/* $OpenBSD: cpu.h,v 1.90 2017/04/20 10:03:40 kettenis Exp $ */ /* $NetBSD: cpu.h,v 1.28 2001/06/14 22:56:58 thorpej Exp $ */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)cpu.h 8.4 (Berkeley) 1/5/94 */ #ifndef _MACHINE_CPU_H_ #define _MACHINE_CPU_H_ /* * CTL_MACHDEP definitions. */ /* 1 formerly: booted kernel name */ #define CPU_LED_BLINK 2 /* int: blink leds? */ #define CPU_ALLOWAPERTURE 3 /* allow xf86 operations */ #define CPU_CPUTYPE 4 /* cpu type */ #define CPU_CECCERRORS 5 /* Correctable ECC errors */ #define CPU_CECCLAST 6 /* Correctable ECC last fault addr */ /* 7 formerly: soft reset via keyboard */ #define CPU_MAXID 8 /* number of valid machdep ids */ #define CTL_MACHDEP_NAMES { \ { 0, 0 }, \ { 0, 0 }, \ { "led_blink", CTLTYPE_INT }, \ { "allowaperture", CTLTYPE_INT }, \ { "cputype", CTLTYPE_INT }, \ { "ceccerrs", CTLTYPE_INT }, \ { "cecclast", CTLTYPE_QUAD }, \ { 0, 0 }, \ } #ifdef _KERNEL /* * Exported definitions unique to SPARC cpu support. */ #include #include #include #include #include /* * The cpu_info structure is part of a 64KB structure mapped both the kernel * pmap and a single locked TTE a CPUINFO_VA for that particular processor. * Each processor's cpu_info is accessible at CPUINFO_VA only for that * processor. Other processors can access that through an additional mapping * in the kernel pmap. * * The 64KB page contains: * * cpu_info * interrupt stack (all remaining space) * idle PCB * idle stack (STACKSPACE - sizeof(PCB)) * 32KB TSB */ struct cpu_info { /* * SPARC cpu_info structures live at two VAs: one global * VA (so each CPU can access any other CPU's cpu_info) * and an alias VA CPUINFO_VA which is the same on each * CPU and maps to that CPU's cpu_info. Since the alias * CPUINFO_VA is how we locate our cpu_info, we have to * self-reference the global VA so that we can return it * in the curcpu() macro. */ struct cpu_info * volatile ci_self; /* Most important fields first */ struct proc *ci_curproc; struct pcb *ci_cpcb; /* also initial stack */ struct cpu_info *ci_next; struct proc *ci_fpproc; int ci_number; int ci_flags; int ci_upaid; #ifdef MULTIPROCESSOR int ci_itid; struct srp_hazard ci_srp_hazards[SRP_HAZARD_NUM]; #endif int ci_node; u_int32_t ci_randseed; struct schedstate_percpu ci_schedstate; /* scheduler state */ int ci_want_resched; int ci_handled_intr_level; void *ci_intrpending[16][8]; u_int64_t ci_tick; struct intrhand ci_tickintr; volatile int ci_ddb_paused; #define CI_DDB_RUNNING 0 #define CI_DDB_SHOULDSTOP 1 #define CI_DDB_STOPPED 2 #define CI_DDB_ENTERDDB 3 #define CI_DDB_INDDB 4 /* Spinning up the CPU */ void (*ci_spinup)(void); /* spinup routine */ void *ci_initstack; paddr_t ci_paddr; /* Phys addr of this structure. */ #ifdef SUN4V struct rwindow64 ci_rw; u_int64_t ci_rwsp; paddr_t ci_mmfsa; paddr_t ci_cpumq; paddr_t ci_devmq; paddr_t ci_cpuset; paddr_t ci_mondo; #endif int ci_pci_probe; int ci_pci_fault; #ifdef DIAGNOSTIC int ci_mutex_level; #endif #ifdef GPROF struct gmonparam *ci_gmon; #endif }; #define CPUF_RUNNING 0x0001 /* CPU is running */ extern struct cpu_info *cpus; #ifdef MULTIPROCESSOR register struct cpu_info *__curcpu asm ("g7"); #define curcpu() (__curcpu->ci_self) #define cpu_number() (__curcpu->ci_number) #define CPU_IS_PRIMARY(ci) ((ci)->ci_number == 0) #define CPU_INFO_ITERATOR int #define CPU_INFO_FOREACH(cii, ci) \ for (cii = 0, ci = cpus; ci != NULL; ci = ci->ci_next) #define CPU_INFO_UNIT(ci) ((ci)->ci_number) #define MAXCPUS 256 void cpu_boot_secondary_processors(void); void sparc64_send_ipi(int, void (*)(void), u_int64_t, u_int64_t); void sparc64_broadcast_ipi(void (*)(void), u_int64_t, u_int64_t); void cpu_unidle(struct cpu_info *); #else /* MULTIPROCESSOR */ #define __curcpu ((struct cpu_info *)CPUINFO_VA) #define curcpu() __curcpu #define cpu_number() 0 #define CPU_IS_PRIMARY(ci) 1 #define CPU_INFO_ITERATOR int #define CPU_INFO_FOREACH(cii, ci) \ for (cii = 0, ci = curcpu(); ci != NULL; ci = NULL) #define CPU_INFO_UNIT(ci) 0 #define MAXCPUS 1 #define cpu_unidle(ci) #endif /* MULTIPROCESSOR */ #define curpcb __curcpu->ci_cpcb #define fpproc __curcpu->ci_fpproc #define CPU_BUSY_CYCLE() do {} while (0) /* * Arguments to hardclock, softclock and gatherstats encapsulate the * previous machine state in an opaque clockframe. The ipl is here * as well for strayintr (see locore.s:interrupt and intr.c:strayintr). */ struct clockframe { struct trapframe64 t; int saved_intr_level; }; #define CLKF_USERMODE(framep) (((framep)->t.tf_tstate & TSTATE_PRIV) == 0) #define CLKF_PC(framep) ((framep)->t.tf_pc) #define CLKF_INTR(framep) ((framep)->saved_intr_level != 0) extern void (*cpu_start_clock)(void); #define aston(p) ((p)->p_md.md_astpending = 1) /* * Preempt the current process if in interrupt from user mode, * or after the current trap/syscall if in system mode. */ extern void need_resched(struct cpu_info *); #define clear_resched(ci) (ci)->ci_want_resched = 0 /* * This is used during profiling to integrate system time. */ #define PROC_PC(p) ((p)->p_md.md_tf->tf_pc) #define PROC_STACK(p) ((p)->p_md.md_tf->tf_out[6] + (2048-1)) /* BIAS */ /* * Give a profiling tick to the current process when the user profiling * buffer pages are invalid. On the sparc, request an ast to send us * through trap(), marking the proc as needing a profiling tick. */ #define need_proftick(p) aston(p) void signotify(struct proc *); /* cpu.c */ int cpu_myid(void); /* machdep.c */ int ldcontrolb(caddr_t); void dumpconf(void); caddr_t reserve_dumppages(caddr_t); /* clock.c */ struct timeval; int clockintr(void *);/* level 10 (clock) interrupt code */ int statintr(void *); /* level 14 (statclock) interrupt code */ /* locore.s */ struct fpstate64; void savefpstate(struct fpstate64 *); void loadfpstate(struct fpstate64 *); void clearfpstate(void); u_int64_t probeget(paddr_t, int, int); #define write_all_windows() __asm volatile("flushw" : : ) void write_user_windows(void); void proc_trampoline(void); struct pcb; void snapshot(struct pcb *); struct frame *getfp(void); int xldcontrolb(caddr_t, struct pcb *); void copywords(const void *, void *, size_t); void qcopy(const void *, void *, size_t); void qzero(void *, size_t); void switchtoctx(int); /* trap.c */ void pmap_unuse_final(struct proc *); int rwindow_save(struct proc *); /* vm_machdep.c */ void fpusave_cpu(struct cpu_info *, int); void fpusave_proc(struct proc *, int); /* cons.c */ int cnrom(void); /* zs.c */ void zsconsole(struct tty *, int, int, void (**)(struct tty *, int)); /* fb.c */ void fb_unblank(void); /* tda.c */ void tda_full_blast(void); /* emul.c */ int emulinstr(vaddr_t, struct trapframe64 *); int emul_qf(int32_t, struct proc *, union sigval, struct trapframe64 *); int emul_popc(int32_t, struct proc *, union sigval, struct trapframe64 *); /* * * The SPARC has a Trap Base Register (TBR) which holds the upper 20 bits * of the trap vector table. The next eight bits are supplied by the * hardware when the trap occurs, and the bottom four bits are always * zero (so that we can shove up to 16 bytes of executable code---exactly * four instructions---into each trap vector). * * The hardware allocates half the trap vectors to hardware and half to * software. * * Traps have priorities assigned (lower number => higher priority). */ struct trapvec { int tv_instr[8]; /* the eight instructions */ }; extern struct trapvec trapbase[]; /* the 256 vectors */ extern void wzero(void *, u_int); extern void wcopy(const void *, void *, u_int); struct blink_led { void (*bl_func)(void *, int); void *bl_arg; SLIST_ENTRY(blink_led) bl_next; }; extern void blink_led_register(struct blink_led *); #ifdef MULTIPROCESSOR #include #endif #endif /* _KERNEL */ #endif /* _MACHINE_CPU_H_ */