/* $NetBSD: zs.c,v 1.30 1995/10/08 23:42:59 gwr Exp $ */ /* * Copyright (c) 1994 Gordon W. Ross * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)zs.c 8.1 (Berkeley) 7/19/93 */ /* * Zilog Z8530 (ZSCC) driver. * * Runs two tty ports (ttya and ttyb) on zs0, * and runs a keyboard and mouse on zs1. * * This driver knows far too much about chip to usage mappings. */ #define NZS 2 /* XXX */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The default parity REALLY needs to be the same as the PROM uses, * or you can not see messages done with printf during boot-up... */ #undef TTYDEF_CFLAG #define TTYDEF_CFLAG (CREAD | CS8 | HUPCL) #ifdef KGDB #include #endif #define ZSMAJOR 12 /* XXX */ #define ZS_KBD 2 /* XXX */ #define ZS_MOUSE 3 /* XXX */ /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */ #define PCLK (9600 * 512) /* PCLK pin input clock rate */ /* * Define interrupt levels. */ #define ZSHARD_PRI 6 /* Wired on the CPU board... */ #define ZSSOFT_PRI 3 /* Want tty pri (4) but this is OK. */ /* * Software state per found chip. This would be called `zs_softc', * but the previous driver had a rather different zs_softc.... */ struct zsinfo { struct device zi_dev; /* base device */ volatile struct zsdevice *zi_zs;/* chip registers */ struct zs_chanstate zi_cs[2]; /* channel A and B software state */ }; static struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */ /* Definition of the driver for autoconfig. */ static int zs_match(struct device *, void *, void *); static void zs_attach(struct device *, struct device *, void *); struct cfdriver zscd = { NULL, "zs", zs_match, zs_attach, DV_TTY, sizeof(struct zsinfo) }; /* Interrupt handlers. */ static int zshard(int); static int zssoft(int); struct zs_chanstate *zslist; /* Routines called from other code. */ int zsopen(dev_t, int, int, struct proc *); int zsclose(dev_t, int, int, struct proc *); static void zsiopen(struct tty *); static void zsiclose(struct tty *); static void zsstart(struct tty *); void zsstop(struct tty *, int); static int zsparam(struct tty *, struct termios *); /* Routines purely local to this driver. */ static int zs_getspeed(volatile struct zschan *); static void zs_reset(volatile struct zschan *, int, int); static void zs_modem(struct zs_chanstate *, int); static void zs_loadchannelregs(volatile struct zschan *, u_char *); static u_char zs_read(volatile struct zschan *, u_char); static u_char zs_write(volatile struct zschan *, u_char, u_char); /* Console stuff. */ static volatile struct zschan *zs_conschan; #ifdef KGDB /* KGDB stuff. Must reboot to change zs_kgdbunit. */ extern int kgdb_dev, kgdb_rate; static int zs_kgdb_savedspeed; static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *); #endif /* * Console keyboard L1-A processing is done in the hardware interrupt code, * so we need to duplicate some of the console keyboard decode state. (We * must not use the regular state as the hardware code keeps ahead of the * software state: the software state tracks the most recent ring input but * the hardware state tracks the most recent ZSCC input.) See also kbd.h. */ static struct conk_state { /* console keyboard state */ char conk_id; /* true => ID coming up (console only) */ char conk_l1; /* true => L1 pressed (console only) */ } zsconk_state; int zshardscope; int zsshortcuts; /* number of "shortcut" software interrupts */ int zssoftpending; /* We have done isr_soft_request() */ static struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */ /* Default OBIO addresses. */ static int zs_physaddr[NZS] = { OBIO_ZS, OBIO_KEYBD_MS }; static u_char zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE, 0x18 + ZSHARD_PRI, /* IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ 0, /* 9: ZSWR9_MASTER_IE (later) */ 0, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 0, /*12: BAUDLO (later) */ 0, /*13: BAUDHI (later) */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA, ZSWR15_BREAK_IE | ZSWR15_DCD_IE, }; /* Find PROM mappings (for console support). */ void zs_init() { int i; for (i = 0; i < NZS; i++) { zsaddr[i] = (struct zsdevice *) obio_find_mapping(zs_physaddr[i], OBIO_ZS_SIZE); } } /* * Match slave number to zs unit number, so that misconfiguration will * not set up the keyboard as ttya, etc. */ static int zs_match(struct device *parent, void *vcf, void *args) { struct cfdata *cf = vcf; struct confargs *ca = args; int unit, x; void *zsva; unit = cf->cf_unit; if (unit < 0 || unit >= NZS) return (0); zsva = zsaddr[unit]; if (zsva == NULL) return (0); if (ca->ca_paddr == -1) ca->ca_paddr = zs_physaddr[unit]; if (ca->ca_intpri == -1) ca->ca_intpri = ZSHARD_PRI; /* This returns -1 on a fault (bus error). */ x = peek_byte(zsva); return (x != -1); } /* * Attach a found zs. * * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE? */ static void zs_attach(struct device *parent, struct device *self, void *args) { struct cfdata *cf; struct confargs *ca; register int zs, unit; register struct zsinfo *zi; register struct zs_chanstate *cs; register volatile struct zsdevice *addr; register struct tty *tp, *ctp; int softcar; static int didintr; cf = self->dv_cfdata; zs = self->dv_unit; ca = args; printf(" softpri %d\n", ZSSOFT_PRI); if (zsaddr[zs] == NULL) panic("zs_attach: zs%d not mapped\n", zs); addr = zsaddr[zs]; if (!didintr) { didintr = 1; isr_add_autovect(zssoft, NULL, ZSSOFT_PRI); isr_add_autovect(zshard, NULL, ZSHARD_PRI); } zi = (struct zsinfo *)self; zi->zi_zs = addr; unit = zs * 2; cs = zi->zi_cs; softcar = cf->cf_flags; if(!zs_tty[unit]) zs_tty[unit] = ttymalloc(); if(!zs_tty[unit+1]) zs_tty[unit+1] = ttymalloc(); /* link into interrupt list with order (A,B) (B=A+1) */ cs[0].cs_next = &cs[1]; cs[1].cs_next = zslist; zslist = cs; tp = zs_tty[unit]; cs->cs_unit = unit; cs->cs_zc = &addr->zs_chan[ZS_CHAN_A]; cs->cs_speed = zs_getspeed(cs->cs_zc); #ifdef DEBUG mon_printf("zs%da speed %d ", zs, cs->cs_speed); #endif cs->cs_softcar = softcar & 1; cs->cs_ttyp = tp; tp->t_dev = makedev(ZSMAJOR, unit); tp->t_oproc = zsstart; tp->t_param = zsparam; if (cs->cs_zc == zs_conschan) { /* This unit is the console. */ cs->cs_consio = 1; cs->cs_brkabort = 1; cs->cs_softcar = 1; /* Call zsparam so interrupts get enabled. */ tp->t_ispeed = tp->t_ospeed = cs->cs_speed; tp->t_cflag = TTYDEF_CFLAG; (void) zsparam(tp, &tp->t_termios); } else { /* Can not run kgdb on the console? */ #ifdef KGDB zs_checkkgdb(unit, cs, tp); #endif } #if 0 /* XXX - Drop carrier here? -gwr */ zs_modem(cs, cs->cs_softcar ? 1 : 0); #endif if (unit == ZS_KBD) { /* * Keyboard: tell /dev/kbd driver how to talk to us. */ tp->t_ispeed = tp->t_ospeed = cs->cs_speed; tp->t_cflag = CS8; /* zsparam called by zsiopen */ kbd_serial(tp, zsiopen, zsiclose); cs->cs_conk = 1; /* do L1-A processing */ } unit++; cs++; tp = zs_tty[unit]; cs->cs_unit = unit; cs->cs_zc = &addr->zs_chan[ZS_CHAN_B]; cs->cs_speed = zs_getspeed(cs->cs_zc); #ifdef DEBUG mon_printf("zs%db speed %d\n", zs, cs->cs_speed); #endif cs->cs_softcar = softcar & 2; cs->cs_ttyp = tp; tp->t_dev = makedev(ZSMAJOR, unit); tp->t_oproc = zsstart; tp->t_param = zsparam; if (cs->cs_zc == zs_conschan) { /* This unit is the console. */ cs->cs_consio = 1; cs->cs_brkabort = 1; cs->cs_softcar = 1; tp->t_ispeed = tp->t_ospeed = cs->cs_speed; tp->t_cflag = TTYDEF_CFLAG; (void) zsparam(tp, &tp->t_termios); } else { /* Can not run kgdb on the console? */ #ifdef KGDB zs_checkkgdb(unit, cs, tp); #endif } #if 0 /* XXX - Drop carrier here? -gwr */ zs_modem(cs, cs->cs_softcar ? 1 : 0); #endif if (unit == ZS_MOUSE) { /* * Mouse: tell /dev/mouse driver how to talk to us. */ tp->t_ispeed = tp->t_ospeed = cs->cs_speed; tp->t_cflag = CS8; /* zsparam called by zsiopen */ ms_serial(tp, zsiopen, zsiclose); } } /* * XXX - Temporary hack... */ struct tty * zstty(dev) dev_t dev; { int unit = minor(dev); return (zs_tty[unit]); } /* * Put a channel in a known state. Interrupts may be left disabled * or enabled, as desired. (Used only by kgdb) */ static void zs_reset(zc, inten, speed) volatile struct zschan *zc; int inten, speed; { int tconst; u_char reg[16]; bcopy(zs_init_reg, reg, 16); if (inten) reg[9] |= ZSWR9_MASTER_IE; tconst = BPS_TO_TCONST(PCLK / 16, speed); reg[12] = tconst; reg[13] = tconst >> 8; zs_loadchannelregs(zc, reg); } /* * Console support */ /* * Used by the kd driver to find out if it can work. */ int zscnprobe_kbd() { if (zsaddr[1] == NULL) { mon_printf("zscnprobe_kbd: zs1 not yet mapped\n"); return CN_DEAD; } return CN_INTERNAL; } /* * This is the console probe routine for ttya and ttyb. */ static int zscnprobe(struct consdev *cn, int unit) { int maj; if (zsaddr[0] == NULL) { mon_printf("zscnprobe: zs0 not mapped\n"); cn->cn_pri = CN_DEAD; return 0; } /* XXX - Also try to make sure it exists? */ /* locate the major number */ for (maj = 0; maj < nchrdev; maj++) if (cdevsw[maj].d_open == (void*)zsopen) break; cn->cn_dev = makedev(maj, unit); /* Use EEPROM console setting to decide "remote" console. */ /* Note: EE_CONS_TTYA + 1 == EE_CONS_TTYB */ if (ee_console == (EE_CONS_TTYA + unit)) { cn->cn_pri = CN_REMOTE; } else { cn->cn_pri = CN_NORMAL; } return (0); } /* This is the constab entry for TTYA. */ int zscnprobe_a(struct consdev *cn) { return (zscnprobe(cn, 0)); } /* This is the constab entry for TTYB. */ int zscnprobe_b(struct consdev *cn) { return (zscnprobe(cn, 1)); } /* Called by kdcninit() or below. */ void zs_set_conschan(unit, ab) int unit, ab; { volatile struct zsdevice *addr; addr = zsaddr[unit]; zs_conschan = ((ab == 0) ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B] ); } /* Attach as console. Also set zs_conschan */ int zscninit(struct consdev *cn) { int ab = minor(cn->cn_dev) & 1; zs_set_conschan(0, ab); mon_printf("console on zs0 (tty%c)\n", 'a' + ab); } /* * Polled console input putchar. */ int zscngetc(dev) dev_t dev; { register volatile struct zschan *zc = zs_conschan; register int s, c, rr0; if (zc == NULL) return (0); s = splhigh(); /* Wait for a character to arrive. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); c = zc->zc_data; ZS_DELAY(); splx(s); /* * This is used by the kd driver to read scan codes, * so don't translate '\r' ==> '\n' here... */ return (c); } /* * Polled console output putchar. */ int zscnputc(dev, c) dev_t dev; int c; { register volatile struct zschan *zc = zs_conschan; register int s, rr0; if (zc == NULL) { s = splhigh(); mon_putchar(c); splx(s); return (0); } s = splhigh(); /* Wait for transmitter to become ready. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_TX_READY) == 0); zc->zc_data = c; ZS_DELAY(); splx(s); } #ifdef KGDB /* * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init). * Pick up the current speed and character size and restore the original * speed. */ static void zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp) { if (kgdb_dev == makedev(ZSMAJOR, unit)) { tp->t_ispeed = tp->t_ospeed = kgdb_rate; tp->t_cflag = CS8; cs->cs_kgdb = 1; cs->cs_speed = zs_kgdb_savedspeed; (void) zsparam(tp, &tp->t_termios); } } #endif /* * Compute the current baud rate given a ZSCC channel. */ static int zs_getspeed(zc) register volatile struct zschan *zc; { register int tconst; tconst = ZS_READ(zc, 12); tconst |= ZS_READ(zc, 13) << 8; return (TCONST_TO_BPS(PCLK / 16, tconst)); } /* * Do an internal open. */ static void zsiopen(tp) struct tty *tp; { (void) zsparam(tp, &tp->t_termios); ttsetwater(tp); tp->t_state = TS_ISOPEN | TS_CARR_ON; } /* * Do an internal close. Eventually we should shut off the chip when both * ports on it are closed. */ static void zsiclose(tp) struct tty *tp; { ttylclose(tp, 0); /* ??? */ ttyclose(tp); /* ??? */ tp->t_state = 0; } /* * Open a zs serial port. This interface may not be used to open * the keyboard and mouse ports. (XXX) */ int zsopen(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { register struct tty *tp; register struct zs_chanstate *cs; struct zsinfo *zi; int unit = minor(dev), zs = unit >> 1, error, s; #ifdef DEBUG mon_printf("zs_open\n"); #endif if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL || unit == ZS_KBD || unit == ZS_MOUSE) return (ENXIO); cs = &zi->zi_cs[unit & 1]; tp = cs->cs_ttyp; s = spltty(); if ((tp->t_state & TS_ISOPEN) == 0) { ttychars(tp); tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_cflag = TTYDEF_CFLAG; tp->t_lflag = TTYDEF_LFLAG; tp->t_ispeed = tp->t_ospeed = cs->cs_speed; (void) zsparam(tp, &tp->t_termios); ttsetwater(tp); } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) { splx(s); return (EBUSY); } error = 0; #ifdef DEBUG mon_printf("wait for carrier...\n"); #endif for (;;) { register int rr0; /* loop, turning on the device, until carrier present */ zs_modem(cs, 1); /* May never get status intr if carrier already on. -gwr */ rr0 = cs->cs_zc->zc_csr; ZS_DELAY(); if (rr0 & ZSRR0_DCD) tp->t_state |= TS_CARR_ON; if (cs->cs_softcar) tp->t_state |= TS_CARR_ON; if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL || tp->t_state & TS_CARR_ON) break; tp->t_state |= TS_WOPEN; if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH, ttopen, 0)) { if (!(tp->t_state & TS_ISOPEN)) { zs_modem(cs, 0); tp->t_state &= ~TS_WOPEN; ttwakeup(tp); } splx(s); return error; } } #ifdef DEBUG mon_printf("...carrier %s\n", (tp->t_state & TS_CARR_ON) ? "on" : "off"); #endif splx(s); if (error == 0) error = linesw[tp->t_line].l_open(dev, tp); if (error) zs_modem(cs, 0); return (error); } /* * Close a zs serial port. */ int zsclose(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { register struct zs_chanstate *cs; register struct tty *tp; struct zsinfo *zi; int unit = minor(dev), s; #ifdef DEBUG mon_printf("zs_close\n"); #endif zi = zscd.cd_devs[unit >> 1]; cs = &zi->zi_cs[unit & 1]; tp = cs->cs_ttyp; linesw[tp->t_line].l_close(tp, flags); if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN || (tp->t_state & TS_ISOPEN) == 0) { zs_modem(cs, 0); /* hold low for 1 second */ (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz); } if (cs->cs_creg[5] & ZSWR5_BREAK) { s = splzs(); cs->cs_preg[5] &= ~ZSWR5_BREAK; cs->cs_creg[5] &= ~ZSWR5_BREAK; ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); splx(s); } ttyclose(tp); #ifdef KGDB /* Reset the speed if we're doing kgdb on this port */ if (cs->cs_kgdb) { tp->t_ispeed = tp->t_ospeed = kgdb_rate; (void) zsparam(tp, &tp->t_termios); } #endif return (0); } /* * Read/write zs serial port. */ int zsread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { register struct tty *tp = zs_tty[minor(dev)]; return (linesw[tp->t_line].l_read(tp, uio, flags)); } int zswrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { register struct tty *tp = zs_tty[minor(dev)]; return (linesw[tp->t_line].l_write(tp, uio, flags)); } /* * ZS hardware interrupt. Scan all ZS channels. NB: we know here that * channels are kept in (A,B) pairs. * * Do just a little, then get out; set a software interrupt if more * work is needed. * * We deliberately ignore the vectoring Zilog gives us, and match up * only the number of `reset interrupt under service' operations, not * the order. */ /* ARGSUSED */ int zshard(intrarg) int intrarg; { register struct zs_chanstate *a; #define b (a + 1) register volatile struct zschan *zc; register int rr3, intflags = 0, v, i; static int zsrint(struct zs_chanstate *, volatile struct zschan *); static int zsxint(struct zs_chanstate *, volatile struct zschan *); static int zssint(struct zs_chanstate *, volatile struct zschan *); for (a = zslist; a != NULL; a = b->cs_next) { rr3 = ZS_READ(a->cs_zc, 3); /* XXX - This should loop to empty the on-chip fifo. */ if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) { intflags |= 2; zc = a->cs_zc; i = a->cs_rbput; if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) { a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; intflags |= 1; } if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) { a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; intflags |= 1; } if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) { a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; intflags |= 1; } a->cs_rbput = i; } /* XXX - This should loop to empty the on-chip fifo. */ if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) { intflags |= 2; zc = b->cs_zc; i = b->cs_rbput; if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) { b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; intflags |= 1; } if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) { b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; intflags |= 1; } if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) { b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; intflags |= 1; } b->cs_rbput = i; } } #undef b if (intflags & 1) { if (zssoftpending == 0) { /* We are at splzs here, so no need to lock. */ zssoftpending = ZSSOFT_PRI; isr_soft_request(ZSSOFT_PRI); } } return (intflags & 2); } static int zsrint(cs, zc) register struct zs_chanstate *cs; register volatile struct zschan *zc; { register int c; c = zc->zc_data; ZS_DELAY(); if (cs->cs_conk) { register struct conk_state *conk = &zsconk_state; /* * Check here for console abort function, so that we * can abort even when interrupts are locking up the * machine. */ if (c == KBD_RESET) { conk->conk_id = 1; /* ignore next byte */ conk->conk_l1 = 0; } else if (conk->conk_id) conk->conk_id = 0; /* stop ignoring bytes */ else if (c == KBD_L1) conk->conk_l1 = 1; /* L1 went down */ else if (c == (KBD_L1|KBD_UP)) conk->conk_l1 = 0; /* L1 went up */ else if (c == KBD_A && conk->conk_l1) { zsabort(); /* Debugger done. Send L1-up in case X is running. */ conk->conk_l1 = 0; c = (KBD_L1|KBD_UP); } } #ifdef KGDB if (c == FRAME_START && cs->cs_kgdb && (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) { zskgdb(cs->cs_unit); c = 0; goto clearit; } #endif /* compose receive character and status */ c <<= 8; c |= ZS_READ(zc, 1); c = ZRING_MAKE(ZRING_RINT, c); clearit: /* clear receive error & interrupt condition */ zc->zc_csr = ZSWR0_RESET_ERRORS; ZS_DELAY(); zc->zc_csr = ZSWR0_CLR_INTR; ZS_DELAY(); return (c); } static int zsxint(cs, zc) register struct zs_chanstate *cs; register volatile struct zschan *zc; { register int i = cs->cs_tbc; if (i == 0) { zc->zc_csr = ZSWR0_RESET_TXINT; ZS_DELAY(); zc->zc_csr = ZSWR0_CLR_INTR; ZS_DELAY(); return (ZRING_MAKE(ZRING_XINT, 0)); } cs->cs_tbc = i - 1; zc->zc_data = *cs->cs_tba++; ZS_DELAY(); zc->zc_csr = ZSWR0_CLR_INTR; ZS_DELAY(); return (0); } static int zssint(cs, zc) register struct zs_chanstate *cs; register volatile struct zschan *zc; { register int rr0; rr0 = zc->zc_csr; ZS_DELAY(); zc->zc_csr = ZSWR0_RESET_STATUS; ZS_DELAY(); zc->zc_csr = ZSWR0_CLR_INTR; ZS_DELAY(); /* * The chip's hardware flow control is, as noted in zsreg.h, * busted---if the DCD line goes low the chip shuts off the * receiver (!). If we want hardware CTS flow control but do * not have it, and carrier is now on, turn HFC on; if we have * HFC now but carrier has gone low, turn it off. */ if (rr0 & ZSRR0_DCD) { if (cs->cs_ttyp->t_cflag & CCTS_OFLOW && (cs->cs_creg[3] & ZSWR3_HFC) == 0) { cs->cs_creg[3] |= ZSWR3_HFC; ZS_WRITE(zc, 3, cs->cs_creg[3]); } } else { if (cs->cs_creg[3] & ZSWR3_HFC) { cs->cs_creg[3] &= ~ZSWR3_HFC; ZS_WRITE(zc, 3, cs->cs_creg[3]); } } if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) { /* Wait for end of break to avoid PROM abort. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while (rr0 & ZSRR0_BREAK); zsabort(); return (0); } return (ZRING_MAKE(ZRING_SINT, rr0)); } zsabort() { /* XXX - Always available, but may be the PROM monitor. */ Debugger(); } #ifdef KGDB /* * KGDB framing character received: enter kernel debugger. This probably * should time out after a few seconds to avoid hanging on spurious input. */ zskgdb(unit) int unit; { printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a'); kgdb_connect(1); } #endif /* * Print out a ring or fifo overrun error message. */ static void zsoverrun(unit, ptime, what) int unit; long *ptime; char *what; { if (*ptime != time.tv_sec) { *ptime = time.tv_sec; log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1, (unit & 1) + 'a', what); } } /* * ZS software interrupt. Scan all channels for deferred interrupts. */ int zssoft(arg) int arg; { register struct zs_chanstate *cs; register volatile struct zschan *zc; register struct linesw *line; register struct tty *tp; register int get, n, c, cc, unit, s; /* This is not the only ISR on this IPL. */ if (zssoftpending == 0) return (0); /* * The soft intr. bit will be set by zshard only if * the variable zssoftpending is zero. The order of * these next two statements prevents our clearing * the soft intr bit just after zshard has set it. */ isr_soft_clear(ZSSOFT_PRI); zssoftpending = 0; /* Now zshard may set it again. */ for (cs = zslist; cs != NULL; cs = cs->cs_next) { get = cs->cs_rbget; again: n = cs->cs_rbput; /* atomic */ if (get == n) /* nothing more on this line */ continue; unit = cs->cs_unit; /* set up to handle interrupts */ zc = cs->cs_zc; tp = cs->cs_ttyp; line = &linesw[tp->t_line]; /* * Compute the number of interrupts in the receive ring. * If the count is overlarge, we lost some events, and * must advance to the first valid one. It may get * overwritten if more data are arriving, but this is * too expensive to check and gains nothing (we already * lost out; all we can do at this point is trade one * kind of loss for another). */ n -= get; if (n > ZLRB_RING_SIZE) { zsoverrun(unit, &cs->cs_rotime, "ring"); get += n - ZLRB_RING_SIZE; n = ZLRB_RING_SIZE; } while (--n >= 0) { /* race to keep ahead of incoming interrupts */ c = cs->cs_rbuf[get++ & ZLRB_RING_MASK]; switch (ZRING_TYPE(c)) { case ZRING_RINT: c = ZRING_VALUE(c); if (c & ZSRR1_DO) zsoverrun(unit, &cs->cs_fotime, "fifo"); cc = c >> 8; if (c & ZSRR1_FE) cc |= TTY_FE; if (c & ZSRR1_PE) cc |= TTY_PE; /* * this should be done through * bstreams XXX gag choke */ if (unit == ZS_KBD) kbd_rint(cc); else if (unit == ZS_MOUSE) ms_rint(cc); else line->l_rint(cc, tp); break; case ZRING_XINT: /* * Transmit done: change registers and resume, * or clear BUSY. */ if (cs->cs_heldchange) { s = splzs(); c = zc->zc_csr; ZS_DELAY(); if ((c & ZSRR0_DCD) == 0) cs->cs_preg[3] &= ~ZSWR3_HFC; bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16); zs_loadchannelregs(zc, cs->cs_creg); splx(s); cs->cs_heldchange = 0; if (cs->cs_heldtbc && (tp->t_state & TS_TTSTOP) == 0) { cs->cs_tbc = cs->cs_heldtbc - 1; zc->zc_data = *cs->cs_tba++; ZS_DELAY(); goto again; } } tp->t_state &= ~TS_BUSY; if (tp->t_state & TS_FLUSH) tp->t_state &= ~TS_FLUSH; else ndflush(&tp->t_outq, cs->cs_tba - (caddr_t) tp->t_outq.c_cf); line->l_start(tp); break; case ZRING_SINT: /* * Status line change. HFC bit is run in * hardware interrupt, to avoid locking * at splzs here. */ c = ZRING_VALUE(c); if ((c ^ cs->cs_rr0) & ZSRR0_DCD) { cc = (c & ZSRR0_DCD) != 0; if (line->l_modem(tp, cc) == 0) zs_modem(cs, cc); } cs->cs_rr0 = c; break; default: log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n", unit >> 1, (unit & 1) + 'a', c); break; } } cs->cs_rbget = get; goto again; } return (1); } int zsioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; caddr_t data; int flag; struct proc *p; { int unit = minor(dev); struct zsinfo *zi = zscd.cd_devs[unit >> 1]; register struct zs_chanstate *cs = &zi->zi_cs[unit & 1]; register struct tty *tp = cs->cs_ttyp; register int error, s; error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p); if (error >= 0) return (error); error = ttioctl(tp, cmd, data, flag, p); if (error >= 0) return (error); switch (cmd) { case TIOCSBRK: s = splzs(); cs->cs_preg[5] |= ZSWR5_BREAK; cs->cs_creg[5] |= ZSWR5_BREAK; ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); splx(s); break; case TIOCCBRK: s = splzs(); cs->cs_preg[5] &= ~ZSWR5_BREAK; cs->cs_creg[5] &= ~ZSWR5_BREAK; ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); splx(s); break; case TIOCGFLAGS: { int bits = 0; if (cs->cs_softcar) bits |= TIOCFLAG_SOFTCAR; if (cs->cs_creg[15] & ZSWR15_DCD_IE) bits |= TIOCFLAG_CLOCAL; if (cs->cs_creg[3] & ZSWR3_HFC) bits |= TIOCFLAG_CRTSCTS; *(int *)data = bits; break; } case TIOCSFLAGS: { int userbits, driverbits = 0; error = suser(p->p_ucred, &p->p_acflag); if (error != 0) return (EPERM); userbits = *(int *)data; /* * can have `local' or `softcar', and `rtscts' or `mdmbuf' * defaulting to software flow control. */ if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL) return(EINVAL); if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */ return(ENXIO); s = splzs(); if ((userbits & TIOCFLAG_SOFTCAR) || (cs->cs_zc == zs_conschan)) { cs->cs_softcar = 1; /* turn on softcar */ cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */ cs->cs_creg[15] &= ~ZSWR15_DCD_IE; ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); } else if (userbits & TIOCFLAG_CLOCAL) { cs->cs_softcar = 0; /* turn off softcar */ cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */ cs->cs_creg[15] |= ZSWR15_DCD_IE; ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); tp->t_termios.c_cflag |= CLOCAL; } if (userbits & TIOCFLAG_CRTSCTS) { cs->cs_preg[15] |= ZSWR15_CTS_IE; cs->cs_creg[15] |= ZSWR15_CTS_IE; ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); cs->cs_preg[3] |= ZSWR3_HFC; cs->cs_creg[3] |= ZSWR3_HFC; ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]); tp->t_termios.c_cflag |= CRTSCTS; } else { /* no mdmbuf, so we must want software flow control */ cs->cs_preg[15] &= ~ZSWR15_CTS_IE; cs->cs_creg[15] &= ~ZSWR15_CTS_IE; ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); cs->cs_preg[3] &= ~ZSWR3_HFC; cs->cs_creg[3] &= ~ZSWR3_HFC; ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]); tp->t_termios.c_cflag &= ~CRTSCTS; } splx(s); break; } case TIOCSDTR: zs_modem(cs, 1); break; case TIOCCDTR: zs_modem(cs, 0); break; case TIOCMSET: case TIOCMBIS: case TIOCMBIC: case TIOCMGET: default: return (ENOTTY); } return (0); } /* * Start or restart transmission. */ static void zsstart(tp) register struct tty *tp; { register struct zs_chanstate *cs; register int s, nch; int unit = minor(tp->t_dev); struct zsinfo *zi = zscd.cd_devs[unit >> 1]; cs = &zi->zi_cs[unit & 1]; s = spltty(); /* * If currently active or delaying, no need to do anything. */ if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) goto out; /* * If there are sleepers, and output has drained below low * water mark, awaken. */ if (tp->t_outq.c_cc <= tp->t_lowat) { if (tp->t_state & TS_ASLEEP) { tp->t_state &= ~TS_ASLEEP; wakeup((caddr_t)&tp->t_outq); } selwakeup(&tp->t_wsel); } nch = ndqb(&tp->t_outq, 0); /* XXX */ if (nch) { register char *p = tp->t_outq.c_cf; /* mark busy, enable tx done interrupts, & send first byte */ tp->t_state |= TS_BUSY; (void) splzs(); cs->cs_preg[1] |= ZSWR1_TIE; cs->cs_creg[1] |= ZSWR1_TIE; ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); cs->cs_zc->zc_data = *p; ZS_DELAY(); cs->cs_tba = p + 1; cs->cs_tbc = nch - 1; } else { /* * Nothing to send, turn off transmit done interrupts. * This is useful if something is doing polled output. */ (void) splzs(); cs->cs_preg[1] &= ~ZSWR1_TIE; cs->cs_creg[1] &= ~ZSWR1_TIE; ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); } out: splx(s); } /* * Stop output, e.g., for ^S or output flush. */ void zsstop(tp, flag) register struct tty *tp; int flag; { register struct zs_chanstate *cs; register int s, unit = minor(tp->t_dev); struct zsinfo *zi = zscd.cd_devs[unit >> 1]; cs = &zi->zi_cs[unit & 1]; s = splzs(); if (tp->t_state & TS_BUSY) { /* * Device is transmitting; must stop it. */ cs->cs_tbc = 0; if ((tp->t_state & TS_TTSTOP) == 0) tp->t_state |= TS_FLUSH; } splx(s); } /* * Set ZS tty parameters from termios. */ static int zsparam(tp, t) register struct tty *tp; register struct termios *t; { int unit = minor(tp->t_dev); struct zsinfo *zi = zscd.cd_devs[unit >> 1]; register struct zs_chanstate *cs = &zi->zi_cs[unit & 1]; register int tmp, tmp5, cflag, s; /* * Because PCLK is only run at 4.9 MHz, the fastest we * can go is 51200 baud (this corresponds to TC=1). * This is somewhat unfortunate as there is no real * reason we should not be able to handle higher rates. */ tmp = t->c_ospeed; if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp)) return (EINVAL); if (tmp == 0) { /* stty 0 => drop DTR and RTS */ zs_modem(cs, 0); return (0); } tmp = BPS_TO_TCONST(PCLK / 16, tmp); if (tmp < 2) return (EINVAL); cflag = t->c_cflag; tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp); tp->t_cflag = cflag; /* * Block interrupts so that state will not * be altered until we are done setting it up. */ s = splzs(); bcopy(zs_init_reg, cs->cs_preg, 16); cs->cs_preg[12] = tmp; cs->cs_preg[13] = tmp >> 8; cs->cs_preg[9] |= ZSWR9_MASTER_IE; switch (cflag & CSIZE) { case CS5: tmp = ZSWR3_RX_5; tmp5 = ZSWR5_TX_5; break; case CS6: tmp = ZSWR3_RX_6; tmp5 = ZSWR5_TX_6; break; case CS7: tmp = ZSWR3_RX_7; tmp5 = ZSWR5_TX_7; break; case CS8: default: tmp = ZSWR3_RX_8; tmp5 = ZSWR5_TX_8; break; } /* * Output hardware flow control on the chip is horrendous: if * carrier detect drops, the receiver is disabled. Hence we * can only do this when the carrier is on. */ tmp |= ZSWR3_RX_ENABLE; if (cflag & CCTS_OFLOW) { if (cs->cs_zc->zc_csr & ZSRR0_DCD) tmp |= ZSWR3_HFC; ZS_DELAY(); } cs->cs_preg[3] = tmp; cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS; tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB); if ((cflag & PARODD) == 0) tmp |= ZSWR4_EVENP; if (cflag & PARENB) tmp |= ZSWR4_PARENB; cs->cs_preg[4] = tmp; /* * If nothing is being transmitted, set up new current values, * else mark them as pending. */ if (cs->cs_heldchange == 0) { if (cs->cs_ttyp->t_state & TS_BUSY) { cs->cs_heldtbc = cs->cs_tbc; cs->cs_tbc = 0; cs->cs_heldchange = 1; } else { bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16); zs_loadchannelregs(cs->cs_zc, cs->cs_creg); } } splx(s); return (0); } /* * Raise or lower modem control (DTR/RTS) signals. If a character is * in transmission, the change is deferred. */ static void zs_modem(cs, onoff) struct zs_chanstate *cs; int onoff; { int s, bis, and; if (onoff) { bis = ZSWR5_DTR | ZSWR5_RTS; and = ~0; } else { bis = 0; and = ~(ZSWR5_DTR | ZSWR5_RTS); } s = splzs(); cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and; if (cs->cs_heldchange == 0) { if (cs->cs_ttyp->t_state & TS_BUSY) { cs->cs_heldtbc = cs->cs_tbc; cs->cs_tbc = 0; cs->cs_heldchange = 1; } else { cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and; ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); } } splx(s); } /* * Write the given register set to the given zs channel in the proper order. * The channel must not be transmitting at the time. The receiver will * be disabled for the time it takes to write all the registers. */ static void zs_loadchannelregs(zc, reg) volatile struct zschan *zc; u_char *reg; { int i; zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */ ZS_DELAY(); #if 1 /* XXX - Is this really a good idea? -gwr */ i = zc->zc_data; /* drain fifo */ ZS_DELAY(); i = zc->zc_data; ZS_DELAY(); i = zc->zc_data; ZS_DELAY(); #endif /* baud clock divisor, stop bits, parity */ ZS_WRITE(zc, 4, reg[4]); /* misc. TX/RX control bits */ ZS_WRITE(zc, 10, reg[10]); /* char size, enable (RX/TX) */ ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE); ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE); /* interrupt enables: TX, TX, STATUS */ ZS_WRITE(zc, 1, reg[1]); /* interrupt vector */ ZS_WRITE(zc, 2, reg[2]); /* master interrupt control */ ZS_WRITE(zc, 9, reg[9]); /* clock mode control */ ZS_WRITE(zc, 11, reg[11]); /* baud rate (lo/hi) */ ZS_WRITE(zc, 12, reg[12]); ZS_WRITE(zc, 13, reg[13]); /* Misc. control bits */ ZS_WRITE(zc, 14, reg[14]); /* which lines cause status interrupts */ ZS_WRITE(zc, 15, reg[15]); /* char size, enable (RX/TX)*/ ZS_WRITE(zc, 3, reg[3]); ZS_WRITE(zc, 5, reg[5]); } static u_char zs_read(zc, reg) volatile struct zschan *zc; u_char reg; { u_char val; zc->zc_csr = reg; ZS_DELAY(); val = zc->zc_csr; ZS_DELAY(); return val; } static u_char zs_write(zc, reg, val) volatile struct zschan *zc; u_char reg, val; { zc->zc_csr = reg; ZS_DELAY(); zc->zc_csr = val; ZS_DELAY(); return val; } #ifdef KGDB /* * Get a character from the given kgdb channel. Called at splhigh(). * XXX - Add delays, or combine with zscngetc()... */ static int zs_kgdb_getc(arg) void *arg; { register volatile struct zschan *zc = (volatile struct zschan *)arg; register int c, rr0; do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); c = zc->zc_data; ZS_DELAY(); return (c); } /* * Put a character to the given kgdb channel. Called at splhigh(). */ static void zs_kgdb_putc(arg, c) void *arg; int c; { register volatile struct zschan *zc = (volatile struct zschan *)arg; register int c, rr0; do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_TX_READY) == 0); zc->zc_data = c; ZS_DELAY(); } /* * Set up for kgdb; called at boot time before configuration. * KGDB interrupts will be enabled later when zs0 is configured. */ void zs_kgdb_init() { volatile struct zsdevice *addr; volatile struct zschan *zc; int unit, zs; if (major(kgdb_dev) != ZSMAJOR) return; unit = minor(kgdb_dev); /* * Unit must be 0 or 1 (zs0). */ if ((unsigned)unit >= ZS_KBD) { printf("zs_kgdb_init: bad minor dev %d\n", unit); return; } zs = unit >> 1; unit &= 1; if (zsaddr[0] == NULL) panic("kbdb_attach: zs0 not yet mapped"); addr = zsaddr[0]; zc = (unit == 0) ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B]; zs_kgdb_savedspeed = zs_getspeed(zc); printf("zs_kgdb_init: attaching zs%d%c at %d baud\n", zs, unit + 'a', kgdb_rate); zs_reset(zc, 1, kgdb_rate); kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc); } #endif /* KGDB */