT; tries--) DELAY(10); if (tries == 0) printf("%s: timeout waiting for reset\n", sc->sc_dev.dv_xname); ce4231_write(sc, SP_PIN_CONTROL, ce4231_read(sc, SP_PIN_CONTROL) | INTERRUPT_ENABLE); return (0); } void ce4231_close(void *addr) { struct ce4231_softc *sc = addr; ce4231_halt_input(sc); ce4231_halt_output(sc); ce4231_write(sc, SP_PIN_CONTROL, ce4231_read(sc, SP_PIN_CONTROL) & (~INTERRUPT_ENABLE)); sc->sc_open = 0; } int ce4231_set_params(void *addr, int setmode, int usemode, struct audio_params *p, struct audio_params *r) { struct ce4231_softc *sc = (struct ce4231_softc *)addr; int err, bits, enc = p->encoding; if (p->precision > 16) p->precision = 16; switch (enc) { case AUDIO_ENCODING_ULAW: p->precision = 8; bits = FMT_ULAW >> 5; break; case AUDIO_ENCODING_ALAW: p->precision = 8; bits = FMT_ALAW >> 5; break; case AUDIO_ENCODING_SLINEAR_LE: p->precision = 16; bits = FMT_TWOS_COMP >> 5; break; case AUDIO_ENCODING_SLINEAR_BE: p->precision = 16; bits = FMT_TWOS_COMP_BE >> 5; break; case AUDIO_ENCODING_ULINEAR_LE: case AUDIO_ENCODING_ULINEAR_BE: p->precision = 8; break; default: return (EINVAL); } if (p->channels > 2) p->channels = 2; err = ce4231_set_speed(sc, &p->sample_rate); if (err) return (err); p->bps = AUDIO_BPS(p->precision); r->bps = AUDIO_BPS(r->precision); p->msb = r->msb = 1; sc->sc_format_bits = bits; sc->sc_channels = p->channels; sc->sc_precision = p->precision; sc->sc_need_commit = 1; return (0); } int ce4231_round_blocksize(void *addr, int blk) { return ((blk + 3) & (-4)); } int ce4231_commit_settings(void *addr) { struct ce4231_softc *sc = (struct ce4231_softc *)addr; int tries; u_int8_t r, fs; if (sc->sc_need_commit == 0) return (0); fs = sc->sc_speed_bits | (sc->sc_format_bits << 5); if (sc->sc_channels == 2) fs |= FMT_STEREO; if (sc->sc_last_format == fs) { sc->sc_need_commit = 0; return (0); } /* XXX: this code is called before DMA (this intrs) is stopped */ mtx_enter(&audio_lock); r = ce4231_read(sc, SP_INTERFACE_CONFIG) | AUTO_CAL_ENABLE; CS_WRITE(sc, AD1848_IADDR, MODE_CHANGE_ENABLE); CS_WRITE(sc, AD1848_IADDR, MODE_CHANGE_ENABLE | SP_INTERFACE_CONFIG); CS_WRITE(sc, AD1848_IDATA, r); CS_WRITE(sc, AD1848_IADDR, MODE_CHANGE_ENABLE | SP_CLOCK_DATA_FORMAT); CS_WRITE(sc, AD1848_IDATA, fs); CS_READ(sc, AD1848_IDATA); CS_READ(sc, AD1848_IDATA); tries = CS_TIMEOUT; for (tries = CS_TIMEOUT; tries && CS_READ(sc, AD1848_IADDR) == SP_IN_INIT; tries--) DELAY(10); if (tries == 0) printf("%s: timeout committing fspb\n", sc->sc_dev.dv_xname); CS_WRITE(sc, AD1848_IADDR, MODE_CHANGE_ENABLE | CS_REC_FORMAT); CS_WRITE(sc, AD1848_IDATA, fs); CS_READ(sc, AD1848_IDATA); CS_READ(sc, AD1848_IDATA); for (tries = CS_TIMEOUT; tries && CS_READ(sc, AD1848_IADDR) == SP_IN_INIT; tries--) DELAY(10); if (tries == 0) printf("%s: timeout committing cdf\n", sc->sc_dev.dv_xname); CS_WRITE(sc, AD1848_IADDR, 0); for (tries = CS_TIMEOUT; tries && CS_READ(sc, AD1848_IADDR) == SP_IN_INIT; tries--) DELAY(10); if (tries == 0) printf("%s: timeout waiting for !mce\n", sc->sc_dev.dv_xname); CS_WRITE(sc, AD1848_IADDR, SP_TEST_AND_INIT); for (tries = CS_TIMEOUT; tries && CS_READ(sc, AD1848_IDATA) & AUTO_CAL_IN_PROG; tries--) DELAY(10); if (tries == 0) printf("%s: timeout waiting for autocalibration\n", sc->sc_dev.dv_xname); mtx_leave(&audio_lock); sc->sc_need_commit = 0; return (0); } int ce4231_halt_output(void *addr) { struct ce4231_softc *sc = (struct ce4231_softc *)addr; P_WRITE(sc, EBDMA_DCSR, P_READ(sc, EBDMA_DCSR) & ~EBDCSR_DMAEN); ce4231_write(sc, SP_INTERFACE_CONFIG, ce4231_read(sc, SP_INTERFACE_CONFIG) & (~PLAYBACK_ENABLE)); return (0); } int ce4231_halt_input(void *addr) { struct ce4231_softc *sc = (struct ce4231_softc *)addr; C_WRITE(sc, EBDMA_DCSR, C_READ(sc, EBDMA_DCSR) & ~EBDCSR_DMAEN); ce4231_write(sc, SP_INTERFACE_CONFIG, ce4231_read(sc, SP_INTERFACE_CONFIG) & (~CAPTURE_ENABLE)); return (0); } void ce4231_set_outputs(struct ce4231_softc *sc, int mask) { u_int8_t val; val = ce4231_read(sc, CS_MONO_IO_CONTROL) & ~MONO_OUTPUT_MUTE; if (!(mask & OUT_PORT_SPKR)) val |= MONO_OUTPUT_MUTE; ce4231_write(sc, CS_MONO_IO_CONTROL, val); val = ce4231_read(sc, SP_PIN_CONTROL) & ~(XCTL0_ENABLE | XCTL1_ENABLE); if (!(mask & OUT_PORT_LINE)) val |= XCTL0_ENABLE; if (!(mask & OUT_PORT_HP)) val |= XCTL1_ENABLE; ce4231_write(sc, SP_PIN_CONTROL, val); } int ce4231_get_outputs(struct ce4231_softc *sc) { int mask = 0; u_int8_t val; if (!(ce4231_read(sc, CS_MONO_IO_CONTROL) & MONO_OUTPUT_MUTE)) mask |= OUT_PORT_SPKR; val = ce4231_read(sc, SP_PIN_CONTROL); if (!(val & XCTL0_ENABLE)) mask |= OUT_PORT_LINE; if (!(val & XCTL1_ENABLE)) mask |= OUT_PORT_HP; return (mask); } int ce4231_set_port(void *addr, mixer_ctrl_t *cp) { struct ce4231_softc *sc = (struct ce4231_softc *)addr; u_int8_t l, r; DPRINTF(("ce4231_set_port: dev=%d type=%d\n", cp->dev, cp->type)); switch (cp->dev) { case CSAUDIO_DAC_LVL: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); l = ce4231_read(sc, SP_LEFT_OUTPUT_CONTROL) & OUTPUT_ATTEN_MASK; r = ce4231_read(sc, SP_RIGHT_OUTPUT_CONTROL) & OUTPUT_ATTEN_MASK; l |= (AUDIO_MAX_GAIN - cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]) >> 2; r |= (AUDIO_MAX_GAIN - cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]) >> 2; ce4231_write(sc, SP_LEFT_OUTPUT_CONTROL, l); ce4231_write(sc, SP_RIGHT_OUTPUT_CONTROL, r); break; case CSAUDIO_DAC_MUTE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); l = ce4231_read(sc, SP_LEFT_OUTPUT_CONTROL) & ~OUTPUT_MUTE; r = ce4231_read(sc, SP_RIGHT_OUTPUT_CONTROL) & ~OUTPUT_MUTE; if (cp->un.ord) { l |= OUTPUT_MUTE; r |= OUTPUT_MUTE; } ce4231_write(sc, SP_LEFT_OUTPUT_CONTROL, l); ce4231_write(sc, SP_RIGHT_OUTPUT_CONTROL, r); break; case CSAUDIO_OUTPUTS: if (cp->type != AUDIO_MIXER_SET) return (EINVAL); ce4231_set_outputs(sc, cp->un.mask); break; case CSAUDIO_CD_LVL: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); l = ce4231_read(sc, SP_LEFT_AUX1_CONTROL) & AUX_INPUT_ATTEN_MASK; r = ce4231_read(sc, SP_RIGHT_AUX1_CONTROL) & AUX_INPUT_ATTEN_MASK; l |= (AUDIO_MAX_GAIN - cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]) >> 3; r |= (AUDIO_MAX_GAIN - cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]) >> 3; ce4231_write(sc, SP_LEFT_AUX1_CONTROL, l); ce4231_write(sc, SP_RIGHT_AUX1_CONTROL, r); break; case CSAUDIO_CD_MUTE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); l = ce4231_read(sc, SP_LEFT_AUX1_CONTROL) & ~AUX_INPUT_MUTE; r = ce4231_read(sc, SP_RIGHT_AUX1_CONTROL) & ~AUX_INPUT_MUTE; if (cp->un.ord) { l |= AUX_INPUT_MUTE; r |= AUX_INPUT_MUTE; } ce4231_write(sc, SP_LEFT_AUX1_CONTROL, l); ce4231_write(sc, SP_RIGHT_AUX1_CONTROL, r); break; case CSAUDIO_LINE_IN_LVL: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); l = ce4231_read(sc, CS_LEFT_LINE_CONTROL) & LINE_INPUT_ATTEN_MASK; r = ce4231_read(sc, CS_RIGHT_LINE_CONTROL) & LINE_INPUT_ATTEN_MASK; l |= (AUDIO_MAX_GAIN - cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]) >> 3; r |= (AUDIO_MAX_GAIN - cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]) >> 3; ce4231_write(sc, CS_LEFT_LINE_CONTROL, l); ce4231_write(sc, CS_RIGHT_LINE_CONTROL, r); break; case CSAUDIO_LINE_IN_MUTE: l = ce4231_read(sc, CS_LEFT_LINE_CONTROL) & ~LINE_INPUT_MUTE; r = ce4231_read(sc, CS_RIGHT_LINE_CONTROL) & ~LINE_INPUT_MUTE; if (cp->un.ord) { l |= LINE_INPUT_MUTE; r |= LINE_INPUT_MUTE; } ce4231_write(sc, CS_LEFT_LINE_CONTROL, l); ce4231_write(sc, CS_RIGHT_LINE_CONTROL, r); break; case CSAUDIO_MONITOR_LVL: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels != 1) return (EINVAL); l = ce4231_read(sc, SP_DIGITAL_MIX) & ~MIX_ATTEN_MASK; l |= (AUDIO_MAX_GAIN - cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]) & MIX_ATTEN_MASK; ce4231_write(sc, SP_DIGITAL_MIX, l); break; case CSAUDIO_MONITOR_MUTE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); l = ce4231_read(sc, SP_DIGITAL_MIX) & ~DIGITAL_MIX1_ENABLE; if (!cp->un.ord) l |= DIGITAL_MIX1_ENABLE; ce4231_write(sc, SP_DIGITAL_MIX, l); break; case CSAUDIO_REC_LVL: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); l = ce4231_read(sc, SP_LEFT_INPUT_CONTROL) & INPUT_GAIN_MASK; r = ce4231_read(sc, SP_RIGHT_INPUT_CONTROL) & INPUT_GAIN_MASK; l = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 4; r = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] >> 4; ce4231_write(sc, SP_LEFT_INPUT_CONTROL, l); ce4231_write(sc, SP_RIGHT_INPUT_CONTROL, r); break; case CSAUDIO_RECORD_SOURCE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); l = ce4231_read(sc, SP_LEFT_INPUT_CONTROL) & INPUT_SOURCE_MASK; r = ce4231_read(sc, SP_RIGHT_INPUT_CONTROL) & INPUT_SOURCE_MASK; l |= cp->un.ord << 6; r |= cp->un.ord << 6; ce4231_write(sc, SP_LEFT_INPUT_CONTROL, l); ce4231_write(sc, SP_RIGHT_INPUT_CONTROL, r); break; case CSAUDIO_MIC_PREAMP: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); l = ce4231_read(sc, SP_LEFT_INPUT_CONTROL) & ~INPUT_MIC_GAIN_ENABLE; r = ce4231_read(sc, SP_RIGHT_INPUT_CONTROL) & ~INPUT_MIC_GAIN_ENABLE; if (cp->un.ord) { l |= INPUT_MIC_GAIN_ENABLE; r |= INPUT_MIC_GAIN_ENABLE; } ce4231_write(sc, SP_LEFT_INPUT_CONTROL, l); ce4231_write(sc, SP_RIGHT_INPUT_CONTROL, r); break; default: return (EINVAL); } return (0); } int ce4231_get_port(void *addr, mixer_ctrl_t *cp) { struct ce4231_softc *sc = (struct ce4231_softc *)addr; DPRINTF(("ce4231_get_port: port=%d type=%d\n", cp->dev, cp->type)); switch (cp->dev) { case CSAUDIO_DAC_LVL: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = AUDIO_MAX_GAIN - ((ce4231_read(sc, SP_LEFT_OUTPUT_CONTROL) & OUTPUT_ATTEN_BITS) << 2); cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = AUDIO_MAX_GAIN - ((ce4231_read(sc, SP_RIGHT_OUTPUT_CONTROL) & OUTPUT_ATTEN_BITS) << 2); break; case CSAUDIO_DAC_MUTE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); cp->un.ord = (ce4231_read(sc, SP_LEFT_OUTPUT_CONTROL) & OUTPUT_MUTE) ? 1 : 0; break; case CSAUDIO_OUTPUTS: if (cp->type != AUDIO_MIXER_SET) return (EINVAL); cp->un.mask = ce4231_get_outputs(sc); break; case CSAUDIO_CD_LVL: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = AUDIO_MAX_GAIN - ((ce4231_read(sc, SP_LEFT_AUX1_CONTROL) & AUX_INPUT_ATTEN_BITS) << 3); cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = AUDIO_MAX_GAIN - ((ce4231_read(sc, SP_RIGHT_AUX1_CONTROL) & AUX_INPUT_ATTEN_BITS) << 3); break; case CSAUDIO_CD_MUTE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); cp->un.ord = (ce4231_read(sc, SP_LEFT_AUX1_CONTROL) & AUX_INPUT_MUTE) ? 1 : 0; break; case CSAUDIO_LINE_IN_LVL: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = AUDIO_MAX_GAIN - ((ce4231_read(sc, CS_LEFT_LINE_CONTROL) & LINE_INPUT_ATTEN_BITS) << 3); cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = AUDIO_MAX_GAIN - ((ce4231_read(sc, CS_RIGHT_LINE_CONTROL) & LINE_INPUT_ATTEN_BITS) << 3); break; case CSAUDIO_LINE_IN_MUTE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); cp->un.ord = (ce4231_read(sc, CS_LEFT_LINE_CONTROL) & LINE_INPUT_MUTE) ? 1 : 0; break; case CSAUDIO_MONITOR_LVL: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels != 1) return (EINVAL); cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = AUDIO_MAX_GAIN - (ce4231_read(sc, SP_DIGITAL_MIX) & MIX_ATTEN_MASK); break; case CSAUDIO_MONITOR_MUTE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); cp->un.ord = (ce4231_read(sc, SP_DIGITAL_MIX) & DIGITAL_MIX1_ENABLE) ? 0 : 1; break; case CSAUDIO_REC_LVL: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = (ce4231_read(sc, SP_LEFT_INPUT_CONTROL) & ~INPUT_GAIN_MASK) << 4; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = (ce4231_read(sc, SP_RIGHT_INPUT_CONTROL) & ~INPUT_GAIN_MASK) << 4; break; case CSAUDIO_RECORD_SOURCE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); cp->un.ord = (ce4231_read(sc, SP_LEFT_INPUT_CONTROL) & CS_REC_SRC_BITS) >> 6; break; case CSAUDIO_MIC_PREAMP: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); cp->un.ord = (ce4231_read(sc, SP_LEFT_INPUT_CONTROL) & INPUT_MIC_GAIN_ENABLE) ? 1 : 0; break; default: return (EINVAL); } return (0); } int ce4231_query_devinfo(void *addr, mixer_devinfo_t *dip) { size_t nsize = MAX_AUDIO_DEV_LEN; int err = 0; switch (dip->index) { case CSAUDIO_INPUT_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCinputs, nsize); break; case CSAUDIO_OUTPUT_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCoutputs, nsize); break; case CSAUDIO_RECORD_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = CSAUDIO_RECORD_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCrecord, nsize); break; case CSAUDIO_DAC_LVL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_DAC_MUTE; strlcpy(dip->label.name, AudioNdac, nsize); dip->un.v.num_channels = 2; dip->un.v.delta = 4; strlcpy(dip->un.v.units.name, AudioNvolume, nsize); break; case CSAUDIO_DAC_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = CSAUDIO_DAC_LVL; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNmute, nsize); goto onoff; case CSAUDIO_OUTPUTS: dip->type = AUDIO_MIXER_SET; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNoutput, nsize); dip->un.s.num_mem = 3; strlcpy(dip->un.s.member[0].label.name, AudioNline, nsize); dip->un.s.member[0].mask = OUT_PORT_LINE; strlcpy(dip->un.s.member[1].label.name, AudioNheadphone, nsize); dip->un.s.member[1].mask = OUT_PORT_HP; strlcpy(dip->un.s.member[2].label.name, AudioNspeaker, nsize); dip->un.s.member[2].mask = OUT_PORT_SPKR; break; case CSAUDIO_CD_LVL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_CD_MUTE; strlcpy(dip->label.name, AudioNcd, nsize); dip->un.v.num_channels = 2; dip->un.v.delta = 8; strlcpy(dip->un.v.units.name, AudioNvolume, nsize); break; case CSAUDIO_CD_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = CSAUDIO_CD_LVL; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNmute, nsize); goto onoff; case CSAUDIO_LINE_IN_LVL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_LINE_IN_MUTE; strlcpy(dip->label.name, AudioNline, nsize); dip->un.v.num_channels = 2; dip->un.v.delta = 8; strlcpy(dip->un.v.units.name, AudioNvolume, nsize); break; case CSAUDIO_LINE_IN_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_INPUT_CLASS; dip->prev = CSAUDIO_LINE_IN_LVL; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNmute, nsize); goto onoff; case CSAUDIO_MONITOR_LVL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = CSAUDIO_MONITOR_MUTE; strlcpy(dip->label.name, AudioNmonitor, nsize); dip->un.v.num_channels = 1; dip->un.v.delta = 4; strlcpy(dip->un.v.units.name, AudioNvolume, nsize); break; case CSAUDIO_MONITOR_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_OUTPUT_CLASS; dip->prev = CSAUDIO_MONITOR_LVL; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNmute, nsize); goto onoff; case CSAUDIO_REC_LVL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = CSAUDIO_RECORD_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNvolume, nsize); dip->un.v.num_channels = 2; dip->un.v.delta = 16; strlcpy(dip->un.v.units.name, AudioNvolume, nsize); break; case CSAUDIO_RECORD_SOURCE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_RECORD_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNsource, nsize); dip->un.e.num_mem = 4; strlcpy(dip->un.e.member[0].label.name, AudioNline, nsize); dip->un.e.member[0].ord = REC_PORT_LINE; strlcpy(dip->un.e.member[1].label.name, AudioNcd, nsize); dip->un.e.member[1].ord = REC_PORT_CD; strlcpy(dip->un.e.member[2].label.name, AudioNmicrophone, nsize); dip->un.e.member[2].ord = REC_PORT_MIC; strlcpy(dip->un.e.member[3].label.name, AudioNmixerout, nsize); dip->un.e.member[3].ord = REC_PORT_MIX; break; case CSAUDIO_MIC_PREAMP: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = CSAUDIO_RECORD_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; snprintf(dip->label.name, nsize, "%s_%s", AudioNmicrophone, AudioNpreamp); goto onoff; onoff: dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNon, nsize); dip->un.e.member[0].ord = 1; strlcpy(dip->un.e.member[1].label.name, AudioNoff, nsize); dip->un.e.member[1].ord = 0; break; default: err = ENXIO; } return (err); } int ce4231_get_props(void *addr) { return (AUDIO_PROP_FULLDUPLEX); } /* * Hardware interrupt handler */ /* * Don't bother with the AD1848_STATUS register. It's interrupt bit gets * set for both recording and playback interrupts. But we have separate * handlers for playback and recording, and if we clear the status in * one handler while there is an interrupt pending for the other direction * as well, we'll never notice the interrupt for the other direction. * * Instead rely solely on CS_IRQ_STATUS, which has separate bits for * playback and recording interrupts. Also note that resetting * AD1848_STATUS clears the interrupt bits in CS_IRQ_STATUS. */ int ce4231_pintr(void *v) { struct ce4231_softc *sc = (struct ce4231_softc *)v; u_int32_t csr; u_int8_t reg; struct cs_dma *p; struct cs_chdma *chdma = &sc->sc_pchdma; int r = 0; mtx_enter(&audio_lock); csr = P_READ(sc, EBDMA_DCSR); reg = ce4231_read(sc, CS_IRQ_STATUS); if (reg & CS_IRQ_PI) { ce4231_write(sc, SP_LOWER_BASE_COUNT, 0xff); ce4231_write(sc, SP_UPPER_BASE_COUNT, 0xff); ce4231_write(sc, CS_IRQ_STATUS, reg & ~CS_IRQ_PI); } P_WRITE(sc, EBDMA_DCSR, csr); if (csr & EBDCSR_INT) r = 1; if ((csr & EBDCSR_TC) || ((csr & EBDCSR_A_LOADED) == 0)) { u_long nextaddr, togo; p = chdma->cur_dma; togo = chdma->segsz - chdma->count; if (togo == 0) { nextaddr = (u_int32_t)p->dmamap->dm_segs[0].ds_addr; chdma->count = togo = chdma->blksz; } else { nextaddr = chdma->lastaddr; if (togo > chdma->blksz) togo = chdma->blksz; chdma->count += togo; } P_WRITE(sc, EBDMA_DCNT, togo); P_WRITE(sc, EBDMA_DADDR, nextaddr); chdma->lastaddr = nextaddr + togo; if (sc->sc_pintr != NULL) (*sc->sc_pintr)(sc->sc_parg); r = 1; } mtx_leave(&audio_lock); return (r); } int ce4231_cintr(void *v) { struct ce4231_softc *sc = (struct ce4231_softc *)v; u_int32_t csr; u_int8_t reg; struct cs_dma *p; struct cs_chdma *chdma = &sc->sc_rchdma; int r = 0; mtx_enter(&audio_lock); csr = C_READ(sc, EBDMA_DCSR); reg = ce4231_read(sc, CS_IRQ_STATUS); if (reg & CS_IRQ_CI) { ce4231_write(sc, CS_LOWER_REC_CNT, 0xff); ce4231_write(sc, CS_UPPER_REC_CNT, 0xff); ce4231_write(sc, CS_IRQ_STATUS, reg & ~CS_IRQ_CI); } C_WRITE(sc, EBDMA_DCSR, csr); if (csr & EBDCSR_INT) r = 1; if ((csr & EBDCSR_TC) || ((csr & EBDCSR_A_LOADED) == 0)) { u_long nextaddr, togo; p = chdma->cur_dma; togo = chdma->segsz - chdma->count; if (togo == 0) { nextaddr = (u_int32_t)p->dmamap->dm_segs[0].ds_addr; chdma->count = togo = chdma->blksz; } else { nextaddr = chdma->lastaddr; if (togo > chdma->blksz) togo = chdma->blksz; chdma->count += togo; } C_WRITE(sc, EBDMA_DCNT, togo); C_WRITE(sc, EBDMA_DADDR, nextaddr); chdma->lastaddr = nextaddr + togo; if (sc->sc_rintr != NULL) (*sc->sc_rintr)(sc->sc_rarg); r = 1; } mtx_leave(&audio_lock); return (r); } void * ce4231_alloc(void *addr, int direction, size_t size, int pool, int flags) { struct ce4231_softc *sc = (struct ce4231_softc *)addr; bus_dma_tag_t dmat = sc->sc_dmatag; struct cs_dma *p; p = (struct cs_dma *)malloc(sizeof(struct cs_dma), pool, flags); if (p == NULL) return (NULL); if (bus_dmamap_create(dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &p->dmamap) != 0) goto fail; p->size = size; if (bus_dmamem_alloc(dmat, size, 64*1024, 0, p->segs, sizeof(p->segs)/sizeof(p->segs[0]), &p->nsegs, BUS_DMA_NOWAIT) != 0) goto fail1; if (bus_dmamem_map(dmat, p->segs, p->nsegs, p->size, &p->addr, BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0) goto fail2; if (bus_dmamap_load(dmat, p->dmamap, p->addr, size, NULL, BUS_DMA_NOWAIT) != 0) goto fail3; p->next = sc->sc_dmas; sc->sc_dmas = p; return (p->addr); fail3: bus_dmamem_unmap(dmat, p->addr, p->size); fail2: bus_dmamem_free(dmat, p->segs, p->nsegs); fail1: bus_dmamap_destroy(dmat, p->dmamap); fail: free(p, pool, 0); return (NULL); } void ce4231_free(void *addr, void *ptr, int pool) { struct ce4231_softc *sc = addr; bus_dma_tag_t dmat = sc->sc_dmatag; struct cs_dma *p, **pp; for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &(*pp)->next) { if (p->addr != ptr) continue; bus_dmamap_unload(dmat, p->dmamap); bus_dmamem_unmap(dmat, p->addr, p->size); bus_dmamem_free(dmat, p->segs, p->nsegs); bus_dmamap_destroy(dmat, p->dmamap); *pp = p->next; free(p, pool, 0); return; } printf("%s: attempt to free rogue pointer\n", sc->sc_dev.dv_xname); } int ce4231_trigger_output(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, struct audio_params *param) { struct ce4231_softc *sc = addr; struct cs_dma *p; struct cs_chdma *chdma = &sc->sc_pchdma; u_int32_t csr; vaddr_t n; sc->sc_pintr = intr; sc->sc_parg = arg; for (p = sc->sc_dmas; p->addr != start; p = p->next) /*EMPTY*/; if (p == NULL) { printf("%s: trigger_output: bad addr: %p\n", sc->sc_dev.dv_xname, start); return (EINVAL); } n = (char *)end - (char *)start; /* * Do only `blksize' at a time, so audio_pint() is kept * synchronous with us... */ chdma->cur_dma = p; chdma->blksz = blksize; chdma->segsz = n; if (n > chdma->blksz) n = chdma->blksz; chdma->count = n; csr = P_READ(sc, EBDMA_DCSR); if (csr & EBDCSR_DMAEN) { P_WRITE(sc, EBDMA_DCNT, (u_long)n); P_WRITE(sc, EBDMA_DADDR, (u_long)p->dmamap->dm_segs[0].ds_addr); } else { P_WRITE(sc, EBDMA_DCSR, EBDCSR_RESET); P_WRITE(sc, EBDMA_DCSR, sc->sc_burst); P_WRITE(sc, EBDMA_DCNT, (u_long)n); P_WRITE(sc, EBDMA_DADDR, (u_long)p->dmamap->dm_segs[0].ds_addr); P_WRITE(sc, EBDMA_DCSR, sc->sc_burst | EBDCSR_DMAEN | EBDCSR_INTEN | EBDCSR_CNTEN | EBDCSR_NEXTEN); ce4231_write(sc, SP_LOWER_BASE_COUNT, 0xff); ce4231_write(sc, SP_UPPER_BASE_COUNT, 0xff); ce4231_write(sc, SP_INTERFACE_CONFIG, ce4231_read(sc, SP_INTERFACE_CONFIG) | PLAYBACK_ENABLE); } chdma->lastaddr = p->dmamap->dm_segs[0].ds_addr + n; return (0); } int ce4231_trigger_input(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, struct audio_params *param) { struct ce4231_softc *sc = addr; struct cs_dma *p; struct cs_chdma *chdma = &sc->sc_rchdma; u_int32_t csr; vaddr_t n; sc->sc_rintr = intr; sc->sc_rarg = arg; for (p = sc->sc_dmas; p->addr != start; p = p->next) /*EMPTY*/; if (p == NULL) { printf("%s: trigger_input: bad addr: %p\n", sc->sc_dev.dv_xname, start); return (EINVAL); } n = (char *)end - (char *)start; /* * Do only `blksize' at a time, so audio_rint() is kept * synchronous with us... */ chdma->cur_dma = p; chdma->blksz = blksize; chdma->segsz = n; if (n > chdma->blksz) n = chdma->blksz; chdma->count = n; csr = C_READ(sc, EBDMA_DCSR); if (csr & EBDCSR_DMAEN) { C_WRITE(sc, EBDMA_DCNT, (u_long)n); C_WRITE(sc, EBDMA_DADDR, (u_long)p->dmamap->dm_segs[0].ds_addr); } else { C_WRITE(sc, EBDMA_DCSR, EBDCSR_RESET); C_WRITE(sc, EBDMA_DCSR, sc->sc_burst); C_WRITE(sc, EBDMA_DCNT, (u_long)n); C_WRITE(sc, EBDMA_DADDR, (u_long)p->dmamap->dm_segs[0].ds_addr); C_WRITE(sc, EBDMA_DCSR, sc->sc_burst | EBDCSR_WRITE | EBDCSR_DMAEN | EBDCSR_INTEN | EBDCSR_CNTEN | EBDCSR_NEXTEN); ce4231_write(sc, CS_LOWER_REC_CNT, 0xff); ce4231_write(sc, CS_UPPER_REC_CNT, 0xff); ce4231_write(sc, SP_INTERFACE_CONFIG, ce4231_read(sc, SP_INTERFACE_CONFIG) | CAPTURE_ENABLE); } chdma->lastaddr = p->dmamap->dm_segs[0].ds_addr + n; return (0); }