/* $OpenBSD: z8530kbd.c,v 1.11 2002/03/21 03:09:33 jason Exp $ */ /* $NetBSD: z8530tty.c,v 1.77 2001/05/30 15:24:24 lukem Exp $ */ /*- * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999 * Charles M. Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles M. Hannum. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1994 Gordon W. Ross * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)zs.c 8.1 (Berkeley) 7/19/93 */ /* * Zilog Z8530 Dual UART driver (tty interface) * * This is the "slave" driver that will be attached to * the "zsc" driver for plain "tty" async. serial lines. * * Credits, history: * * The original version of this code was the sparc/dev/zs.c driver * as distributed with the Berkeley 4.4 Lite release. Since then, * Gordon Ross reorganized the code into the current parent/child * driver scheme, separating the Sun keyboard and mouse support * into independent child drivers. * * RTS/CTS flow-control support was a collaboration of: * Gordon Ross , * Bill Studenmund * Ian Dall * * The driver was massively overhauled in November 1997 by Charles Hannum, * fixing *many* bugs, and substantially improving performance. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * How many input characters we can buffer. * The port-specific var.h may override this. * Note: must be a power of two! */ #ifndef ZSKBD_RING_SIZE #define ZSKBD_RING_SIZE 2048 #endif struct cfdriver zskbd_cd = { NULL, "zskbd", DV_TTY }; /* * Make this an option variable one can patch. * But be warned: this must be a power of 2! */ u_int zskbd_rbuf_size = ZSKBD_RING_SIZE; /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */ u_int zskbd_rbuf_hiwat = (ZSKBD_RING_SIZE * 1) / 4; u_int zskbd_rbuf_lowat = (ZSKBD_RING_SIZE * 3) / 4; struct zskbd_softc { struct device zst_dev; /* required first: base device */ struct zs_chanstate *zst_cs; struct timeout zst_diag_ch, zst_bellto; u_int zst_overflows, zst_floods, zst_errors; int zst_hwflags, /* see z8530var.h */ zst_swflags; /* TIOCFLAG_SOFTCAR, ... */ u_int zst_r_hiwat, zst_r_lowat; u_char *volatile zst_rbget, *volatile zst_rbput; volatile u_int zst_rbavail; u_char *zst_rbuf, *zst_ebuf; /* * The transmit byte count and address are used for pseudo-DMA * output in the hardware interrupt code. PDMA can be suspended * to get pending changes done; heldtbc is used for this. It can * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state. */ u_char *zst_tba; /* transmit buffer address */ u_int zst_tbc, /* transmit byte count */ zst_heldtbc; /* held tbc while xmission stopped */ u_char zst_tbuf[ZSKBD_RING_SIZE]; u_char *zst_tbeg, *zst_tend, *zst_tbp; /* Flags to communicate with zskbd_softint() */ volatile u_char zst_rx_flags, /* receiver blocked */ #define RX_TTY_BLOCKED 0x01 #define RX_TTY_OVERFLOWED 0x02 #define RX_IBUF_BLOCKED 0x04 #define RX_IBUF_OVERFLOWED 0x08 #define RX_ANY_BLOCK 0x0f zst_tx_busy, /* working on an output chunk */ zst_tx_done, /* done with one output chunk */ zst_tx_stopped, /* H/W level stop (lost CTS) */ zst_st_check, /* got a status interrupt */ zst_rx_ready; /* PPS signal on DCD, with or without inkernel clock disciplining */ u_char zst_ppsmask; /* pps signal mask */ u_char zst_ppsassert; /* pps leading edge */ u_char zst_ppsclear; /* pps trailing edge */ struct device *zst_wskbddev; int zst_leds; /* LED status */ u_int8_t zst_kbdstate; /* keyboard state */ int zst_layout; /* current layout */ int zst_bellactive, zst_belltimeout; }; /* Definition of the driver for autoconfig. */ static int zskbd_match(struct device *, void *, void *); static void zskbd_attach(struct device *, struct device *, void *); struct cfattach zskbd_ca = { sizeof(struct zskbd_softc), zskbd_match, zskbd_attach }; struct zsops zsops_kbd; static void zs_modem(struct zskbd_softc *, int); static void zs_hwiflow(struct zskbd_softc *); static void zs_maskintr(struct zskbd_softc *); struct zskbd_softc *zskbd_device_lookup(struct cfdriver *, int); /* Low-level routines. */ static void zskbd_rxint(struct zs_chanstate *); static void zskbd_stint(struct zs_chanstate *, int); static void zskbd_txint(struct zs_chanstate *); static void zskbd_softint(struct zs_chanstate *); static void zskbd_diag(void *); void zskbd_init(struct zskbd_softc *); void zskbd_putc(struct zskbd_softc *, u_int8_t); void zskbd_raw(struct zskbd_softc *, u_int8_t); /* wskbd glue */ int zskbd_enable(void *, int); void zskbd_set_leds(void *, int); int zskbd_get_leds(struct zskbd_softc *); int zskbd_ioctl(void *, u_long, caddr_t, int, struct proc *); void zskbd_cngetc(void *, u_int *, int *); void zskbd_cnpollc(void *, int); void zsstart_tx(struct zskbd_softc *); int zsenqueue_tx(struct zskbd_softc *, u_char *, int); void zskbd_bell(struct zskbd_softc *, u_int, u_int, u_int); void zskbd_bellstop(void *); struct wskbd_accessops zskbd_accessops = { zskbd_enable, zskbd_set_leds, zskbd_ioctl }; struct wskbd_consops zskbd_consops = { zskbd_cngetc, zskbd_cnpollc }; #define ZSKBDUNIT(x) (minor(x) & 0x7ffff) struct zskbd_softc * zskbd_device_lookup(cf, unit) struct cfdriver *cf; int unit; { return (struct zskbd_softc *)device_lookup(cf, unit); } /* * zskbd_match: how is this zs channel configured? */ int zskbd_match(parent, vcf, aux) struct device *parent; void *vcf; void *aux; { struct cfdata *cf = vcf; struct zsc_attach_args *args = aux; int ret; /* If we're not looking for a keyboard, just exit */ if (strcmp(args->type, "keyboard") != 0) return (0); ret = 10; /* Exact match is better than wildcard. */ if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel) ret += 2; /* This driver accepts wildcard. */ if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT) ret += 1; return (ret); } void zskbd_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct zsc_softc *zsc = (void *) parent; struct zskbd_softc *zst = (void *) self; struct cfdata *cf = self->dv_cfdata; struct zsc_attach_args *args = aux; struct wskbddev_attach_args a; struct zs_chanstate *cs; int channel, s, tty_unit, console = 0; dev_t dev; timeout_set(&zst->zst_diag_ch, zskbd_diag, zst); timeout_set(&zst->zst_bellto, zskbd_bellstop, zst); zst->zst_tbp = zst->zst_tba = zst->zst_tbeg = zst->zst_tbuf; zst->zst_tend = zst->zst_tbeg + ZSKBD_RING_SIZE; tty_unit = zst->zst_dev.dv_unit; channel = args->channel; cs = zsc->zsc_cs[channel]; cs->cs_private = zst; cs->cs_ops = &zsops_kbd; zst->zst_cs = cs; zst->zst_swflags = cf->cf_flags; /* softcar, etc. */ zst->zst_hwflags = args->hwflags; dev = makedev(zs_major, tty_unit); if (zst->zst_swflags) printf(" flags 0x%x", zst->zst_swflags); /* * Check whether we serve as a console device. * XXX - split console input/output channels aren't * supported yet on /dev/console */ if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) { if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) { args->consdev->cn_dev = dev; cn_tab->cn_pollc = wskbd_cnpollc; cn_tab->cn_getc = wskbd_cngetc; } cn_tab->cn_dev = dev; console = 1; } zst->zst_rbuf = malloc(zskbd_rbuf_size << 1, M_DEVBUF, M_WAITOK); zst->zst_ebuf = zst->zst_rbuf + (zskbd_rbuf_size << 1); /* Disable the high water mark. */ zst->zst_r_hiwat = 0; zst->zst_r_lowat = 0; zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf; zst->zst_rbavail = zskbd_rbuf_size; /* if there are no enable/disable functions, assume the device is always enabled */ if (!cs->enable) cs->enabled = 1; /* * Hardware init */ if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) { /* Call zsparam similar to open. */ /* Wait a while for previous console output to complete */ DELAY(10000); /* * Turn on receiver and status interrupts. * We defer the actual write of the register to zsparam(), * but we must make sure status interrupts are turned on by * the time zsparam() reads the initial rr0 state. */ zskbd_init(zst); SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE); zs_write_reg(cs, 1, cs->cs_creg[1]); s = splzs(); /* Make sure DTR is on now. */ zs_modem(zst, 1); splx(s); } else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) { /* Not the console; may need reset. */ int reset; reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splzs(); zs_write_reg(cs, 9, reset); /* Will raise DTR in open. */ zs_modem(zst, 0); splx(s); printf("\n"); } else printf("\n"); a.console = console; a.keymap = &sunkbd_keymapdata; a.accessops = &zskbd_accessops; a.accesscookie = zst; if (console) wskbd_cnattach(&zskbd_consops, zst, &sunkbd_keymapdata); zst->zst_wskbddev = config_found(self, &a, wskbddevprint); } void zskbd_init(zst) struct zskbd_softc *zst; { struct zs_chanstate *cs = zst->zst_cs; int s, tries; u_int8_t v3, v4, v5, rr0; /* setup for 1200n81 */ if (zs_set_speed(cs, 1200)) { /* set 1200bps */ printf(": failed to set baudrate\n"); return; } if (zs_set_modes(cs, CS8 | CLOCAL)) { printf(": failed to set modes\n"); return; } s = splzs(); zs_maskintr(zst); v3 = cs->cs_preg[3]; /* set 8 bit chars */ v5 = cs->cs_preg[5]; CLR(v3, ZSWR3_RXSIZE); CLR(v5, ZSWR5_TXSIZE); SET(v3, ZSWR3_RX_8); SET(v5, ZSWR5_TX_8); cs->cs_preg[3] = v3; cs->cs_preg[5] = v5; v4 = cs->cs_preg[4]; /* no parity 1 stop */ CLR(v4, ZSWR4_SBMASK | ZSWR4_PARMASK); SET(v4, ZSWR4_ONESB | ZSWR4_EVENP); cs->cs_preg[4] = v4; if (!cs->cs_heldchange) { if (zst->zst_tx_busy) { zst->zst_heldtbc = zst->zst_tbc; zst->zst_tbc = 0; cs->cs_heldchange = 1; } else zs_loadchannelregs(cs); } /* * Hardware flow control is disabled, turn off the buffer water * marks and unblock any soft flow control state. Otherwise, enable * the water marks. */ zst->zst_r_hiwat = 0; zst->zst_r_lowat = 0; if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) { CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED); zst->zst_rx_ready = 1; cs->cs_softreq = 1; } if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) { CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED); zs_hwiflow(zst); } /* * Force a recheck of the hardware carrier and flow control status, * since we may have changed which bits we're looking at. */ zskbd_stint(cs, 1); splx(s); /* * Hardware flow control is disabled, unblock any hard flow control * state. */ if (zst->zst_tx_stopped) { zst->zst_tx_stopped = 0; zsstart_tx(zst); } zskbd_softint(cs); /* Ok, start the reset sequence... */ s = splhigh(); for (tries = 5; tries != 0; tries--) { int ltries; zst->zst_leds = 0; zst->zst_layout = -1; /* Send reset request */ zskbd_putc(zst, SKBD_CMD_RESET); ltries = 1000; while (--ltries > 0) { rr0 = *cs->cs_reg_csr; if (rr0 & ZSRR0_RX_READY) { zskbd_raw(zst, *cs->cs_reg_data); if (zst->zst_kbdstate == SKBD_STATE_RESET) break; } DELAY(1000); } if (ltries == 0) continue; /* Wait for reset to finish. */ ltries = 1000; while (--ltries > 0) { rr0 = *cs->cs_reg_csr; if (rr0 & ZSRR0_RX_READY) { zskbd_raw(zst, *cs->cs_reg_data); if (zst->zst_kbdstate == SKBD_STATE_GETKEY) break; } DELAY(1000); } if (ltries == 0) continue; /* Send layout request */ zskbd_putc(zst, SKBD_CMD_LAYOUT); ltries = 1000; while (--ltries > 0) { rr0 = *cs->cs_reg_csr; if (rr0 & ZSRR0_RX_READY) { zskbd_raw(zst, *cs->cs_reg_data); if (zst->zst_layout != -1) break; } DELAY(1000); } if (ltries == 0) continue; break; } if (tries == 0) printf(": reset timeout\n"); else printf(": layout %d\n", zst->zst_layout); splx(s); } void zskbd_raw(zst, c) struct zskbd_softc *zst; u_int8_t c; { int claimed = 0; if (zst->zst_kbdstate == SKBD_STATE_LAYOUT) { zst->zst_kbdstate = SKBD_STATE_GETKEY; zst->zst_layout = c; return; } switch (c) { case SKBD_RSP_RESET: zst->zst_kbdstate = SKBD_STATE_RESET; claimed = 1; break; case SKBD_RSP_LAYOUT: zst->zst_kbdstate = SKBD_STATE_LAYOUT; claimed = 1; break; case SKBD_RSP_IDLE: zst->zst_kbdstate = SKBD_STATE_GETKEY; claimed = 1; } if (claimed) return; switch (zst->zst_kbdstate) { case SKBD_STATE_RESET: zst->zst_kbdstate = SKBD_STATE_GETKEY; if (c != SKBD_RSP_RESET_OK) printf("%s: reset1 invalid code 0x%02x\n", zst->zst_dev.dv_xname, c); break; case SKBD_STATE_GETKEY: break; } } void zskbd_putc(zst, c) struct zskbd_softc *zst; u_int8_t c; { u_int8_t rr0; int s; s = splhigh(); do { rr0 = *zst->zst_cs->cs_reg_csr; } while ((rr0 & ZSRR0_TX_READY) == 0); *zst->zst_cs->cs_reg_data = c; delay(2); splx(s); } int zsenqueue_tx(zst, str, len) struct zskbd_softc *zst; u_char *str; int len; { int s, i; s = splzs(); if (zst->zst_tbc + len > ZSKBD_RING_SIZE) return (-1); zst->zst_tbc += len; for (i = 0; i < len; i++) { *zst->zst_tbp = str[i]; if (++zst->zst_tbp == zst->zst_tend) zst->zst_tbp = zst->zst_tbeg; } splx(s); zsstart_tx(zst); return (0); } void zsstart_tx(zst) struct zskbd_softc *zst; { struct zs_chanstate *cs = zst->zst_cs; int s, s1; s = spltty(); if (zst->zst_tx_stopped) goto out; if (zst->zst_tbc == 0) goto out; s1 = splzs(); zst->zst_tx_busy = 1; if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) { SET(cs->cs_preg[1], ZSWR1_TIE); cs->cs_creg[1] = cs->cs_preg[1]; zs_write_reg(cs, 1, cs->cs_creg[1]); } zs_write_data(cs, *zst->zst_tba); zst->zst_tbc--; if (++zst->zst_tba == zst->zst_tend) zst->zst_tba = zst->zst_tbeg; splx(s1); out: splx(s); } /* * Compute interupt enable bits and set in the pending bits. Called both * in zsparam() and when PPS (pulse per second timing) state changes. * Must be called at splzs(). */ static void zs_maskintr(zst) struct zskbd_softc *zst; { struct zs_chanstate *cs = zst->zst_cs; int tmp15; cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd; if (zst->zst_ppsmask != 0) cs->cs_rr0_mask |= cs->cs_rr0_pps; tmp15 = cs->cs_preg[15]; if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD)) SET(tmp15, ZSWR15_DCD_IE); else CLR(tmp15, ZSWR15_DCD_IE); if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS)) SET(tmp15, ZSWR15_CTS_IE); else CLR(tmp15, ZSWR15_CTS_IE); cs->cs_preg[15] = tmp15; } /* * Raise or lower modem control (DTR/RTS) signals. If a character is * in transmission, the change is deferred. */ static void zs_modem(zst, onoff) struct zskbd_softc *zst; int onoff; { struct zs_chanstate *cs = zst->zst_cs; if (cs->cs_wr5_dtr == 0) return; if (onoff) SET(cs->cs_preg[5], cs->cs_wr5_dtr); else CLR(cs->cs_preg[5], cs->cs_wr5_dtr); if (!cs->cs_heldchange) { if (zst->zst_tx_busy) { zst->zst_heldtbc = zst->zst_tbc; zst->zst_tbc = 0; cs->cs_heldchange = 1; } else zs_loadchannelregs(cs); } } /* * Internal version of zshwiflow * called at splzs */ static void zs_hwiflow(zst) struct zskbd_softc *zst; { struct zs_chanstate *cs = zst->zst_cs; if (cs->cs_wr5_rts == 0) return; if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) { CLR(cs->cs_preg[5], cs->cs_wr5_rts); CLR(cs->cs_creg[5], cs->cs_wr5_rts); } else { SET(cs->cs_preg[5], cs->cs_wr5_rts); SET(cs->cs_creg[5], cs->cs_wr5_rts); } zs_write_reg(cs, 5, cs->cs_creg[5]); } /**************************************************************** * Interface to the lower layer (zscc) ****************************************************************/ #define integrate integrate void zskbd_rxsoft(struct zskbd_softc *); integrate void zskbd_txsoft(struct zskbd_softc *); integrate void zskbd_stsoft(struct zskbd_softc *); /* * receiver ready interrupt. * called at splzs */ static void zskbd_rxint(cs) struct zs_chanstate *cs; { struct zskbd_softc *zst = cs->cs_private; u_char *put, *end; u_int cc; u_char rr0, rr1, c; end = zst->zst_ebuf; put = zst->zst_rbput; cc = zst->zst_rbavail; while (cc > 0) { /* * First read the status, because reading the received char * destroys the status of this char. */ rr1 = zs_read_reg(cs, 1); c = zs_read_data(cs); if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) { /* Clear the receive error. */ zs_write_csr(cs, ZSWR0_RESET_ERRORS); } put[0] = c; put[1] = rr1; put += 2; if (put >= end) put = zst->zst_rbuf; cc--; rr0 = zs_read_csr(cs); if (!ISSET(rr0, ZSRR0_RX_READY)) break; } /* * Current string of incoming characters ended because * no more data was available or we ran out of space. * Schedule a receive event if any data was received. * If we're out of space, turn off receive interrupts. */ zst->zst_rbput = put; zst->zst_rbavail = cc; if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) { zst->zst_rx_ready = 1; cs->cs_softreq = 1; } /* * See if we are in danger of overflowing a buffer. If * so, use hardware flow control to ease the pressure. */ if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) && cc < zst->zst_r_hiwat) { SET(zst->zst_rx_flags, RX_IBUF_BLOCKED); zs_hwiflow(zst); } /* * If we're out of space, disable receive interrupts * until the queue has drained a bit. */ if (!cc) { SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED); CLR(cs->cs_preg[1], ZSWR1_RIE); cs->cs_creg[1] = cs->cs_preg[1]; zs_write_reg(cs, 1, cs->cs_creg[1]); } } /* * transmitter ready interrupt. (splzs) */ static void zskbd_txint(cs) struct zs_chanstate *cs; { struct zskbd_softc *zst = cs->cs_private; /* * If we've delayed a parameter change, do it now, and restart * output. */ if (cs->cs_heldchange) { zs_loadchannelregs(cs); cs->cs_heldchange = 0; zst->zst_tbc = zst->zst_heldtbc; zst->zst_heldtbc = 0; } /* Output the next character in the buffer, if any. */ if (zst->zst_tbc > 0) { zs_write_data(cs, *zst->zst_tba); zst->zst_tbc--; if (++zst->zst_tba == zst->zst_tend) zst->zst_tba = zst->zst_tbeg; } else { /* Disable transmit completion interrupts if necessary. */ if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) { CLR(cs->cs_preg[1], ZSWR1_TIE); cs->cs_creg[1] = cs->cs_preg[1]; zs_write_reg(cs, 1, cs->cs_creg[1]); } if (zst->zst_tx_busy) { zst->zst_tx_busy = 0; zst->zst_tx_done = 1; cs->cs_softreq = 1; } } } /* * status change interrupt. (splzs) */ static void zskbd_stint(cs, force) struct zs_chanstate *cs; int force; { struct zskbd_softc *zst = cs->cs_private; u_char rr0, delta; rr0 = zs_read_csr(cs); zs_write_csr(cs, ZSWR0_RESET_STATUS); /* * Check here for console break, so that we can abort * even when interrupts are locking up the machine. */ if (!force) delta = rr0 ^ cs->cs_rr0; else delta = cs->cs_rr0_mask; cs->cs_rr0 = rr0; if (ISSET(delta, cs->cs_rr0_mask)) { SET(cs->cs_rr0_delta, delta); /* * Stop output immediately if we lose the output * flow control signal or carrier detect. */ if (ISSET(~rr0, cs->cs_rr0_mask)) { zst->zst_tbc = 0; zst->zst_heldtbc = 0; } zst->zst_st_check = 1; cs->cs_softreq = 1; } } void zskbd_diag(arg) void *arg; { struct zskbd_softc *zst = arg; int overflows, floods; int s; s = splzs(); overflows = zst->zst_overflows; zst->zst_overflows = 0; floods = zst->zst_floods; zst->zst_floods = 0; zst->zst_errors = 0; splx(s); log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n", zst->zst_dev.dv_xname, overflows, overflows == 1 ? "" : "s", floods, floods == 1 ? "" : "s"); } integrate void zskbd_rxsoft(zst) struct zskbd_softc *zst; { struct zs_chanstate *cs = zst->zst_cs; u_char *get, *end; u_int cc, scc, type; u_char rr1; int code, value; int s; end = zst->zst_ebuf; get = zst->zst_rbget; scc = cc = zskbd_rbuf_size - zst->zst_rbavail; if (cc == zskbd_rbuf_size) { zst->zst_floods++; if (zst->zst_errors++ == 0) timeout_add(&zst->zst_diag_ch, 60 * hz); } while (cc) { code = get[0]; rr1 = get[1]; if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) { if (ISSET(rr1, ZSRR1_DO)) { zst->zst_overflows++; if (zst->zst_errors++ == 0) timeout_add(&zst->zst_diag_ch, 60 * hz); } if (ISSET(rr1, ZSRR1_FE)) SET(code, TTY_FE); if (ISSET(rr1, ZSRR1_PE)) SET(code, TTY_PE); } switch (code) { case SKBD_RSP_IDLE: type = WSCONS_EVENT_ALL_KEYS_UP; value = 0; break; default: type = (code & 0x80) ? WSCONS_EVENT_KEY_UP : WSCONS_EVENT_KEY_DOWN; value = code & 0x7f; break; } wskbd_input(zst->zst_wskbddev, type, value); get += 2; if (get >= end) get = zst->zst_rbuf; cc--; } if (cc != scc) { zst->zst_rbget = get; s = splzs(); cc = zst->zst_rbavail += scc - cc; /* Buffers should be ok again, release possible block. */ if (cc >= zst->zst_r_lowat) { if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) { CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED); SET(cs->cs_preg[1], ZSWR1_RIE); cs->cs_creg[1] = cs->cs_preg[1]; zs_write_reg(cs, 1, cs->cs_creg[1]); } if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) { CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED); zs_hwiflow(zst); } } splx(s); } } integrate void zskbd_txsoft(zst) struct zskbd_softc *zst; { } integrate void zskbd_stsoft(zst) struct zskbd_softc *zst; { struct zs_chanstate *cs = zst->zst_cs; u_char rr0, delta; int s; s = splzs(); rr0 = cs->cs_rr0; delta = cs->cs_rr0_delta; cs->cs_rr0_delta = 0; splx(s); if (ISSET(delta, cs->cs_rr0_cts)) { /* Block or unblock output according to flow control. */ if (ISSET(rr0, cs->cs_rr0_cts)) zst->zst_tx_stopped = 0; else zst->zst_tx_stopped = 1; } } /* * Software interrupt. Called at zssoft * * The main job to be done here is to empty the input ring * by passing its contents up to the tty layer. The ring is * always emptied during this operation, therefore the ring * must not be larger than the space after "high water" in * the tty layer, or the tty layer might drop our input. * * Note: an "input blockage" condition is assumed to exist if * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set. */ static void zskbd_softint(cs) struct zs_chanstate *cs; { struct zskbd_softc *zst = cs->cs_private; int s; s = spltty(); if (zst->zst_rx_ready) { zst->zst_rx_ready = 0; zskbd_rxsoft(zst); } if (zst->zst_st_check) { zst->zst_st_check = 0; zskbd_stsoft(zst); } if (zst->zst_tx_done) { zst->zst_tx_done = 0; zskbd_txsoft(zst); } splx(s); } struct zsops zsops_kbd = { zskbd_rxint, /* receive char available */ zskbd_stint, /* external/status */ zskbd_txint, /* xmit buffer empty */ zskbd_softint, /* process software interrupt */ }; int zskbd_enable(v, on) void *v; int on; { return (0); } void zskbd_set_leds(v, wled) void *v; int wled; { struct zskbd_softc *zst = v; u_int8_t sled = 0; u_int8_t cmd[2]; zst->zst_leds = wled; if (wled & WSKBD_LED_CAPS) sled |= SKBD_LED_CAPSLOCK; if (wled & WSKBD_LED_NUM) sled |= SKBD_LED_NUMLOCK; if (wled & WSKBD_LED_SCROLL) sled |= SKBD_LED_SCROLLLOCK; if (wled & WSKBD_LED_COMPOSE) sled |= SKBD_LED_COMPOSE; cmd[0] = SKBD_CMD_SETLED; cmd[1] = sled; zsenqueue_tx(zst, cmd, sizeof(cmd)); } int zskbd_get_leds(zst) struct zskbd_softc *zst; { return (zst->zst_leds); } int zskbd_ioctl(v, cmd, data, flag, p) void *v; u_long cmd; caddr_t data; int flag; struct proc *p; { struct zskbd_softc *zst = v; int *d_int = (int *)data; struct wskbd_bell_data *d_bell = (struct wskbd_bell_data *)data; switch (cmd) { case WSKBDIO_GTYPE: *d_int = WSKBD_TYPE_SUN; return (0); case WSKBDIO_SETLEDS: zskbd_set_leds(zst, *d_int); return (0); case WSKBDIO_GETLEDS: *d_int = zskbd_get_leds(zst); return (0); case WSKBDIO_COMPLEXBELL: zskbd_bell(zst, d_bell->period, d_bell->pitch, d_bell->volume); return (0); } return (-1); } void zskbd_bell(zst, period, pitch, volume) struct zskbd_softc *zst; u_int period, pitch, volume; { int ticks, s; u_int8_t c = SKBD_CMD_BELLON; ticks = (period * hz)/1000; if (ticks <= 0) ticks = 1; s = splzs(); if (zst->zst_bellactive) { if (zst->zst_belltimeout == 0) timeout_del(&zst->zst_bellto); } if (pitch == 0 || period == 0) { zskbd_bellstop(zst); splx(s); return; } if (!zst->zst_bellactive) { zst->zst_bellactive = 1; zst->zst_belltimeout = 1; zsenqueue_tx(zst, &c, 1); timeout_add(&zst->zst_bellto, ticks); } splx(s); } void zskbd_bellstop(v) void *v; { struct zskbd_softc *zst = v; int s; u_int8_t c; s = splzs(); zst->zst_belltimeout = 0; c = SKBD_CMD_BELLOFF; zsenqueue_tx(zst, &c, 1); zst->zst_bellactive = 0; splx(s); } void zskbd_cnpollc(v, on) void *v; int on; { extern int swallow_zsintrs; if (on) swallow_zsintrs++; else swallow_zsintrs--; } void zskbd_cngetc(v, type, data) void *v; u_int *type; int *data; { struct zskbd_softc *zst = v; int s; u_int8_t c, rr0; s = splhigh(); do { rr0 = *zst->zst_cs->cs_reg_csr; } while ((rr0 & ZSRR0_RX_READY) == 0); c = *zst->zst_cs->cs_reg_data; splx(s); switch (c) { case SKBD_RSP_IDLE: *type = WSCONS_EVENT_ALL_KEYS_UP; *data = 0; break; default: *type = (c & 0x80) ? WSCONS_EVENT_KEY_UP : WSCONS_EVENT_KEY_DOWN; *data = c & 0x7f; break; } }