/* $NetBSD: uba.c,v 1.8 1995/06/16 15:26:11 ragge Exp $ */
/*
* Copyright (c) 1982, 1986 The Regents of the University of California.
* Copyright (c) 1994 Ludd, University of Lule}, Sweden.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)uba.c 7.10 (Berkeley) 12/16/90
* @(#)autoconf.c 7.20 (Berkeley) 5/9/91
*/
/* All bugs are subject to removal without further notice */
#include "sys/param.h"
#include "sys/types.h"
#include "sys/time.h"
#include "sys/systm.h"
#include "sys/map.h"
#include "sys/buf.h"
#include "sys/proc.h"
#include "sys/user.h"
#include "sys/conf.h"
#include "sys/dkstat.h"
#include "sys/kernel.h"
#include "sys/malloc.h"
#include "sys/device.h"
#include "machine/pte.h"
#include "machine/cpu.h"
#include "machine/mtpr.h"
#include "machine/nexus.h"
#include "machine/sid.h"
#if VAX630
#include "machine/uvaxII.h"
#endif
#include "uba.h"
#include "ubareg.h"
#include "ubavar.h"
int (*vekmatris[NUBA][128])();
int interinfo[NUBA][128];
int dkn;
extern int cold;
struct uba_hd uba_hd[NUBA];
/* F|r att f} genom kompilatorn :( Nollpekare f|r interrupt... */
int cvec=0;
volatile int rbr,rcvec;
#if VAX630 || VAX410
extern struct uvaxIIcpu *uvaxIIcpu_ptr;
#endif
#if VAX630
extern struct ka630clock *ka630clk_ptr;
#endif
/*
* Mark addresses starting at "addr" and continuing
* "size" bytes as allocated in the map "ualloc".
* Warn if the new allocation overlaps a previous allocation.
*/
static
csralloc(ualloc, addr, size)
caddr_t ualloc;
u_short addr;
register int size;
{
register caddr_t p;
int warned = 0;
p = &ualloc[ubdevreg(addr+size)];
while (--size >= 0) {
if (*--p && !warned) {
printf(
"WARNING: device registers overlap those for a previous device!\n");
warned = 1;
}
*p = 1;
}
}
/*
* Make an IO register area accessible at physical address physa
* by mapping kernel ptes starting at pte.
*/
ioaccess(physa, pte, size)
u_int physa;
u_int *pte;
u_int size;
{
u_int i = (size>>PG_SHIFT);
u_int v = (physa>>PG_SHIFT);
do {
*pte = PG_V|PG_KW|v;
pte++;
v++;
} while (--i > 0);
mtpr(0, PR_TBIA);
}
/*
* General uba interrupt handler.
*/
ubainterrupt(level, uba,vektor){
/*printf("ubainterrupt: level %x, uba %x, vektor %x\n",level, uba,vektor); */
(*vekmatris[uba][vektor])(vektor,level,uba,interinfo[uba][vektor]);
}
/*
* Stray interrupt vector handler, used when nowhere else to
* go to.
*/
ubastray(vektor, level,uba){
if(cold){
rbr=level;
rcvec=vektor;
} else {
printf("uba%d: unexpected interrupt at vector %d on level %d",
uba, vektor, level);
}
}
/*
* Find devices on a UNIBUS.
* Uses per-driver routine to set
into ,
* and then fills in the tables, with help from a per-driver
* slave initialization routine.
*
* Changed this ugly written code assuming special registers
* from the C compiler :( 940516/ragge
*/
unifind(uhp0, pumem)
struct uba_hd *uhp0;
caddr_t pumem;
{
register struct uba_device *ui;
register struct uba_ctlr *um;
register struct uba_hd *uhp = uhp0;
u_short *reg, *ap, addr;
struct uba_driver *udp;
int i, (*ivec)();
caddr_t ualloc;
volatile extern int br, cvec;
volatile extern int rbr, rcvec;
#if DW780 || DWBUA
struct uba_regs *vubp = uhp->uh_uba;
#endif
/*
* Initialize the UNIBUS, by freeing the map
* registers and the buffered data path registers
*/
uhp->uh_map = (struct map *)
malloc((u_long)(UAMSIZ * sizeof (struct map)), M_DEVBUF,
M_NOWAIT);
if (uhp->uh_map == 0)
panic("no mem for unibus map");
bzero((caddr_t)uhp->uh_map, (unsigned)(UAMSIZ * sizeof (struct map)));
ubainitmaps(uhp);
/*
* Initialize space for the UNIBUS interrupt vectors.
* On the 8600, can't use first slot in UNIvec
* (the vectors for the second SBI overlap it);
* move each set of vectors forward.
*/
#if VAX8600
if (cpu == VAX_8600)
uhp->uh_vec = UNIvec[numuba + 1];
else
#endif
uhp->Nuh_vec = vekmatris[numuba];
for (i = 0; i < 128; i++)
uhp->Nuh_vec[i] = ubastray;
/*
* Set last free interrupt vector for devices with
* programmable interrupt vectors. Use is to decrement
* this number and use result as interrupt vector.
*/
uhp->uh_lastiv = 0x200;
#ifdef DWBUA
if (uhp->uh_type == DWBUA)
BUA(vubp)->bua_offset = (int)uhp->uh_vec - (int)&scb[0];
#endif
#ifdef DW780
if (uhp->uh_type == DW780) {
vubp->uba_sr = vubp->uba_sr;
vubp->uba_cr = UBACR_IFS|UBACR_BRIE;
}
#endif
/*
* First configure devices that have unibus memory,
* allowing them to allocate the correct map registers.
*/
ubameminit(numuba);
/*
* Grab some memory to record the umem address space we allocate,
* so we can be sure not to place two devices at the same address.
*
* We could use just 1/8 of this (we only want a 1 bit flag) but
* we are going to give it back anyway, and that would make the
* code here bigger (which we can't give back), so ...
*
* One day, someone will make a unibus with something other than
* an 8K i/o address space, & screw this totally.
*/
ualloc = (caddr_t)malloc((u_long)(8 * 1024), M_TEMP, M_NOWAIT);
if (ualloc == (caddr_t)0)
panic("no mem for unifind");
bzero(ualloc, 8*1024);
/*
* Map the first page of UNIBUS i/o
* space to the first page of memory
* for devices which will need to dma
* output to produce an interrupt.
*/
*(int *)(&uhp->uh_mr[0]) = UBAMR_MRV;
#define ubaddr(uhp, off) (u_short *)((int)(uhp)->uh_iopage + ubdevreg(off))
/*
* Check each unibus mass storage controller.
* For each one which is potentially on this uba,
* see if it is really there, and if it is record it and
* then go looking for slaves.
*/
for (um = ubminit; udp = um->um_driver; um++) {
if (um->um_ubanum != numuba && um->um_ubanum != '?' ||
um->um_alive)
continue;
addr = (u_short)(u_long)um->um_addr;
/*
* use the particular address specified first,
* or if it is given as "0", of there is no device
* at that address, try all the standard addresses
* in the driver til we find it
*/
for (ap = udp->ud_addr; addr || (addr = *ap++); addr = 0) {
if (ualloc[ubdevreg(addr)])
continue;
reg = ubaddr(uhp, addr);
if (badaddr((caddr_t)reg, 2))
continue;
#ifdef DW780
if (uhp->uh_type == DW780 && vubp->uba_sr) {
vubp->uba_sr = vubp->uba_sr;
continue;
}
#endif
cvec = 0x200;
rcvec = 0x200;
i = (*udp->ud_probe)(reg, um->um_ctlr, um);
#ifdef DW780
if (uhp->uh_type == DW780 && vubp->uba_sr) {
vubp->uba_sr = vubp->uba_sr;
continue;
}
#endif
if (i == 0)
continue;
printf("%s%d at uba%d csr %o ",
udp->ud_mname, um->um_ctlr, numuba, addr);
if (rcvec == 0) {
printf("zero vector\n");
continue;
}
if (rcvec == 0x200) {
printf("didn't interrupt\n");
continue;
}
interinfo[numuba][rcvec]=um->um_ctlr;
printf("vec %o, ipl %x\n", rcvec, rbr);
csralloc(ualloc, addr, i);
um->um_alive = 1;
um->um_ubanum = numuba;
um->um_hd = uhp;
um->um_addr = (caddr_t)reg;
udp->ud_minfo[um->um_ctlr] = um;
uhp->Nuh_vec[rcvec] = um->um_intr;
for (ui = ubdinit; ui->ui_driver; ui++) {
int t;
if (ui->ui_driver != udp || ui->ui_alive ||
ui->ui_ctlr != um->um_ctlr && ui->ui_ctlr != '?' ||
ui->ui_ubanum != numuba && ui->ui_ubanum != '?')
continue;
t = ui->ui_ctlr;
ui->ui_ctlr = um->um_ctlr;
if ((*udp->ud_slave)(ui, reg) == 0)
ui->ui_ctlr = t;
else {
ui->ui_alive = 1;
ui->ui_ubanum = numuba;
ui->ui_hd = uhp;
ui->ui_addr = (caddr_t)reg;
ui->ui_physaddr = pumem + ubdevreg(addr);
if (ui->ui_dk && dkn < DK_NDRIVE)
ui->ui_dk = dkn++;
else
ui->ui_dk = -1;
ui->ui_mi = um;
/* ui_type comes from driver */
udp->ud_dinfo[ui->ui_unit] = ui;
printf("%s%d at %s%d slave %d",
udp->ud_dname, ui->ui_unit,
udp->ud_mname, um->um_ctlr, ui->ui_slave);
(*udp->ud_attach)(ui);
printf("\n");
}
}
break;
}
}
/*
* Now look for non-mass storage peripherals.
*/
for (ui = ubdinit; udp = ui->ui_driver; ui++) {
if (ui->ui_ubanum != numuba && ui->ui_ubanum != '?' ||
ui->ui_alive || ui->ui_slave != -1)
continue;
addr = (u_short)(u_long)ui->ui_addr;
for (ap = udp->ud_addr; addr || (addr = *ap++); addr = 0) {
if (ualloc[ubdevreg(addr)])
continue;
reg = ubaddr(uhp, addr);
if (badaddr((caddr_t)reg, 2))
continue;
#ifdef DW780
if (uhp->uh_type == DW780 && vubp->uba_sr) {
vubp->uba_sr = vubp->uba_sr;
continue;
}
#endif
rcvec = 0x200;
cvec = 0x200;
i = (*udp->ud_probe)(reg, ui);
#ifdef DW780
if (uhp->uh_type == DW780 && vubp->uba_sr) {
vubp->uba_sr = vubp->uba_sr;
continue;
}
#endif
if (i == 0)
continue;
printf("%s%d at uba%d csr %o ",
ui->ui_driver->ud_dname, ui->ui_unit, numuba, addr);
if (rcvec == 0) {
printf("zero vector\n");
continue;
}
if (rcvec == 0x200) {
printf("didn't interrupt\n");
continue;
}
interinfo[numuba][rcvec]=ui->ui_unit;
printf("vec %o, ipl %x\n", rcvec, rbr);
csralloc(ualloc, addr, i);
ui->ui_hd = uhp;
uhp->Nuh_vec[rcvec] = ui->ui_intr;
ui->ui_alive = 1;
ui->ui_ubanum = numuba;
ui->ui_addr = (caddr_t)reg;
ui->ui_physaddr = pumem + ubdevreg(addr);
ui->ui_dk = -1;
/* ui_type comes from driver */
udp->ud_dinfo[ui->ui_unit] = ui;
(*udp->ud_attach)(ui);
break;
}
}
#ifdef DW780
if (uhp->uh_type == DW780)
uhp->uh_uba->uba_cr = UBACR_IFS | UBACR_BRIE |
UBACR_USEFIE | UBACR_SUEFIE |
(uhp->uh_uba->uba_cr & 0x7c000000);
#endif
numuba++;
#ifdef AUTO_DEBUG
printf("Unibus allocation map");
for (i = 0; i < 8*1024; ) {
register n, m;
if ((i % 128) == 0) {
printf("\n%6o:", i);
for (n = 0; n < 128; n++)
if (ualloc[i+n])
break;
if (n == 128) {
i += 128;
continue;
}
}
for (n = m = 0; n < 16; n++) {
m <<= 1;
m |= ualloc[i++];
}
printf(" %4x", m);
}
printf("\n");
#endif
free(ualloc, M_TEMP);
}
#ifdef DW780
char ubasr_bits[] = UBASR_BITS;
#endif
#define spluba splbio /* IPL 17 */
/*
* Do transfer on device argument. The controller
* and uba involved are implied by the device.
* We queue for resource wait in the uba code if necessary.
* We return 1 if the transfer was started, 0 if it was not.
*
* The onq argument must be zero iff the device is not on the
* queue for this UBA. If onq is set, the device must be at the
* head of the queue. In any case, if the transfer is started,
* the device will be off the queue, and if not, it will be on.
*
* Drivers that allocate one BDP and hold it for some time should
* set ud_keepbdp. In this case um_bdp tells which BDP is allocated
* to the controller, unless it is zero, indicating that the controller
* does not now have a BDP.
*/
ubaqueue(ui, onq)
register struct uba_device *ui;
int onq;
{
register struct uba_ctlr *um = ui->ui_mi;
register struct uba_hd *uh;
register struct uba_driver *ud;
register int s, unit;
uh = &uba_hd[um->um_ubanum];
ud = um->um_driver;
s = spluba();
/*
* Honor exclusive BDP use requests.
*/
if (ud->ud_xclu && uh->uh_users > 0 || uh->uh_xclu)
goto rwait;
if (ud->ud_keepbdp) {
/*
* First get just a BDP (though in fact it comes with
* one map register too).
*/
if (um->um_bdp == 0) {
um->um_bdp = uballoc(um->um_ubanum,
(caddr_t)0, 0, UBA_NEEDBDP|UBA_CANTWAIT);
if (um->um_bdp == 0)
goto rwait;
}
/* now share it with this transfer */
um->um_ubinfo = ubasetup(um->um_ubanum,
um->um_tab.b_actf->b_actf,
um->um_bdp|UBA_HAVEBDP|UBA_CANTWAIT);
} else
um->um_ubinfo = ubasetup(um->um_ubanum,
um->um_tab.b_actf->b_actf, UBA_NEEDBDP|UBA_CANTWAIT);
if (um->um_ubinfo == 0)
goto rwait;
uh->uh_users++;
if (ud->ud_xclu)
uh->uh_xclu = 1;
splx(s);
if (ui->ui_dk >= 0) {
unit = ui->ui_dk;
dk_busy |= 1<um_tab.b_actf->b_actf->b_bcount>>6;
}
if (onq)
uh->uh_actf = ui->ui_forw;
(*ud->ud_dgo)(um);
return (1);
rwait:
if (!onq) {
ui->ui_forw = NULL;
if (uh->uh_actf == NULL)
uh->uh_actf = ui;
else
uh->uh_actl->ui_forw = ui;
uh->uh_actl = ui;
}
splx(s);
return (0);
}
ubadone(um)
register struct uba_ctlr *um;
{
register struct uba_hd *uh = &uba_hd[um->um_ubanum];
if (um->um_driver->ud_xclu)
uh->uh_xclu = 0;
uh->uh_users--;
if (um->um_driver->ud_keepbdp)
um->um_ubinfo &= ~BDPMASK; /* keep BDP for misers */
ubarelse(um->um_ubanum, &um->um_ubinfo);
}
/*
* Allocate and setup UBA map registers, and bdp's
* Flags says whether bdp is needed, whether the caller can't
* wait (e.g. if the caller is at interrupt level).
* Return value encodes map register plus page offset,
* bdp number and number of map registers.
*/
ubasetup(int uban,struct buf *bp,int flags) {
struct uba_hd *uh = &uba_hd[uban];
struct pte *pte, *io;
int npf;
int pfnum, temp;
int reg, bdp;
unsigned v;
struct proc *rp;
int a, o, ubinfo;
#ifdef DW730
if (uh->uh_type == DW730)
flags &= ~UBA_NEEDBDP;
#endif
#ifdef QBA
if (uh->uh_type == QBA)
flags &= ~UBA_NEEDBDP;
#endif
o = (int)bp->b_un.b_addr & PGOFSET;
npf = btoc(bp->b_bcount + o) + 1;
if (npf > UBA_MAXNMR)
panic("uba xfer too big");
a = spluba();
while ((reg = rmalloc(uh->uh_map, (long)npf)) == 0) {
if (flags & UBA_CANTWAIT) {
splx(a);
return (0);
}
uh->uh_mrwant++;
sleep((caddr_t)&uh->uh_mrwant, PSWP);
}
if ((flags & UBA_NEED16) && reg + npf > 128) {
/*
* Could hang around and try again (if we can ever succeed).
* Won't help any current device...
*/
rmfree(uh->uh_map, (long)npf, (long)reg);
splx(a);
return (0);
}
bdp = 0;
if (flags & UBA_NEEDBDP) {
while ((bdp = ffs((long)uh->uh_bdpfree)) == 0) {
if (flags & UBA_CANTWAIT) {
rmfree(uh->uh_map, (long)npf, (long)reg);
splx(a);
return (0);
}
uh->uh_bdpwant++;
sleep((caddr_t)&uh->uh_bdpwant, PSWP);
}
uh->uh_bdpfree &= ~(1 << (bdp-1));
} else if (flags & UBA_HAVEBDP)
bdp = (flags >> 28) & 0xf;
splx(a);
reg--;
ubinfo = UBAI_INFO(o, reg, npf, bdp);
temp = (bdp << 21) | UBAMR_MRV;
if (bdp && (o & 01))
temp |= UBAMR_BO;
if ((bp->b_flags & B_PHYS) == 0)
pte = (struct pte *)kvtopte(bp->b_un.b_addr);
else if (bp->b_flags & B_PAGET) {
panic("ubasetup: B_PAGET");
} else {
if( bp->b_flags&B_DIRTY){
rp=&pageproc[2];
panic("ubasetup: B_DIRTY");
} else {
rp =bp->b_proc;
}
v = vax_btop((u_int)bp->b_un.b_addr&0x3fffffff);
if (bp->b_flags & B_UAREA){
panic("ubasetup: B_UAREA");
} else {
/*
* It may be better to use pmap_extract() here somewhere,
* but so far we do it "the hard way" :)
*/
u_int *hej;
if(((u_int)bp->b_un.b_addr<0x40000000)||
((u_int)bp->b_un.b_addr>0x7fffffff)){
hej=rp->p_vmspace->vm_pmap.pm_pcb->P0BR;
} else {
hej=rp->p_vmspace->vm_pmap.pm_pcb->P1BR;
}
pte=(struct pte*)&hej[v];
}
}
io = &uh->uh_mr[reg];
while (--npf > 0) {
pfnum = pte->pg_pfn;
if (pfnum == 0)
panic("uba zero uentry");
pte++;
*(int *)io++ = pfnum | temp;
}
*(int *)io = 0;
return (ubinfo);
}
/*
* Non buffer setup interface... set up a buffer and call ubasetup.
*/
uballoc(int uban,caddr_t addr,int bcnt,int flags) {
struct buf ubabuf;
ubabuf.b_un.b_addr = addr;
ubabuf.b_flags = B_BUSY;
ubabuf.b_bcount = bcnt;
/* that's all the fields ubasetup() needs */
return (ubasetup(uban, &ubabuf, flags));
}
/*
* Release resources on uba uban, and then unblock resource waiters.
* The map register parameter is by value since we need to block
* against uba resets on 11/780's.
*/
ubarelse(uban, amr)
int *amr;
{
register struct uba_hd *uh = &uba_hd[uban];
register int bdp, reg, npf, s;
int mr;
/*
* Carefully see if we should release the space, since
* it may be released asynchronously at uba reset time.
*/
s = spluba();
mr = *amr;
if (mr == 0) {
/*
* A ubareset() occurred before we got around
* to releasing the space... no need to bother.
*/
splx(s);
return;
}
*amr = 0;
bdp = UBAI_BDP(mr);
if (bdp) {
switch (uh->uh_type) {
#ifdef DWBUA
case DWBUA:
BUA(uh->uh_uba)->bua_dpr[bdp] |= BUADPR_PURGE;
break;
#endif
#ifdef DW780
sdjhfgsadjkfhgasj
case DW780:
uh->uh_uba->uba_dpr[bdp] |= UBADPR_BNE;
break;
#endif
#ifdef DW750
case DW750:
uh->uh_uba->uba_dpr[bdp] |=
UBADPR_PURGE|UBADPR_NXM|UBADPR_UCE;
break;
#endif
default:
break;
}
uh->uh_bdpfree |= 1 << (bdp-1); /* atomic */
if (uh->uh_bdpwant) {
uh->uh_bdpwant = 0;
wakeup((caddr_t)&uh->uh_bdpwant);
}
}
/*
* Put back the registers in the resource map.
* The map code must not be reentered,
* nor can the registers be freed twice.
* Unblock interrupts once this is done.
*/
npf = UBAI_NMR(mr);
reg = UBAI_MR(mr) + 1;
rmfree(uh->uh_map, (long)npf, (long)reg);
splx(s);
/*
* Wakeup sleepers for map registers,
* and also, if there are processes blocked in dgo(),
* give them a chance at the UNIBUS.
*/
if (uh->uh_mrwant) {
uh->uh_mrwant = 0;
wakeup((caddr_t)&uh->uh_mrwant);
}
while (uh->uh_actf && ubaqueue(uh->uh_actf, 1))
;
}
ubapurge(um)
register struct uba_ctlr *um;
{
register struct uba_hd *uh = um->um_hd;
register int bdp = UBAI_BDP(um->um_ubinfo);
switch (uh->uh_type) {
#ifdef DWBUA
case DWBUA:
BUA(uh->uh_uba)->bua_dpr[bdp] |= BUADPR_PURGE;
break;
#endif
#ifdef DW780
case DW780:
uh->uh_uba->uba_dpr[bdp] |= UBADPR_BNE;
break;
#endif
#ifdef DW750
case DW750:
uh->uh_uba->uba_dpr[bdp] |= UBADPR_PURGE|UBADPR_NXM|UBADPR_UCE;
break;
#endif
default:
break;
}
}
ubainitmaps(uhp)
register struct uba_hd *uhp;
{
if (uhp->uh_memsize > UBA_MAXMR)
uhp->uh_memsize = UBA_MAXMR;
rminit(uhp->uh_map, (long)uhp->uh_memsize, (long)1, "uba", UAMSIZ);
switch (uhp->uh_type) {
#ifdef DWBUA
case DWBUA:
uhp->uh_bdpfree = (1<uh_bdpfree = (1<uh_bdpfree = (1<uh_users = 0;
uh->uh_zvcnt = 0;
uh->uh_xclu = 0;
uh->uh_actf = uh->uh_actl = 0;
uh->uh_bdpwant = 0;
uh->uh_mrwant = 0;
ubainitmaps(uh);
wakeup((caddr_t)&uh->uh_bdpwant);
wakeup((caddr_t)&uh->uh_mrwant);
printf("uba%d: reset", uban);
ubainit(uh->uh_uba);
ubameminit(uban);
/* XXX Intressant, vi m}ste l|sa det h{r med ubareset() p} n}t smart
* s{tt. En l{nkad lista som s{tts upp vid autoconfiggen? Kanske.
* N{r anv{nds dom? Jag vet faktiskt inte; det verkar vara en
* ren sm|rja den gamla koden. F}r peturba lite mer docs...
* 950428/Ragge
*/
/* for (cdp = cdevsw; cdp < cdevsw + nchrdev; cdp++)
(*cdp->d_reset)(uban);
ifubareset(uban);
*/
printf("\n");
splx(s);
}
/*
* Init a uba. This is called with a pointer
* rather than a virtual address since it is called
* by code which runs with memory mapping disabled.
* In these cases we really don't need the interrupts
* enabled, but since we run with ipl high, we don't care
* if they are, they will never happen anyways.
* SHOULD GET POINTER TO UBA_HD INSTEAD OF UBA.
*/
ubainit(uba)
register struct uba_regs *uba;
{
register struct uba_hd *uhp;
#ifdef QBA
int isphys = 0;
#endif
for (uhp = uba_hd; uhp < uba_hd + numuba; uhp++) {
if (uhp->uh_uba == uba)
break;
if (uhp->uh_physuba == uba) {
#ifdef QBA
isphys++;
#endif
break;
}
}
if (uhp >= uba_hd + numuba) {
printf("init unknown uba\n");
return;
}
switch (uhp->uh_type) {
#ifdef DWBUA
case DWBUA:
BUA(uba)->bua_csr |= BUACSR_UPI;
/* give devices time to recover from power fail */
waitabit(500);
break;
#endif
#ifdef DW780
case DW780:
uba->uba_cr = UBACR_ADINIT;
uba->uba_cr = UBACR_IFS|UBACR_BRIE|UBACR_USEFIE|UBACR_SUEFIE;
while ((uba->uba_cnfgr & UBACNFGR_UBIC) == 0)
;
break;
#endif
#ifdef DW750
case DW750:
#endif
#ifdef DW730
case DW730:
#endif
#ifdef QBA
case QBA:
#endif
#if DW750 || DW730 || QBA
mtpr(0, PR_IUR);
/* give devices time to recover from power fail */
#if 0
/* THIS IS PROBABLY UNNECESSARY */
waitabit(50);
/* END PROBABLY UNNECESSARY */
#endif
#ifdef QBA
/*
* Re-enable local memory access
* from the Q-bus.
*/
if (uhp->uh_type == QBA) {
if (isphys)
*((char *)QIOPAGE630 + QIPCR) = Q_LMEAE;
else
*(uhp->uh_iopage + QIPCR) = Q_LMEAE;
}
#endif QBA
break;
#endif DW750 || DW730 || QBA
}
}
#ifdef QBA
/*
* Determine the interrupt priority of a Q-bus
* peripheral. The device probe routine must spl6(),
* attempt to make the device request an interrupt,
* delaying as necessary, then call this routine
* before resetting the device.
*/
qbgetpri()
{
int pri;
extern int cvec;
for (pri = 0x17; pri > 0x14; ) {
if (cvec && cvec != 0x200) /* interrupted at pri */
break;
pri--;
splx(pri - 1);
}
(void) spl0();
return (pri);
}
#endif
#ifdef DW780
int ubawedgecnt = 10;
int ubacrazy = 500;
int zvcnt_max = 5000; /* in 8 sec */
/*
* This routine is called by the locore code to process a UBA
* error on an 11/780 or 8600. The arguments are passed
* on the stack, and value-result (through some trickery).
* In particular, the uvec argument is used for further
* uba processing so the result aspect of it is very important.
* It must not be declared register.
*/
/*ARGSUSED*/
ubaerror(uban, uh, ipl, uvec, uba)
register int uban;
register struct uba_hd *uh;
int ipl, uvec;
register struct uba_regs *uba;
{
register sr, s;
if (uvec == 0) {
/*
* Declare dt as unsigned so that negative values
* are handled as >8 below, in case time was set back.
*/
u_long dt = time.tv_sec - uh->uh_zvtime;
uh->uh_zvtotal++;
if (dt > 8) {
uh->uh_zvtime = time.tv_sec;
uh->uh_zvcnt = 0;
}
if (++uh->uh_zvcnt > zvcnt_max) {
printf("uba%d: too many zero vectors (%d in <%d sec)\n",
uban, uh->uh_zvcnt, dt + 1);
printf("\tIPL 0x%x\n\tcnfgr: %b Adapter Code: 0x%x\n",
ipl, uba->uba_cnfgr&(~0xff), UBACNFGR_BITS,
uba->uba_cnfgr&0xff);
printf("\tsr: %b\n\tdcr: %x (MIC %sOK)\n",
uba->uba_sr, ubasr_bits, uba->uba_dcr,
(uba->uba_dcr&0x8000000)?"":"NOT ");
ubareset(uban);
}
return;
}
if (uba->uba_cnfgr & NEX_CFGFLT) {
printf("uba%d: sbi fault sr=%b cnfgr=%b\n",
uban, uba->uba_sr, ubasr_bits,
uba->uba_cnfgr, NEXFLT_BITS);
ubareset(uban);
uvec = 0;
return;
}
sr = uba->uba_sr;
s = spluba();
printf("uba%d: uba error sr=%b fmer=%x fubar=%o\n",
uban, uba->uba_sr, ubasr_bits, uba->uba_fmer, 4*uba->uba_fubar);
splx(s);
uba->uba_sr = sr;
uvec &= UBABRRVR_DIV;
if (++uh->uh_errcnt % ubawedgecnt == 0) {
if (uh->uh_errcnt > ubacrazy)
panic("uba crazy");
printf("ERROR LIMIT ");
ubareset(uban);
uvec = 0;
return;
}
return;
}
#endif
/*
* Look for devices with unibus memory, allow them to configure, then disable
* map registers as necessary. Called during autoconfiguration and ubareset.
* The device ubamem routine returns 0 on success, 1 on success if it is fully
* configured (has no csr or interrupt, so doesn't need to be probed),
* and -1 on failure.
*/
ubameminit(uban)
{
register struct uba_device *ui;
register struct uba_hd *uh = &uba_hd[uban];
caddr_t umembase = Tumem(uban) + 0x3e000, addr;
#define ubaoff(off) ((int)(off) & 0x1fff)
uh->uh_lastmem = 0;
for (ui = ubdinit; ui->ui_driver; ui++) {
if (ui->ui_ubanum != uban && ui->ui_ubanum != '?')
continue;
if (ui->ui_driver->ud_ubamem) {
/*
* During autoconfiguration, need to fudge ui_addr.
*/
addr = ui->ui_addr;
ui->ui_addr = umembase + ubaoff(addr);
switch ((*ui->ui_driver->ud_ubamem)(ui, uban)) {
case 1:
ui->ui_alive = 1;
/* FALLTHROUGH */
case 0:
ui->ui_ubanum = uban;
break;
}
ui->ui_addr = addr;
}
}
#ifdef DW780
jdhfgsjdkfhgsdjkfghak
/*
* On a DW780, throw away any map registers disabled by rounding
* the map disable in the configuration register
* up to the next 8K boundary, or below the last unibus memory.
*/
if (uh->uh_type == DW780) {
register i;
i = vax_btop(((uh->uh_lastmem + 8191) / 8192) * 8192);
while (i)
(void) rmget(uh->uh_map, 1, i--);
}
#endif
}
rmget(){
showstate(curproc);
panic("rmget() not implemented. (in uba.c)");
}
/*
* Allocate UNIBUS memory. Allocates and initializes
* sufficient mapping registers for access. On a 780,
* the configuration register is setup to disable UBA
* response on DMA transfers to addresses controlled
* by the disabled mapping registers.
* On a DW780, should only be called from ubameminit, or in ascending order
* from 0 with 8K-sized and -aligned addresses; freeing memory that isn't
* the last unibus memory would free unusable map registers.
* Doalloc is 1 to allocate, 0 to deallocate.
*/
ubamem(uban, addr, npg, doalloc)
int uban, addr, npg, doalloc;
{
register struct uba_hd *uh = &uba_hd[uban];
register int a;
int s;
a = (addr >> 9) + 1;
s = spluba();
if (doalloc)
a = rmget(uh->uh_map, npg, a);
else
rmfree(uh->uh_map, (long)npg, (long)a);
splx(s);
if (a) {
register int i, *m;
m = (int *)&uh->uh_mr[a - 1];
for (i = 0; i < npg; i++)
*m++ = 0; /* All off, especially 'valid' */
i = addr + npg * 512;
if (doalloc && i > uh->uh_lastmem)
uh->uh_lastmem = i;
else if (doalloc == 0 && i == uh->uh_lastmem)
uh->uh_lastmem = addr;
#ifdef DW780
/*
* On a 780, set up the map register disable
* field in the configuration register. Beware
* of callers that request memory ``out of order''
* or in sections other than 8K multiples.
* Ubameminit handles such requests properly, however.
*/
if (uh->uh_type == DW780) {
i = uh->uh_uba->uba_cr &~ 0x7c000000;
i |= ((uh->uh_lastmem + 8191) / 8192) << 26;
uh->uh_uba->uba_cr = i;
}
#endif
}
return (a);
}
#include "ik.h"
#include "vs.h"
#if NIK > 0 || NVS > 0
/*
* Map a virtual address into users address space. Actually all we
* do is turn on the user mode write protection bits for the particular
* page of memory involved.
*/
maptouser(vaddress)
caddr_t vaddress;
{
kvtopte(vaddress)->pg_prot = (PG_UW >> 27);
}
unmaptouser(vaddress)
caddr_t vaddress;
{
kvtopte(vaddress)->pg_prot = (PG_KW >> 27);
}
#endif
resuba()
{
showstate(curproc);
panic("resuba");
}
int
uba_match(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct sbi_attach_args *sa=(struct sbi_attach_args *)aux;
extern int numuba;
int ubanr;
#if VAX630
/*
* The MicroVAXII always has a single QBA.
*/
if (cpu_type == VAX_630)
if (numuba == 0)
return 1;
else
return 0;
#endif
if(numuba) return 0;
if((cf->cf_loc[0]!=sa->nexnum)&&(cf->cf_loc[0]>-1))
return 0; /* UBA doesn't match spec's */
switch(sa->type){
case NEX_UBA0:
case NEX_UBA1:
case NEX_UBA2:
case NEX_UBA3:
return 1;
default:
return 0;
}
}
void
uba_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct sbi_attach_args *sa=(struct sbi_attach_args *)aux;
extern struct uba_hd uba_hd[];
struct uba_regs *ubar=(struct uba_regs *)sa->nexaddr;
struct uba_hd *uhp = &uba_hd[numuba];
void ubascan();
printf("\n");
switch (cpunumber) {
#if VAX750
case VAX_750:
uhp->uh_mr = (void *)ubar->uba_map;
uhp->uh_type = DW750;
uhp->uh_uba = (void*)ubar;
uhp->uh_physuba = (void*)0xf20000+sa->nexnum*0x2000;
uhp->uh_memsize = UBAPAGES;
uhp->uh_mem = Tumem(numuba);
uhp->uh_iopage = Tumem(numuba) + (uhp->uh_memsize * NBPG);
ioaccess(UMEM750(numuba), UMEMmap[numuba], (UBAPAGES+UBAIOPAGES)*NBPG);
/* Now everything should be set up (I hope...) */
#ifdef notyet
config_scan(ubascan,self);
#else
unifind(uhp, UMEM750(numuba) + (uhp->uh_memsize * NBPG));
#endif
break;
#endif
#if VAX630 || VAX410
case VAX_78032:
switch (cpu_type) {
#if VAX630
case VAX_630:
uhp->uh_mr = (void *)sa->nexaddr;
uhp->uh_type = QBA;
uhp->uh_uba = (void*)ubar;
uhp->uh_physuba = (void*)QBAMAP630;
uhp->uh_memsize = QBAPAGES;
uhp->uh_mem = Numem;
uhp->uh_iopage = Numem + (uhp->uh_memsize * NBPG);
/*
* For the MicroVAXII, the qbus address space is not contiguous
* in physical address space. I also map the page that has the
* memory error registers and the watch chip here and init them,
* for want of a better place to do it.
*/
ioaccess(QMEM630, UMEMmap[0], QBAPAGES * NBPG);
ioaccess(QIOPAGE630, UMEMmap[0] + QBAPAGES, UBAIOPAGES * NBPG);
ioaccess(UVAXIICPU, UMEMmap[0] + QBAPAGES + UBAIOPAGES, NBPG);
uvaxIIcpu_ptr =
(struct uvaxIIcpu *)(Numem+(QBAPAGES+UBAIOPAGES)*NBPG);
ioaccess(KA630CLK,UMEMmap[0] + QBAPAGES + UBAIOPAGES + 1,NBPG);
ka630clk_ptr =
(struct ka630clock *)(Numem+(QBAPAGES+UBAIOPAGES+1)*NBPG);
/*
* Clear restart and boot in progress flags in the CPMBX.
*/
ka630clk_ptr->cpmbx = (ka630clk_ptr->cpmbx & KA630CLK_LANG);
/*
* Enable memory parity error detection and clear error bits.
*/
uvaxIIcpu_ptr->uvaxII_mser = (UVAXIIMSER_PEN|UVAXIIMSER_MERR|
UVAXIIMSER_LEB);
/*
* Now that QBus space is mapped, set the local memory external
* access enable.
*/
*((u_short *)(uhp->uh_iopage + QIPCR)) = Q_LMEAE;
/* Now everything should be set up (I hope...) */
#ifdef notyet
config_scan(ubascan,self);
#else
unifind(uhp, QIOPAGE630);
#endif
break;
#endif
};
break;
#endif
};
numuba++;
}
struct cfdriver ubacd=
{ NULL, "uba", uba_match, uba_attach, DV_CPU, sizeof(struct device),1,0};