/* $OpenBSD: fd.c,v 1.3 2005/03/17 22:26:22 miod Exp $ */ /* $NetBSD: fd.c,v 1.112 2003/08/07 16:29:35 agc Exp $ */ /*- * Copyright (c) 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Paul Kranenburg. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Don Ahn. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fd.c 7.4 (Berkeley) 5/25/91 */ /*- * Copyright (c) 1993, 1994, 1995 Charles M. Hannum. * Copyright (c) 1995 Paul Kranenburg. * * This code is derived from software contributed to Berkeley by * Don Ahn. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fd.c 7.4 (Berkeley) 5/25/91 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define FDUNIT(dev) ((minor(dev) / MAXPARTITIONS) / 8) #define FDTYPE(dev) ((minor(dev) / MAXPARTITIONS) % 8) #define FTC_FLIP \ do { \ auxio_fd_control(AUXIO_LED_FTC); \ auxio_fd_control(0); \ } while (0) /* XXX misuse a flag to identify format operation */ #define B_FORMAT B_XXX #define b_cylin b_resid #ifdef FD_DEBUG int fdc_debug = 0; #endif enum fdc_state { DEVIDLE = 0, MOTORWAIT, /* 1 */ DOSEEK, /* 2 */ SEEKWAIT, /* 3 */ SEEKTIMEDOUT, /* 4 */ SEEKCOMPLETE, /* 5 */ DOIO, /* 6 */ IOCOMPLETE, /* 7 */ IOTIMEDOUT, /* 8 */ IOCLEANUPWAIT, /* 9 */ IOCLEANUPTIMEDOUT,/*10 */ DORESET, /* 11 */ RESETCOMPLETE, /* 12 */ RESETTIMEDOUT, /* 13 */ DORECAL, /* 14 */ RECALWAIT, /* 15 */ RECALTIMEDOUT, /* 16 */ RECALCOMPLETE, /* 17 */ DODSKCHG, /* 18 */ DSKCHGWAIT, /* 19 */ DSKCHGTIMEDOUT, /* 20 */ }; /* software state, per controller */ struct fdc_softc { struct device sc_dev; /* boilerplate */ bus_space_tag_t sc_bustag; struct timeout fdctimeout_to; struct timeout fdcpseudointr_to; struct fd_softc *sc_fd[4]; /* pointers to children */ TAILQ_HEAD(drivehead, fd_softc) sc_drives; enum fdc_state sc_state; int sc_flags; #define FDC_EBUS 0x01 #define FDC_NEEDHEADSETTLE 0x02 #define FDC_EIS 0x04 #define FDC_NEEDMOTORWAIT 0x08 #define FDC_NOEJECT 0x10 int sc_errors; /* number of retries so far */ int sc_overruns; /* number of DMA overruns */ int sc_cfg; /* current configuration */ struct fdcio sc_io; #define sc_handle sc_io.fdcio_handle #define sc_itask sc_io.fdcio_itask #define sc_istatus sc_io.fdcio_istatus #define sc_data sc_io.fdcio_data #define sc_tc sc_io.fdcio_tc #define sc_nstat sc_io.fdcio_nstat #define sc_status sc_io.fdcio_status void *sc_sicookie; /* softintr(9) cookie */ }; /* controller driver configuration */ int fdcmatch_sbus(struct device *, void *, void *); int fdcmatch_ebus(struct device *, void *, void *); void fdcattach_sbus(struct device *, struct device *, void *); void fdcattach_ebus(struct device *, struct device *, void *); int fdcattach(struct fdc_softc *, int); struct cfattach fdc_sbus_ca = { sizeof(struct fdc_softc), fdcmatch_sbus, fdcattach_sbus }; struct cfattach fdc_ebus_ca = { sizeof(struct fdc_softc), fdcmatch_ebus, fdcattach_ebus }; struct cfdriver fdc_cd = { NULL, "fdc", DV_DULL }; __inline struct fd_type *fd_dev_to_type(struct fd_softc *, dev_t); /* The order of entries in the following table is important -- BEWARE! */ struct fd_type fd_types[] = { { 18,2,36,2,0xff,0xcf,0x1b,0x54,80,2880,1,FDC_500KBPS, "1.44MB" }, /* 1.44MB diskette */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,80,1440,1,FDC_250KBPS, "720KB" }, /* 3.5" 720kB diskette */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,2,FDC_250KBPS, "360KB/x" }, /* 360kB in 720kB drive */ { 8,2,16,3,0xff,0xdf,0x35,0x74,77,1232,1,FDC_500KBPS, "1.2MB/NEC" } /* 1.2 MB japanese format */ }; /* software state, per disk (with up to 4 disks per ctlr) */ struct fd_softc { struct device sc_dv; /* generic device info */ struct disk sc_dk; /* generic disk info */ struct fd_type *sc_deftype; /* default type descriptor */ struct fd_type *sc_type; /* current type descriptor */ struct timeout sc_motoron_to; struct timeout sc_motoroff_to; daddr_t sc_blkno; /* starting block number */ int sc_bcount; /* byte count left */ int sc_skip; /* bytes already transferred */ int sc_nblks; /* number of blocks currently transferring */ int sc_nbytes; /* number of bytes currently transferring */ int sc_drive; /* physical unit number */ int sc_flags; #define FD_OPEN 0x01 /* it's open */ #define FD_MOTOR 0x02 /* motor should be on */ #define FD_MOTOR_WAIT 0x04 /* motor coming up */ int sc_cylin; /* where we think the head is */ int sc_opts; /* user-set options */ void *sc_sdhook; /* shutdownhook cookie */ TAILQ_ENTRY(fd_softc) sc_drivechain; int sc_ops; /* I/O ops since last switch */ struct buf sc_q; /* pending I/O requests */ }; /* floppy driver configuration */ int fdmatch(struct device *, void *, void *); void fdattach(struct device *, struct device *, void *); struct cfattach fd_ca = { sizeof(struct fd_softc), fdmatch, fdattach }; struct cfdriver fd_cd = { NULL, "fd", DV_DISK }; void fdgetdisklabel(dev_t); int fd_get_parms(struct fd_softc *); void fdstrategy(struct buf *); void fdstart(struct fd_softc *); int fdprint(void *, const char *); struct dkdriver fddkdriver = { fdstrategy }; struct fd_type *fd_nvtotype(char *, int, int); void fd_set_motor(struct fdc_softc *fdc); void fd_motor_off(void *arg); void fd_motor_on(void *arg); int fdcresult(struct fdc_softc *fdc); int fdc_wrfifo(struct fdc_softc *fdc, u_char x); void fdcstart(struct fdc_softc *fdc); void fdcstatus(struct fdc_softc *fdc, char *s); void fdc_reset(struct fdc_softc *fdc); int fdc_diskchange(struct fdc_softc *fdc); void fdctimeout(void *arg); void fdcpseudointr(void *arg); int fdchwintr(void *); void fdcswintr(void *); int fdcstate(struct fdc_softc *); void fdcretry(struct fdc_softc *fdc); void fdfinish(struct fd_softc *fd, struct buf *bp); int fdformat(dev_t, struct fd_formb *, struct proc *); void fd_do_eject(struct fd_softc *); static int fdconf(struct fdc_softc *); int fdcmatch_sbus(parent, match, aux) struct device *parent; void *match, *aux; { struct sbus_attach_args *sa = aux; return (strcmp("SUNW,fdtwo", sa->sa_name) == 0); } void fdcattach_sbus(parent, self, aux) struct device *parent, *self; void *aux; { struct fdc_softc *fdc = (void *)self; struct sbus_attach_args *sa = aux; if (sa->sa_nintr == 0) { printf(": no interrupt line configured\n"); return; } if (auxio_fd_control(0) != 0) { printf(": can't attach before auxio\n"); return; } fdc->sc_bustag = sa->sa_bustag; if (sbus_bus_map(sa->sa_bustag, sa->sa_slot, sa->sa_offset, sa->sa_size, BUS_SPACE_MAP_LINEAR, 0, &fdc->sc_handle) != 0) { printf(": cannot map control registers\n"); return; } if (strcmp(getpropstring(sa->sa_node, "status"), "disabled") == 0) { printf(": no drives attached\n"); return; } if (getproplen(sa->sa_node, "manual") >= 0) fdc->sc_flags |= FDC_NOEJECT; if (fdcattach(fdc, sa->sa_pri) != 0) bus_space_unmap(sa->sa_bustag, fdc->sc_handle, sa->sa_size); } int fdcmatch_ebus(parent, match, aux) struct device *parent; void *match, *aux; { struct ebus_attach_args *ea = aux; return (strcmp("fdthree", ea->ea_name) == 0); } void fdcattach_ebus(parent, self, aux) struct device *parent, *self; void *aux; { struct fdc_softc *fdc = (void *)self; struct ebus_attach_args *ea = aux; if (ea->ea_nintrs == 0) { printf(": no interrupt line configured\n"); return; } if (ea->ea_nregs < 3) { printf(": expected 3 register, got only %d\n", ea->ea_nregs); return; } if (ea->ea_nvaddrs > 0) { if (bus_space_map(ea->ea_memtag, ea->ea_vaddrs[0], 0, BUS_SPACE_MAP_PROMADDRESS, &fdc->sc_handle) != 0) { printf(": can't map control registers\n"); return; } fdc->sc_bustag = ea->ea_memtag; } else if (ebus_bus_map(ea->ea_memtag, 0, EBUS_PADDR_FROM_REG(&ea->ea_regs[0]), ea->ea_regs[0].size, 0, 0, &fdc->sc_handle) == 0) { fdc->sc_bustag = ea->ea_memtag; } else if (ebus_bus_map(ea->ea_iotag, 0, EBUS_PADDR_FROM_REG(&ea->ea_regs[0]), ea->ea_regs[0].size, 0, 0, &fdc->sc_handle) == 0) { fdc->sc_bustag = ea->ea_iotag; } else { printf(": can't map control registers\n"); return; } if (strcmp(getpropstring(ea->ea_node, "status"), "disabled") == 0) { printf(": no drives attached\n"); return; } fdc->sc_flags |= FDC_EBUS; if (getproplen(ea->ea_node, "manual") >= 0) fdc->sc_flags |= FDC_NOEJECT; /* XXX unmapping if it fails */ fdcattach(fdc, ea->ea_intrs[0]); } /* * Arguments passed between fdcattach and fdprobe. */ struct fdc_attach_args { int fa_drive; struct fd_type *fa_deftype; }; /* * Print the location of a disk drive (called just before attaching the * the drive). If `fdc' is not NULL, the drive was found but was not * in the system config file; print the drive name as well. * Return QUIET (config_find ignores this if the device was configured) to * avoid printing `fdN not configured' messages. */ int fdprint(aux, fdc) void *aux; const char *fdc; { register struct fdc_attach_args *fa = aux; if (!fdc) printf(" drive %d", fa->fa_drive); return (QUIET); } /* * Configure several parameters and features on the FDC. * Return 0 on success. */ static int fdconf(fdc) struct fdc_softc *fdc; { int vroom; if (fdc_wrfifo(fdc, NE7CMD_DUMPREG) || fdcresult(fdc) != 10) return (-1); /* * dumpreg[7] seems to be a motor-off timeout; set it to whatever * the PROM thinks is appropriate. */ if ((vroom = fdc->sc_status[7]) == 0) vroom = 0x64; /* Configure controller to use FIFO and Implied Seek */ if (fdc_wrfifo(fdc, NE7CMD_CFG) != 0) return (-1); if (fdc_wrfifo(fdc, vroom) != 0) return (-1); if (fdc_wrfifo(fdc, fdc->sc_cfg) != 0) return (-1); if (fdc_wrfifo(fdc, 0) != 0) /* PRETRK */ return (-1); /* No result phase for the NE7CMD_CFG command */ /* Lock configuration across soft resets. */ if (fdc_wrfifo(fdc, NE7CMD_LOCK | CFG_LOCK) != 0 || fdcresult(fdc) != 1) { #ifdef FD_DEBUG printf("fdconf: CFGLOCK failed"); #endif return (-1); } return (0); #if 0 if (fdc_wrfifo(fdc, NE7CMD_VERSION) == 0 && fdcresult(fdc) == 1 && fdc->sc_status[0] == 0x90) { if (fdc_debug) printf("[version cmd]"); } #endif } int fdcattach(fdc, pri) struct fdc_softc *fdc; int pri; { struct fdc_attach_args fa; int drive_attached; timeout_set(&fdc->fdctimeout_to, fdctimeout, fdc); timeout_set(&fdc->fdcpseudointr_to, fdcpseudointr, fdc); fdc->sc_state = DEVIDLE; fdc->sc_itask = FDC_ITASK_NONE; fdc->sc_istatus = FDC_ISTATUS_NONE; fdc->sc_flags |= FDC_EIS | FDC_NEEDMOTORWAIT; TAILQ_INIT(&fdc->sc_drives); /* * Configure controller; enable FIFO, Implied seek, no POLL mode?. * Note: CFG_EFIFO is active-low, initial threshold value: 8 */ fdc->sc_cfg = CFG_EIS|/*CFG_EFIFO|*/CFG_POLL|(8 & CFG_THRHLD_MASK); if (fdconf(fdc) != 0) { printf("\n%s: no drives attached\n", fdc->sc_dev.dv_xname); return (-1); } if (bus_intr_establish(fdc->sc_bustag, pri, IPL_BIO, 0, fdchwintr, fdc, fdc->sc_dev.dv_xname) == NULL) { printf("\n%s: cannot register interrupt handler\n", fdc->sc_dev.dv_xname); return (-1); } fdc->sc_sicookie = softintr_establish(IPL_BIO, fdcswintr, fdc); if (fdc->sc_sicookie == NULL) { printf("\n%s: cannot register soft interrupt handler\n", fdc->sc_dev.dv_xname); return (-1); } printf(" softpri %d", PIL_FDSOFT); if (fdc->sc_flags & FDC_NOEJECT) printf(": manual eject"); printf("\n"); /* physical limit: four drives per controller. */ drive_attached = 0; for (fa.fa_drive = 0; fa.fa_drive < 4; fa.fa_drive++) { fa.fa_deftype = NULL; /* unknown */ fa.fa_deftype = &fd_types[0]; /* XXX */ if (config_found(&fdc->sc_dev, (void *)&fa, fdprint) != NULL) drive_attached = 1; } if (drive_attached == 0) { /* XXX - dis-establish interrupts here */ /* return (-1); */ } return (0); } int fdmatch(parent, match, aux) struct device *parent; void *match; void *aux; { struct fdc_softc *fdc = (void *)parent; bus_space_tag_t t = fdc->sc_bustag; bus_space_handle_t h = fdc->sc_handle; struct fdc_attach_args *fa = aux; int drive = fa->fa_drive; int n, ok; if (drive > 0) /* XXX - for now, punt on more than one drive */ return (0); /* select drive and turn on motor */ bus_space_write_1(t, h, FDREG77_DOR, drive | FDO_FRST | FDO_MOEN(drive)); /* wait for motor to spin up */ delay(250000); fdc->sc_nstat = 0; fdc_wrfifo(fdc, NE7CMD_RECAL); fdc_wrfifo(fdc, drive); /* Wait for recalibration to complete */ for (n = 0; n < 10000; n++) { u_int8_t v; delay(1000); v = bus_space_read_1(t, h, FDREG77_MSR); if ((v & (NE7_RQM|NE7_DIO|NE7_CB)) == NE7_RQM) { /* wait a bit longer till device *really* is ready */ delay(100000); if (fdc_wrfifo(fdc, NE7CMD_SENSEI)) break; if (fdcresult(fdc) == 1 && fdc->sc_status[0] == 0x80) /* * Got `invalid command'; we interpret it * to mean that the re-calibrate hasn't in * fact finished yet */ continue; break; } } n = fdc->sc_nstat; #ifdef FD_DEBUG if (fdc_debug) { int i; printf("fdprobe: %d stati:", n); for (i = 0; i < n; i++) printf(" 0x%x", fdc->sc_status[i]); printf("\n"); } #endif ok = (n == 2 && (fdc->sc_status[0] & 0xf8) == 0x20) ? 1 : 0; /* deselect drive and turn motor off */ bus_space_write_1(t, h, FDREG77_DOR, FDO_FRST | FDO_DS); return (ok); } /* * Controller is working, and drive responded. Attach it. */ void fdattach(parent, self, aux) struct device *parent, *self; void *aux; { struct fdc_softc *fdc = (void *)parent; struct fd_softc *fd = (void *)self; struct fdc_attach_args *fa = aux; struct fd_type *type = fa->fa_deftype; int drive = fa->fa_drive; timeout_set(&fd->sc_motoron_to, fd_motor_on, fd); timeout_set(&fd->sc_motoroff_to, fd_motor_off, fd); /* XXX Allow `flags' to override device type? */ if (type) printf(": %s %d cyl, %d head, %d sec\n", type->name, type->tracks, type->heads, type->sectrac); else printf(": density unknown\n"); fd->sc_cylin = -1; fd->sc_drive = drive; fd->sc_deftype = type; fdc->sc_fd[drive] = fd; fdc_wrfifo(fdc, NE7CMD_SPECIFY); fdc_wrfifo(fdc, type->steprate); /* XXX head load time == 6ms */ fdc_wrfifo(fdc, 6 | NE7_SPECIFY_NODMA); /* * Initialize and attach the disk structure. */ fd->sc_dk.dk_name = fd->sc_dv.dv_xname; fd->sc_dk.dk_driver = &fddkdriver; disk_attach(&fd->sc_dk); /* Make sure the drive motor gets turned off at shutdown time. */ fd->sc_sdhook = shutdownhook_establish(fd_motor_off, fd); /* XXX Need to do some more fiddling with sc_dk. */ dk_establish(&fd->sc_dk, &fd->sc_dv); } __inline struct fd_type * fd_dev_to_type(fd, dev) struct fd_softc *fd; dev_t dev; { int type = FDTYPE(dev); if (type > (sizeof(fd_types) / sizeof(fd_types[0]))) return (NULL); return (type ? &fd_types[type - 1] : fd->sc_deftype); } void fdstrategy(bp) register struct buf *bp; /* IO operation to perform */ { struct fd_softc *fd; int unit = FDUNIT(bp->b_dev); int sz; int s; /* Valid unit, controller, and request? */ if (unit >= fd_cd.cd_ndevs || (fd = fd_cd.cd_devs[unit]) == 0 || bp->b_blkno < 0 || (((bp->b_bcount % FD_BSIZE(fd)) != 0 || (bp->b_blkno * DEV_BSIZE) % FD_BSIZE(fd) != 0) && (bp->b_flags & B_FORMAT) == 0)) { bp->b_error = EINVAL; goto bad; } /* If it's a null transfer, return immediately. */ if (bp->b_bcount == 0) goto done; sz = howmany(bp->b_bcount, DEV_BSIZE); if (bp->b_blkno + sz > (fd->sc_type->size * DEV_BSIZE) / FD_BSIZE(fd)) { sz = (fd->sc_type->size * DEV_BSIZE) / FD_BSIZE(fd) - bp->b_blkno; if (sz == 0) { /* If exactly at end of disk, return EOF. */ bp->b_resid = bp->b_bcount; goto done; } if (sz < 0) { /* If past end of disk, return EINVAL. */ bp->b_error = EINVAL; goto bad; } /* Otherwise, truncate request. */ bp->b_bcount = sz << DEV_BSHIFT; } bp->b_cylin = (bp->b_blkno * DEV_BSIZE) / (FD_BSIZE(fd) * fd->sc_type->seccyl); #ifdef FD_DEBUG if (fdc_debug > 1) printf("fdstrategy: b_blkno %lld b_bcount %ld blkno %lld cylin %ld\n", (long long)bp->b_blkno, bp->b_bcount, (long long)fd->sc_blkno, bp->b_cylin); #endif /* Queue transfer on drive, activate drive and controller if idle. */ s = splbio(); disksort(&fd->sc_q, bp); timeout_del(&fd->sc_motoroff_to); /* a good idea */ if (!fd->sc_q.b_active) fdstart(fd); #ifdef DIAGNOSTIC else { struct fdc_softc *fdc = (void *)fd->sc_dv.dv_parent; if (fdc->sc_state == DEVIDLE) { printf("fdstrategy: controller inactive\n"); fdcstart(fdc); } } #endif splx(s); return; bad: bp->b_flags |= B_ERROR; done: /* Toss transfer; we're done early. */ s = splbio(); biodone(bp); splx(s); } void fdstart(fd) struct fd_softc *fd; { struct fdc_softc *fdc = (void *)fd->sc_dv.dv_parent; int active = !TAILQ_EMPTY(&fdc->sc_drives); /* Link into controller queue. */ fd->sc_q.b_active = 1; TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain); /* If controller not already active, start it. */ if (!active) fdcstart(fdc); } void fdfinish(fd, bp) struct fd_softc *fd; struct buf *bp; { struct fdc_softc *fdc = (void *)fd->sc_dv.dv_parent; /* * Move this drive to the end of the queue to give others a `fair' * chance. We only force a switch if N operations are completed while * another drive is waiting to be serviced, since there is a long motor * startup delay whenever we switch. */ if (TAILQ_NEXT(fd, sc_drivechain) != NULL && ++fd->sc_ops >= 8) { fd->sc_ops = 0; TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain); if (bp->b_actf) { TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain); } else fd->sc_q.b_active = 0; } bp->b_resid = fd->sc_bcount; fd->sc_skip = 0; fd->sc_q.b_actf = bp->b_actf; biodone(bp); /* turn off motor 5s from now */ timeout_add(&fd->sc_motoroff_to, 5 * hz); fdc->sc_state = DEVIDLE; } void fdc_reset(fdc) struct fdc_softc *fdc; { bus_space_tag_t t = fdc->sc_bustag; bus_space_handle_t h = fdc->sc_handle; bus_space_write_1(t, h, FDREG77_DOR, FDO_FDMAEN | FDO_MOEN(0)); bus_space_write_1(t, h, FDREG77_DRS, DRS_RESET); delay(10); bus_space_write_1(t, h, FDREG77_DRS, 0); bus_space_write_1(t, h, FDREG77_DOR, FDO_FRST | FDO_FDMAEN | FDO_DS); #ifdef FD_DEBUG if (fdc_debug) printf("fdc reset\n"); #endif } void fd_set_motor(fdc) struct fdc_softc *fdc; { struct fd_softc *fd; u_char status; int n; status = FDO_FRST | FDO_FDMAEN; if ((fd = TAILQ_FIRST(&fdc->sc_drives)) != NULL) status |= fd->sc_drive; for (n = 0; n < 4; n++) if ((fd = fdc->sc_fd[n]) && (fd->sc_flags & FD_MOTOR)) status |= FDO_MOEN(n); bus_space_write_1(fdc->sc_bustag, fdc->sc_handle, FDREG77_DOR, status); } void fd_motor_off(arg) void *arg; { struct fd_softc *fd = arg; int s; s = splbio(); fd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT); fd_set_motor((struct fdc_softc *)fd->sc_dv.dv_parent); splx(s); } void fd_motor_on(arg) void *arg; { struct fd_softc *fd = arg; struct fdc_softc *fdc = (void *)fd->sc_dv.dv_parent; int s; s = splbio(); fd->sc_flags &= ~FD_MOTOR_WAIT; if (fd == TAILQ_FIRST(&fdc->sc_drives) && fdc->sc_state == MOTORWAIT) (void) fdcstate(fdc); splx(s); } /* * Get status bytes off the FDC after a command has finished * Returns the number of status bytes read; -1 on error. * The return value is also stored in `sc_nstat'. */ int fdcresult(fdc) struct fdc_softc *fdc; { bus_space_tag_t t = fdc->sc_bustag; bus_space_handle_t h = fdc->sc_handle; int j, n = 0; for (j = 100000; j; j--) { u_int8_t v = bus_space_read_1(t, h, FDREG77_MSR); v &= (NE7_DIO | NE7_RQM | NE7_CB); if (v == NE7_RQM) return (fdc->sc_nstat = n); if (v == (NE7_DIO | NE7_RQM | NE7_CB)) { if (n >= sizeof(fdc->sc_status)) { log(LOG_ERR, "fdcresult: overrun\n"); return (-1); } fdc->sc_status[n++] = bus_space_read_1(t, h, FDREG77_FIFO); } else delay(1); } log(LOG_ERR, "fdcresult: timeout\n"); return (fdc->sc_nstat = -1); } /* * Write a command byte to the FDC. * Returns 0 on success; -1 on failure (i.e. timeout) */ int fdc_wrfifo(fdc, x) struct fdc_softc *fdc; u_int8_t x; { bus_space_tag_t t = fdc->sc_bustag; bus_space_handle_t h = fdc->sc_handle; int i; for (i = 100000; i-- != 0;) { u_int8_t v = bus_space_read_1(t, h, FDREG77_MSR); if ((v & (NE7_DIO|NE7_RQM)) == NE7_RQM) { /* The chip is ready */ bus_space_write_1(t, h, FDREG77_FIFO, x); return (0); } delay(1); } return (-1); } int fdc_diskchange(fdc) struct fdc_softc *fdc; { bus_space_tag_t t = fdc->sc_bustag; bus_space_handle_t h = fdc->sc_handle; u_int8_t v = bus_space_read_1(t, h, FDREG77_DIR); return ((v & FDI_DCHG) != 0); } int fdopen(dev, flags, fmt, p) dev_t dev; int flags, fmt; struct proc *p; { int unit, pmask; struct fd_softc *fd; struct fd_type *type; unit = FDUNIT(dev); if (unit >= fd_cd.cd_ndevs) return (ENXIO); fd = fd_cd.cd_devs[unit]; if (fd == NULL) return (ENXIO); type = fd_dev_to_type(fd, dev); if (type == NULL) return (ENXIO); if ((fd->sc_flags & FD_OPEN) != 0 && fd->sc_type != type) return (EBUSY); fd->sc_type = type; fd->sc_cylin = -1; fd->sc_flags |= FD_OPEN; /* * Only update the disklabel if we're not open anywhere else. */ if (fd->sc_dk.dk_openmask == 0) fdgetdisklabel(dev); pmask = (1 << DISKPART(dev)); switch (fmt) { case S_IFCHR: fd->sc_dk.dk_copenmask |= pmask; break; case S_IFBLK: fd->sc_dk.dk_bopenmask |= pmask; break; } fd->sc_dk.dk_openmask = fd->sc_dk.dk_copenmask | fd->sc_dk.dk_bopenmask; return (0); } int fdclose(dev, flags, fmt, p) dev_t dev; int flags, fmt; struct proc *p; { struct fd_softc *fd = fd_cd.cd_devs[FDUNIT(dev)]; int pmask = (1 << DISKPART(dev)); fd->sc_flags &= ~FD_OPEN; fd->sc_opts &= ~(FDOPT_NORETRY|FDOPT_SILENT); switch (fmt) { case S_IFCHR: fd->sc_dk.dk_copenmask &= ~pmask; break; case S_IFBLK: fd->sc_dk.dk_bopenmask &= ~pmask; break; } fd->sc_dk.dk_openmask = fd->sc_dk.dk_copenmask | fd->sc_dk.dk_bopenmask; return (0); } int fdread(dev, uio, flag) dev_t dev; struct uio *uio; int flag; { return (physio(fdstrategy, NULL, dev, B_READ, minphys, uio)); } int fdwrite(dev, uio, flag) dev_t dev; struct uio *uio; int flag; { return (physio(fdstrategy, NULL, dev, B_WRITE, minphys, uio)); } void fdcstart(fdc) struct fdc_softc *fdc; { #ifdef DIAGNOSTIC /* only got here if controller's drive queue was inactive; should be in idle state */ if (fdc->sc_state != DEVIDLE) { printf("fdcstart: not idle\n"); return; } #endif (void) fdcstate(fdc); } void fdcstatus(fdc, s) struct fdc_softc *fdc; char *s; { struct fd_softc *fd = fdc->sc_drives.tqh_first; int n; /* Just print last status */ n = fdc->sc_nstat; #if 0 if (n == 0) { fdc_wrfifo(fdc, NE7CMD_SENSEI); (void) fdcresult(fdc); n = 2; } #endif printf("%s: %s: state %d", fd ? fd->sc_dv.dv_xname : "fdc", s, fdc->sc_state); switch (n) { case 0: printf("\n"); break; case 2: printf(" (st0 %b cyl %d)\n", fdc->sc_status[0], NE7_ST0BITS, fdc->sc_status[1]); break; case 7: printf(" (st0 %b st1 %b st2 %b cyl %d head %d sec %d)\n", fdc->sc_status[0], NE7_ST0BITS, fdc->sc_status[1], NE7_ST1BITS, fdc->sc_status[2], NE7_ST2BITS, fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]); break; #ifdef DIAGNOSTIC default: printf(" fdcstatus: weird size: %d\n", n); break; #endif } } void fdctimeout(arg) void *arg; { struct fdc_softc *fdc = arg; struct fd_softc *fd; int s; s = splbio(); fd = TAILQ_FIRST(&fdc->sc_drives); if (fd == NULL) { printf("%s: timeout but no I/O pending: state %d, istatus=%d\n", fdc->sc_dev.dv_xname, fdc->sc_state, fdc->sc_istatus); fdc->sc_state = DEVIDLE; goto out; } if (fd->sc_q.b_actf) fdc->sc_state++; else fdc->sc_state = DEVIDLE; (void) fdcstate(fdc); out: splx(s); } void fdcpseudointr(arg) void *arg; { struct fdc_softc *fdc = arg; int s; /* Just ensure it has the right spl. */ s = splbio(); (void) fdcstate(fdc); splx(s); } /* * Hardware interrupt entry point. * Unfortunately, we have no reliable way to determine that the * interrupt really came from the floppy controller; just hope * that the other devices that share this interrupt can do better.. */ int fdchwintr(arg) void *arg; { struct fdc_softc *fdc = arg; bus_space_tag_t t = fdc->sc_bustag; bus_space_handle_t h = fdc->sc_handle; switch (fdc->sc_itask) { case FDC_ITASK_NONE: return (0); case FDC_ITASK_SENSEI: if (fdc_wrfifo(fdc, NE7CMD_SENSEI) != 0 || fdcresult(fdc) == -1) fdc->sc_istatus = FDC_ISTATUS_ERROR; else fdc->sc_istatus = FDC_ISTATUS_DONE; softintr_schedule(fdc->sc_sicookie); return (1); case FDC_ITASK_RESULT: if (fdcresult(fdc) == -1) fdc->sc_istatus = FDC_ISTATUS_ERROR; else fdc->sc_istatus = FDC_ISTATUS_DONE; softintr_schedule(fdc->sc_sicookie); return (1); case FDC_ITASK_DMA: /* Proceed with pseudo-DMA below */ break; default: printf("fdc: stray hard interrupt: itask=%d\n", fdc->sc_itask); fdc->sc_istatus = FDC_ISTATUS_SPURIOUS; softintr_schedule(fdc->sc_sicookie); return (1); } /* * Pseudo DMA in progress */ for (;;) { u_int8_t msr; msr = bus_space_read_1(t, h, FDREG77_MSR); if ((msr & NE7_RQM) == 0) /* That's all this round */ break; if ((msr & NE7_NDM) == 0) { fdcresult(fdc); fdc->sc_istatus = FDC_ISTATUS_DONE; softintr_schedule(fdc->sc_sicookie); #ifdef FD_DEBUG if (fdc_debug > 1) printf("fdc: overrun: msr = %x, tc = %d\n", msr, fdc->sc_tc); #endif break; } /* Another byte can be transferred */ if ((msr & NE7_DIO) != 0) *fdc->sc_data = bus_space_read_1(t, h, FDREG77_FIFO); else bus_space_write_1(t, h, FDREG77_FIFO, *fdc->sc_data); fdc->sc_data++; if (--fdc->sc_tc == 0) { fdc->sc_istatus = FDC_ISTATUS_DONE; FTC_FLIP; fdcresult(fdc); softintr_schedule(fdc->sc_sicookie); break; } } return (1); } void fdcswintr(arg) void *arg; { struct fdc_softc *fdc = arg; int s; if (fdc->sc_istatus == FDC_ISTATUS_NONE) /* This (software) interrupt is not for us */ return; switch (fdc->sc_istatus) { case FDC_ISTATUS_ERROR: printf("fdc: ierror status: state %d\n", fdc->sc_state); break; case FDC_ISTATUS_SPURIOUS: printf("fdc: spurious interrupt: state %d\n", fdc->sc_state); break; } s = splbio(); fdcstate(fdc); splx(s); return; } int fdcstate(fdc) struct fdc_softc *fdc; { #define st0 fdc->sc_status[0] #define st1 fdc->sc_status[1] #define cyl fdc->sc_status[1] #define FDC_WRFIFO(fdc, c) \ do { \ if (fdc_wrfifo(fdc, (c))) { \ goto xxx; \ } \ } while(0) struct fd_softc *fd; struct buf *bp; int read, head, sec, nblks; struct fd_type *type; struct fd_formb *finfo = NULL; if (fdc->sc_istatus == FDC_ISTATUS_ERROR) { /* Prevent loop if the reset sequence produces errors */ if (fdc->sc_state != RESETCOMPLETE && fdc->sc_state != RECALWAIT && fdc->sc_state != RECALCOMPLETE) fdc->sc_state = DORESET; } /* Clear I task/status field */ fdc->sc_istatus = FDC_ISTATUS_NONE; fdc->sc_itask = FDC_ITASK_NONE; loop: /* Is there a drive for the controller to do a transfer with? */ fd = TAILQ_FIRST(&fdc->sc_drives); if (fd == NULL) { fdc->sc_state = DEVIDLE; return (0); } /* Is there a transfer to this drive? If not, deactivate drive. */ bp = fd->sc_q.b_actf; if (bp == NULL) { fd->sc_ops = 0; TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain); fd->sc_q.b_active = 0; goto loop; } if (bp->b_flags & B_FORMAT) finfo = (struct fd_formb *)bp->b_data; switch (fdc->sc_state) { case DEVIDLE: fdc->sc_errors = 0; fd->sc_skip = 0; fd->sc_bcount = bp->b_bcount; fd->sc_blkno = (bp->b_blkno * DEV_BSIZE) / FD_BSIZE(fd); timeout_del(&fd->sc_motoroff_to); if ((fd->sc_flags & FD_MOTOR_WAIT) != 0) { fdc->sc_state = MOTORWAIT; return (1); } if ((fd->sc_flags & FD_MOTOR) == 0) { /* Turn on the motor, being careful about pairing. */ struct fd_softc *ofd = fdc->sc_fd[fd->sc_drive ^ 1]; if (ofd && ofd->sc_flags & FD_MOTOR) { timeout_del(&ofd->sc_motoroff_to); ofd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT); } fd->sc_flags |= FD_MOTOR | FD_MOTOR_WAIT; fd_set_motor(fdc); fdc->sc_state = MOTORWAIT; if ((fdc->sc_flags & FDC_NEEDMOTORWAIT) != 0) { /*XXX*/ /* Allow .25s for motor to stabilize. */ timeout_add(&fd->sc_motoron_to, hz / 4); } else { fd->sc_flags &= ~FD_MOTOR_WAIT; goto loop; } return (1); } /* Make sure the right drive is selected. */ fd_set_motor(fdc); if (fdc_diskchange(fdc)) goto dodskchg; /*FALLTHROUGH*/ case DOSEEK: doseek: if ((fdc->sc_flags & FDC_EIS) && (bp->b_flags & B_FORMAT) == 0) { fd->sc_cylin = bp->b_cylin; /* We use implied seek */ goto doio; } if (fd->sc_cylin == bp->b_cylin) goto doio; fd->sc_cylin = -1; fdc->sc_state = SEEKWAIT; fdc->sc_nstat = 0; fd->sc_dk.dk_seek++; disk_busy(&fd->sc_dk); timeout_add(&fdc->fdctimeout_to, 4 * hz); /* specify command */ FDC_WRFIFO(fdc, NE7CMD_SPECIFY); FDC_WRFIFO(fdc, fd->sc_type->steprate); /* XXX head load time == 6ms */ FDC_WRFIFO(fdc, 6 | NE7_SPECIFY_NODMA); fdc->sc_itask = FDC_ITASK_SENSEI; /* seek function */ FDC_WRFIFO(fdc, NE7CMD_SEEK); FDC_WRFIFO(fdc, fd->sc_drive); /* drive number */ FDC_WRFIFO(fdc, bp->b_cylin * fd->sc_type->step); return (1); case DODSKCHG: dodskchg: /* * Disk change: force a seek operation by going to cyl 1 * followed by a recalibrate. */ disk_busy(&fd->sc_dk); timeout_add(&fdc->fdctimeout_to, 4 * hz); fd->sc_cylin = -1; fdc->sc_nstat = 0; fdc->sc_state = DSKCHGWAIT; fdc->sc_itask = FDC_ITASK_SENSEI; /* seek function */ FDC_WRFIFO(fdc, NE7CMD_SEEK); FDC_WRFIFO(fdc, fd->sc_drive); /* drive number */ FDC_WRFIFO(fdc, 1 * fd->sc_type->step); return (1); case DSKCHGWAIT: timeout_del(&fdc->fdctimeout_to); disk_unbusy(&fd->sc_dk, 0, 0); if (fdc->sc_nstat != 2 || (st0 & 0xf8) != 0x20 || cyl != 1 * fd->sc_type->step) { fdcstatus(fdc, "dskchg seek failed"); fdc->sc_state = DORESET; } else fdc->sc_state = DORECAL; if (fdc_diskchange(fdc)) { printf("%s: cannot clear disk change status\n", fdc->sc_dev.dv_xname); fdc->sc_state = DORESET; } goto loop; case DOIO: doio: if (finfo != NULL) fd->sc_skip = (char *)&(finfo->fd_formb_cylno(0)) - (char *)finfo; type = fd->sc_type; sec = fd->sc_blkno % type->seccyl; nblks = type->seccyl - sec; nblks = min(nblks, fd->sc_bcount / FD_BSIZE(fd)); nblks = min(nblks, FDC_MAXIOSIZE / FD_BSIZE(fd)); fd->sc_nblks = nblks; fd->sc_nbytes = finfo ? bp->b_bcount : nblks * FD_BSIZE(fd); head = sec / type->sectrac; sec -= head * type->sectrac; #ifdef DIAGNOSTIC {int block; block = (fd->sc_cylin * type->heads + head) * type->sectrac + sec; if (block != fd->sc_blkno) { printf("fdcintr: block %d != blkno %d\n", block, (int)fd->sc_blkno); #if defined(FD_DEBUG) && defined(DDB) Debugger(); #endif }} #endif read = bp->b_flags & B_READ; /* Setup for pseudo DMA */ fdc->sc_data = bp->b_data + fd->sc_skip; fdc->sc_tc = fd->sc_nbytes; bus_space_write_1(fdc->sc_bustag, fdc->sc_handle, FDREG77_DRS, type->rate); #ifdef FD_DEBUG if (fdc_debug > 1) printf("fdcstate: doio: %s drive %d " "track %d head %d sec %d nblks %d\n", finfo ? "format" : (read ? "read" : "write"), fd->sc_drive, fd->sc_cylin, head, sec, nblks); #endif fdc->sc_state = IOCOMPLETE; fdc->sc_itask = FDC_ITASK_DMA; fdc->sc_nstat = 0; disk_busy(&fd->sc_dk); /* allow 3 seconds for operation */ timeout_add(&fdc->fdctimeout_to, 3 * hz); if (finfo != NULL) { /* formatting */ FDC_WRFIFO(fdc, NE7CMD_FORMAT); FDC_WRFIFO(fdc, (head << 2) | fd->sc_drive); FDC_WRFIFO(fdc, finfo->fd_formb_secshift); FDC_WRFIFO(fdc, finfo->fd_formb_nsecs); FDC_WRFIFO(fdc, finfo->fd_formb_gaplen); FDC_WRFIFO(fdc, finfo->fd_formb_fillbyte); } else { if (read) FDC_WRFIFO(fdc, NE7CMD_READ); else FDC_WRFIFO(fdc, NE7CMD_WRITE); FDC_WRFIFO(fdc, (head << 2) | fd->sc_drive); FDC_WRFIFO(fdc, fd->sc_cylin); /*track*/ FDC_WRFIFO(fdc, head); FDC_WRFIFO(fdc, sec + 1); /*sector+1*/ FDC_WRFIFO(fdc, type->secsize); /*sector size*/ FDC_WRFIFO(fdc, type->sectrac); /*secs/track*/ FDC_WRFIFO(fdc, type->gap1); /*gap1 size*/ FDC_WRFIFO(fdc, type->datalen); /*data length*/ } return (1); /* will return later */ case SEEKWAIT: timeout_del(&fdc->fdctimeout_to); fdc->sc_state = SEEKCOMPLETE; if (fdc->sc_flags & FDC_NEEDHEADSETTLE) { /* allow 1/50 second for heads to settle */ timeout_add(&fdc->fdcpseudointr_to, hz / 50); return (1); /* will return later */ } /*FALLTHROUGH*/ case SEEKCOMPLETE: /* no data on seek */ disk_unbusy(&fd->sc_dk, 0, 0); /* Make sure seek really happened. */ if (fdc->sc_nstat != 2 || (st0 & 0xf8) != 0x20 || cyl != bp->b_cylin * fd->sc_type->step) { #ifdef FD_DEBUG if (fdc_debug) fdcstatus(fdc, "seek failed"); #endif fdcretry(fdc); goto loop; } fd->sc_cylin = bp->b_cylin; goto doio; case IOTIMEDOUT: /* * Try to abort the I/O operation without resetting * the chip first. Poke TC and arrange to pick up * the timed out I/O command's status. */ fdc->sc_itask = FDC_ITASK_RESULT; fdc->sc_state = IOCLEANUPWAIT; fdc->sc_nstat = 0; /* 1/10 second should be enough */ timeout_add(&fdc->fdctimeout_to, hz / 10); return (1); case IOCLEANUPTIMEDOUT: case SEEKTIMEDOUT: case RECALTIMEDOUT: case RESETTIMEDOUT: case DSKCHGTIMEDOUT: fdcstatus(fdc, "timeout"); /* All other timeouts always roll through to a chip reset */ fdcretry(fdc); /* Force reset, no matter what fdcretry() says */ fdc->sc_state = DORESET; goto loop; case IOCLEANUPWAIT: /* IO FAILED, cleanup succeeded */ timeout_del(&fdc->fdctimeout_to); disk_unbusy(&fd->sc_dk, (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ)); fdcretry(fdc); goto loop; case IOCOMPLETE: /* IO DONE, post-analyze */ timeout_del(&fdc->fdctimeout_to); disk_unbusy(&fd->sc_dk, (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ)); if (fdc->sc_nstat != 7 || st1 != 0 || ((st0 & 0xf8) != 0 && ((st0 & 0xf8) != 0x20 || (fdc->sc_cfg & CFG_EIS) == 0))) { #ifdef FD_DEBUG if (fdc_debug) { fdcstatus(fdc, bp->b_flags & B_READ ? "read failed" : "write failed"); printf("blkno %lld nblks %d nstat %d tc %d\n", (long long)fd->sc_blkno, fd->sc_nblks, fdc->sc_nstat, fdc->sc_tc); } #endif if (fdc->sc_nstat == 7 && (st1 & ST1_OVERRUN) == ST1_OVERRUN) { /* * Silently retry overruns if no other * error bit is set. Adjust threshold. */ int thr = fdc->sc_cfg & CFG_THRHLD_MASK; if (thr < 15) { thr++; fdc->sc_cfg &= ~CFG_THRHLD_MASK; fdc->sc_cfg |= (thr & CFG_THRHLD_MASK); #ifdef FD_DEBUG if (fdc_debug) printf("fdc: %d -> threshold\n", thr); #endif fdconf(fdc); fdc->sc_overruns = 0; } if (++fdc->sc_overruns < 3) { fdc->sc_state = DOIO; goto loop; } } fdcretry(fdc); goto loop; } if (fdc->sc_errors) { diskerr(bp, "fd", "soft error", LOG_PRINTF, fd->sc_skip / FD_BSIZE(fd), (struct disklabel *)NULL); printf("\n"); fdc->sc_errors = 0; } else { if (--fdc->sc_overruns < -20) { int thr = fdc->sc_cfg & CFG_THRHLD_MASK; if (thr > 0) { thr--; fdc->sc_cfg &= ~CFG_THRHLD_MASK; fdc->sc_cfg |= (thr & CFG_THRHLD_MASK); #ifdef FD_DEBUG if (fdc_debug) printf("fdc: %d -> threshold\n", thr); #endif fdconf(fdc); } fdc->sc_overruns = 0; } } fd->sc_blkno += fd->sc_nblks; fd->sc_skip += fd->sc_nbytes; fd->sc_bcount -= fd->sc_nbytes; if (finfo == NULL && fd->sc_bcount > 0) { bp->b_cylin = fd->sc_blkno / fd->sc_type->seccyl; goto doseek; } fdfinish(fd, bp); goto loop; case DORESET: /* try a reset, keep motor on */ fd_set_motor(fdc); delay(100); fdc->sc_nstat = 0; fdc->sc_itask = FDC_ITASK_SENSEI; fdc->sc_state = RESETCOMPLETE; timeout_add(&fdc->fdctimeout_to, hz / 2); fdc_reset(fdc); return (1); /* will return later */ case RESETCOMPLETE: timeout_del(&fdc->fdctimeout_to); fdconf(fdc); /* FALLTHROUGH */ case DORECAL: fdc->sc_state = RECALWAIT; fdc->sc_itask = FDC_ITASK_SENSEI; fdc->sc_nstat = 0; timeout_add(&fdc->fdctimeout_to, 5 * hz); /* recalibrate function */ FDC_WRFIFO(fdc, NE7CMD_RECAL); FDC_WRFIFO(fdc, fd->sc_drive); return (1); /* will return later */ case RECALWAIT: timeout_del(&fdc->fdctimeout_to); fdc->sc_state = RECALCOMPLETE; if (fdc->sc_flags & FDC_NEEDHEADSETTLE) { /* allow 1/30 second for heads to settle */ timeout_add(&fdc->fdcpseudointr_to, hz / 30); return (1); /* will return later */ } case RECALCOMPLETE: if (fdc->sc_nstat != 2 || (st0 & 0xf8) != 0x20 || cyl != 0) { #ifdef FD_DEBUG if (fdc_debug) fdcstatus(fdc, "recalibrate failed"); #endif fdcretry(fdc); goto loop; } fd->sc_cylin = 0; goto doseek; case MOTORWAIT: if (fd->sc_flags & FD_MOTOR_WAIT) return (1); /* time's not up yet */ goto doseek; default: fdcstatus(fdc, "stray interrupt"); return (1); } #ifdef DIAGNOSTIC panic("fdcintr: impossible"); #endif xxx: /* * We get here if the chip locks up in FDC_WRFIFO() * Cancel any operation and schedule a reset */ timeout_del(&fdc->fdctimeout_to); fdcretry(fdc); fdc->sc_state = DORESET; goto loop; #undef st0 #undef st1 #undef cyl } void fdcretry(fdc) struct fdc_softc *fdc; { struct fd_softc *fd; struct buf *bp; int error = EIO; fd = TAILQ_FIRST(&fdc->sc_drives); bp = fd->sc_q.b_actf; fdc->sc_overruns = 0; if (fd->sc_opts & FDOPT_NORETRY) goto fail; switch (fdc->sc_errors) { case 0: if (fdc->sc_nstat == 7 && (fdc->sc_status[0] & 0xd8) == 0x40 && (fdc->sc_status[1] & 0x2) == 0x2) { printf("%s: read-only medium\n", fd->sc_dv.dv_xname); error = EROFS; goto failsilent; } /* try again */ fdc->sc_state = (fdc->sc_flags & FDC_EIS) ? DOIO : DOSEEK; break; case 1: case 2: case 3: /* didn't work; try recalibrating */ fdc->sc_state = DORECAL; break; case 4: if (fdc->sc_nstat == 7 && fdc->sc_status[0] == 0 && fdc->sc_status[1] == 0 && fdc->sc_status[2] == 0) { /* * We've retried a few times and we've got * valid status and all three status bytes * are zero. Assume this condition is the * result of no disk loaded into the drive. */ printf("%s: no medium?\n", fd->sc_dv.dv_xname); error = ENODEV; goto failsilent; } /* still no go; reset the bastard */ fdc->sc_state = DORESET; break; default: fail: if ((fd->sc_opts & FDOPT_SILENT) == 0) { diskerr(bp, "fd", "hard error", LOG_PRINTF, fd->sc_skip / FD_BSIZE(fd), (struct disklabel *)NULL); printf("\n"); fdcstatus(fdc, "controller status"); } failsilent: bp->b_flags |= B_ERROR; bp->b_error = error; fdfinish(fd, bp); } fdc->sc_errors++; } int fdsize(dev) dev_t dev; { /* Swapping to floppies would not make sense. */ return (-1); } int fddump(dev, blkno, va, size) dev_t dev; daddr_t blkno; caddr_t va; size_t size; { /* Not implemented. */ return (EINVAL); } int fdioctl(dev, cmd, addr, flag, p) dev_t dev; u_long cmd; caddr_t addr; int flag; struct proc *p; { struct fd_softc *fd; struct fdc_softc *fdc; int unit; int error; #ifdef FD_DEBUG int i; #endif unit = FDUNIT(dev); if (unit >= fd_cd.cd_ndevs) return (ENXIO); fd = fd_cd.cd_devs[FDUNIT(dev)]; fdc = (struct fdc_softc *)fd->sc_dv.dv_parent; switch (cmd) { case DIOCGDINFO: *(struct disklabel *)addr = *(fd->sc_dk.dk_label); return 0; case DIOCWLABEL: if ((flag & FWRITE) == 0) return EBADF; /* XXX do something */ return (0); case DIOCWDINFO: if ((flag & FWRITE) == 0) return (EBADF); error = setdisklabel(fd->sc_dk.dk_label, (struct disklabel *)addr, 0, fd->sc_dk.dk_cpulabel); if (error) return (error); error = writedisklabel(dev, fdstrategy, fd->sc_dk.dk_label, fd->sc_dk.dk_cpulabel); return (error); case DIOCLOCK: /* * Nothing to do here, really. */ return (0); case MTIOCTOP: if (((struct mtop *)addr)->mt_op != MTOFFL) return (EIO); /* FALLTHROUGH */ case DIOCEJECT: if (fdc->sc_flags & FDC_NOEJECT) return (ENODEV); fd_do_eject(fd); return (0); case FD_FORM: if ((flag & FWRITE) == 0) return (EBADF); /* must be opened for writing */ else if (((struct fd_formb *)addr)->format_version != FD_FORMAT_VERSION) return (EINVAL);/* wrong version of formatting prog */ else return fdformat(dev, (struct fd_formb *)addr, p); break; case FD_GTYPE: /* get drive options */ *(struct fd_type *)addr = *fd->sc_type; return (0); case FD_GOPTS: /* get drive options */ *(int *)addr = fd->sc_opts; return (0); case FD_SOPTS: /* set drive options */ fd->sc_opts = *(int *)addr; return (0); #ifdef FD_DEBUG case _IO('f', 100): fdc_wrfifo(fdc, NE7CMD_DUMPREG); fdcresult(fdc); printf("fdc: dumpreg(%d regs): <", fdc->sc_nstat); for (i = 0; i < fdc->sc_nstat; i++) printf(" 0x%x", fdc->sc_status[i]); printf(">\n"); return (0); case _IOW('f', 101, int): fdc->sc_cfg &= ~CFG_THRHLD_MASK; fdc->sc_cfg |= (*(int *)addr & CFG_THRHLD_MASK); fdconf(fdc); return (0); case _IO('f', 102): fdc_wrfifo(fdc, NE7CMD_SENSEI); fdcresult(fdc); printf("fdc: sensei(%d regs): <", fdc->sc_nstat); for (i=0; i< fdc->sc_nstat; i++) printf(" 0x%x", fdc->sc_status[i]); printf(">\n"); return (0); #endif default: return (ENOTTY); } } int fdformat(dev, finfo, p) dev_t dev; struct fd_formb *finfo; struct proc *p; { int rv = 0; struct fd_softc *fd = fd_cd.cd_devs[FDUNIT(dev)]; struct fd_type *type = fd->sc_type; struct buf *bp; /* set up a buffer header for fdstrategy() */ bp = (struct buf *)malloc(sizeof(struct buf), M_TEMP, M_NOWAIT); if (bp == NULL) return (ENOBUFS); PHOLD(p); bzero((void *)bp, sizeof(struct buf)); bp->b_flags = B_BUSY | B_PHYS | B_FORMAT; bp->b_proc = p; bp->b_dev = dev; /* * Calculate a fake blkno, so fdstrategy() would initiate a * seek to the requested cylinder. */ bp->b_blkno = ((finfo->cyl * (type->sectrac * type->heads) + finfo->head * type->sectrac) * FD_BSIZE(fd)) / DEV_BSIZE; bp->b_bcount = sizeof(struct fd_idfield_data) * finfo->fd_formb_nsecs; bp->b_data = (caddr_t)finfo; #ifdef FD_DEBUG if (fdc_debug) { int i; printf("fdformat: blkno 0x%llx count %ld\n", (unsigned long long)bp->b_blkno, bp->b_bcount); printf("\tcyl:\t%d\n", finfo->cyl); printf("\thead:\t%d\n", finfo->head); printf("\tnsecs:\t%d\n", finfo->fd_formb_nsecs); printf("\tsshft:\t%d\n", finfo->fd_formb_secshift); printf("\tgaplen:\t%d\n", finfo->fd_formb_gaplen); printf("\ttrack data:"); for (i = 0; i < finfo->fd_formb_nsecs; i++) { printf(" [c%d h%d s%d]", finfo->fd_formb_cylno(i), finfo->fd_formb_headno(i), finfo->fd_formb_secno(i) ); if (finfo->fd_formb_secsize(i) != 2) printf("", finfo->fd_formb_secsize(i)); } printf("\n"); } #endif /* now do the format */ fdstrategy(bp); /* ...and wait for it to complete */ rv = biowait(bp); PRELE(p); free(bp, M_TEMP); return (rv); } void fdgetdisklabel(dev) dev_t dev; { int unit = FDUNIT(dev); struct fd_softc *fd = fd_cd.cd_devs[unit]; struct disklabel *lp = fd->sc_dk.dk_label; struct cpu_disklabel *clp = fd->sc_dk.dk_cpulabel; char *errstring; bzero(lp, sizeof(struct disklabel)); bzero(lp, sizeof(struct cpu_disklabel)); lp->d_type = DTYPE_FLOPPY; lp->d_secsize = FD_BSIZE(fd); lp->d_secpercyl = fd->sc_type->seccyl; lp->d_nsectors = fd->sc_type->sectrac; lp->d_ncylinders = fd->sc_type->tracks; lp->d_ntracks = fd->sc_type->heads; /* Go figure... */ lp->d_secperunit = lp->d_secpercyl * lp->d_ncylinders; lp->d_rpm = 300; /* XXX like it matters... */ strncpy(lp->d_typename, "floppy disk", sizeof(lp->d_typename)); strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname)); lp->d_interleave = 1; lp->d_flags = D_REMOVABLE; lp->d_partitions[RAW_PART].p_offset = 0; lp->d_partitions[RAW_PART].p_size = lp->d_secpercyl * lp->d_ncylinders; lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; lp->d_npartitions = RAW_PART + 1; lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(lp); /* * Call the generic disklabel extraction routine. If there's * not a label there, fake it. */ errstring = readdisklabel(dev, fdstrategy, lp, clp, 0); if (errstring) { printf("%s: %s\n", fd->sc_dv.dv_xname, errstring); } } void fd_do_eject(fd) struct fd_softc *fd; { struct fdc_softc *fdc = (void *)fd->sc_dv.dv_parent; bus_space_tag_t t = fdc->sc_bustag; bus_space_handle_t h = fdc->sc_handle; u_int8_t dor = FDO_FRST | FDO_FDMAEN | FDO_MOEN(0); bus_space_write_1(t, h, FDREG77_DOR, dor | FDO_EJ); delay(10); bus_space_write_1(t, h, FDREG77_DOR, FDO_FRST | FDO_DS); }