/* $OpenBSD: zaurus_scoop.c,v 1.21 2010/09/07 16:21:41 deraadt Exp $ */ /* * Copyright (c) 2005 Uwe Stuehler * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct scoop_softc { struct device sc_dev; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; u_int16_t sc_gpwr; /* GPIO state before suspend */ int sc_suspended; }; int scoopmatch(struct device *, void *, void *); void scoopattach(struct device *, struct device *, void *); int scoop_activate(struct device *, int); struct cfattach scoop_ca = { sizeof (struct scoop_softc), scoopmatch, scoopattach, NULL, scoop_activate }; struct cfdriver scoop_cd = { NULL, "scoop", DV_DULL }; enum card { SD_CARD, CF_CARD /* socket 0 (external) */ }; int scoop_gpio_pin_read(struct scoop_softc *sc, int); void scoop_gpio_pin_write(struct scoop_softc *sc, int, int); void scoop_gpio_pin_ctl(struct scoop_softc *sc, int, int); void scoop0_set_card_power(enum card, int); struct timeout scoop_checkdisk; void scoop_timeout(void *); int scoopmatch(struct device *parent, void *match, void *aux) { struct cfdata *cf = match; /* * Only C3000-like models are known to have two SCOOPs. */ if (ZAURUS_ISC3000) return (cf->cf_unit < 2); return (cf->cf_unit == 0); } void scoopattach(struct device *parent, struct device *self, void *aux) { struct pxaip_attach_args *pxa = aux; struct scoop_softc *sc = (struct scoop_softc *)self; bus_addr_t addr; bus_size_t size; sc->sc_iot = pxa->pxa_iot; if (pxa->pxa_addr != -1) addr = pxa->pxa_addr; else if (sc->sc_dev.dv_unit == 0) addr = C3000_SCOOP0_BASE; else addr = C3000_SCOOP1_BASE; size = pxa->pxa_size < SCOOP_SIZE ? SCOOP_SIZE : pxa->pxa_size; if (bus_space_map(sc->sc_iot, addr, size, 0, &sc->sc_ioh) != 0) { printf(": failed to map %s\n", sc->sc_dev.dv_xname); return; } if (ZAURUS_ISC3000 && sc->sc_dev.dv_unit == 1) { scoop_gpio_pin_ctl(sc, SCOOP1_AKIN_PULLUP, GPIO_PIN_OUTPUT); scoop_gpio_pin_write(sc, SCOOP1_AKIN_PULLUP, GPIO_PIN_LOW); } else if (!ZAURUS_ISC3000) { scoop_gpio_pin_ctl(sc, SCOOP0_AKIN_PULLUP, GPIO_PIN_OUTPUT); scoop_gpio_pin_write(sc, SCOOP0_AKIN_PULLUP, GPIO_PIN_LOW); } if (sc->sc_dev.dv_unit == 0) timeout_set(&scoop_checkdisk, scoop_timeout, sc); printf(": PCMCIA/GPIO controller\n"); } int scoop_gpio_pin_read(struct scoop_softc *sc, int pin) { u_int16_t rv; u_int16_t bit = (1 << pin); rv = bus_space_read_2(sc->sc_iot, sc->sc_ioh, SCOOP_GPWR); return (rv & bit) != 0 ? 1 : 0; } void scoop_gpio_pin_write(struct scoop_softc *sc, int pin, int level) { u_int16_t rv; u_int16_t bit = (1 << pin); int s; s = splhigh(); rv = bus_space_read_2(sc->sc_iot, sc->sc_ioh, SCOOP_GPWR); bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCOOP_GPWR, level == GPIO_PIN_LOW ? (rv & ~bit) : (rv | bit)); splx(s); } void scoop_gpio_pin_ctl(struct scoop_softc *sc, int pin, int flags) { u_int16_t rv; u_int16_t bit = (1 << pin); rv = bus_space_read_2(sc->sc_iot, sc->sc_ioh, SCOOP_GPCR); switch (flags & (GPIO_PIN_INPUT|GPIO_PIN_OUTPUT)) { case GPIO_PIN_INPUT: rv &= ~bit; break; case GPIO_PIN_OUTPUT: rv |= bit; break; } bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCOOP_GPCR, rv); } /* * Turn the LCD background light and contrast signal on or off. */ void scoop_set_backlight(int on, int cont) { if (scoop_cd.cd_ndevs > 1 && scoop_cd.cd_devs[1] != NULL) { /* C3000 */ scoop_gpio_pin_write(scoop_cd.cd_devs[1], SCOOP1_BACKLIGHT_CONT, !cont); scoop_gpio_pin_write(scoop_cd.cd_devs[1], SCOOP1_BACKLIGHT_ON, on); } #if 0 else if (scoop_cd.cd_ndevs > 0 && scoop_cd.cd_devs[0] != NULL) { scoop_gpio_pin_write(scoop_cd.cd_devs[0], SCOOP0_BACKLIGHT_CONT, cont); } #endif } /* * Turn the infrared LED on or off (must be on while transmitting). */ void scoop_set_irled(int on) { if (scoop_cd.cd_ndevs > 1 && scoop_cd.cd_devs[1] != NULL) /* IR_ON is inverted */ scoop_gpio_pin_write(scoop_cd.cd_devs[1], SCOOP1_IR_ON, !on); } /* * Turn the green and orange LEDs on or off. If the orange LED is on, * then it is wired to indicate if A/C is connected. The green LED has * no such predefined function. */ void scoop_led_set(int led, int on) { if (scoop_cd.cd_ndevs > 0 && scoop_cd.cd_devs[0] != NULL) { if ((led & SCOOP_LED_GREEN) != 0) scoop_gpio_pin_write(scoop_cd.cd_devs[0], SCOOP0_LED_GREEN, on); if (scoop_cd.cd_ndevs > 1 && (led & SCOOP_LED_ORANGE) != 0) scoop_gpio_pin_write(scoop_cd.cd_devs[0], SCOOP0_LED_ORANGE_C3000, on); } } /* * Enable or disable the headphone output connection. */ void scoop_set_headphone(int on) { if (scoop_cd.cd_ndevs < 1 || scoop_cd.cd_devs[0] == NULL) return; scoop_gpio_pin_ctl(scoop_cd.cd_devs[0], SCOOP0_MUTE_L, GPIO_PIN_OUTPUT); scoop_gpio_pin_ctl(scoop_cd.cd_devs[0], SCOOP0_MUTE_R, GPIO_PIN_OUTPUT); if (on) { scoop_gpio_pin_write(scoop_cd.cd_devs[0], SCOOP0_MUTE_L, GPIO_PIN_HIGH); scoop_gpio_pin_write(scoop_cd.cd_devs[0], SCOOP0_MUTE_R, GPIO_PIN_HIGH); } else { scoop_gpio_pin_write(scoop_cd.cd_devs[0], SCOOP0_MUTE_L, GPIO_PIN_LOW); scoop_gpio_pin_write(scoop_cd.cd_devs[0], SCOOP0_MUTE_R, GPIO_PIN_LOW); } } /* * Enable or disable 3.3V power to the SD/MMC card slot. */ void scoop_set_sdmmc_power(int on) { scoop0_set_card_power(SD_CARD, on ? SCP_CPR_SD_3V : SCP_CPR_OFF); } /* * The Card Power Register of the first SCOOP unit controls the power * for the first CompactFlash slot and the SD/MMC card slot as well. */ void scoop0_set_card_power(enum card slot, int new_cpr) { struct scoop_softc *sc = scoop_cd.cd_devs[0]; u_int16_t cpr; cpr = bus_space_read_2(sc->sc_iot, sc->sc_ioh, SCOOP_CPR); if (new_cpr & SCP_CPR_VOLTAGE_MSK) { if (slot == CF_CARD) cpr |= SCP_CPR_5V; else if (slot == SD_CARD) cpr |= SCP_CPR_SD_3V; scoop_gpio_pin_write(sc, SCOOP0_CF_POWER_C3000, 1); if (!ISSET(cpr, SCP_CPR_5V) && !ISSET(cpr, SCP_CPR_SD_3V)) delay(5000); bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCOOP_CPR, cpr | new_cpr); } else { if (slot == CF_CARD) cpr &= ~SCP_CPR_5V; else if (slot == SD_CARD) cpr &= ~SCP_CPR_SD_3V; if (!ISSET(cpr, SCP_CPR_5V) && !ISSET(cpr, SCP_CPR_SD_3V)) { bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCOOP_CPR, SCP_CPR_OFF); delay(1000); scoop_gpio_pin_write(sc, SCOOP0_CF_POWER_C3000, 0); } else bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCOOP_CPR, cpr | new_cpr); } } /* * Turn on pullup resistor while not reading the remote control. */ void scoop_akin_pullup(int enable) { if (scoop_cd.cd_ndevs > 1 && scoop_cd.cd_devs[1] != NULL) scoop_gpio_pin_write(scoop_cd.cd_devs[1], SCOOP1_AKIN_PULLUP, enable); else scoop_gpio_pin_write(scoop_cd.cd_devs[0], SCOOP0_AKIN_PULLUP, enable); } void scoop_battery_temp_adc(int enable) { if (scoop_cd.cd_ndevs > 0 && scoop_cd.cd_devs[0] != NULL) scoop_gpio_pin_write(scoop_cd.cd_devs[0], SCOOP0_ADC_TEMP_ON_C3000, enable); } void scoop_charge_battery(int enable, int voltage_high) { if (scoop_cd.cd_ndevs > 0 && scoop_cd.cd_devs[0] != NULL) { scoop_gpio_pin_write(scoop_cd.cd_devs[0], SCOOP0_JK_B_C3000, voltage_high); scoop_gpio_pin_write(scoop_cd.cd_devs[0], SCOOP0_CHARGE_OFF_C3000, !enable); } } void scoop_discharge_battery(int enable) { if (scoop_cd.cd_ndevs > 0 && scoop_cd.cd_devs[0] != NULL) scoop_gpio_pin_write(scoop_cd.cd_devs[0], SCOOP0_JK_A_C3000, enable); } /* XXX */ void scoop_check_mcr(void); void scoop_check_mcr(void) { struct scoop_softc *sc; /* C3000 */ if (scoop_cd.cd_ndevs > 1 && scoop_cd.cd_devs[1] != NULL) { sc = scoop_cd.cd_devs[0]; if ((bus_space_read_2(sc->sc_iot, sc->sc_ioh, SCOOP_MCR) & 0x100) == 0) bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCOOP_MCR, 0x0101); sc = scoop_cd.cd_devs[1]; if ((bus_space_read_2(sc->sc_iot, sc->sc_ioh, SCOOP_MCR) & 0x100) == 0) bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCOOP_MCR, 0x0101); } } void scoop_suspend(void) { struct scoop_softc *sc; u_int32_t rv; scoop_check_mcr(); if (scoop_cd.cd_ndevs > 0 && scoop_cd.cd_devs[0] != NULL) { sc = scoop_cd.cd_devs[0]; sc->sc_gpwr = bus_space_read_2(sc->sc_iot, sc->sc_ioh, SCOOP_GPWR); /* C3000 */ bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCOOP_GPWR, sc->sc_gpwr & ~((1< 1 && scoop_cd.cd_devs[1] != NULL) { sc = scoop_cd.cd_devs[1]; sc->sc_gpwr = bus_space_read_2(sc->sc_iot, sc->sc_ioh, SCOOP_GPWR); bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCOOP_GPWR, sc->sc_gpwr & ~((1<sc_iot, sc->sc_ioh, SCOOP_GPWR); bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCOOP_GPWR, rv | ((1< 0 && scoop_cd.cd_devs[0] != NULL) { sc = scoop_cd.cd_devs[0]; bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCOOP_GPWR, sc->sc_gpwr); } if (scoop_cd.cd_ndevs > 1 && scoop_cd.cd_devs[1] != NULL) { sc = scoop_cd.cd_devs[1]; bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCOOP_GPWR, sc->sc_gpwr); } } void scoop_timeout(void *v) { extern struct disklist_head disklist; struct scoop_softc *sc = v; static struct disk *dk; static int state = 0; if (dk == NULL) { TAILQ_FOREACH(dk, &disklist, dk_link) { if (dk->dk_name && strcmp(dk->dk_name, "wd0") == 0) break; } } if (sc->sc_suspended) state = -1; else if (dk) { int newstate = (dk->dk_busy ? 1 : 0); if (newstate != state) { state = newstate; scoop_led_set(SCOOP_LED_GREEN, newstate); } } timeout_add(&scoop_checkdisk, hz/25); } int scoop_activate(struct device *self, int act) { struct scoop_softc *sc = (struct scoop_softc *)self; switch (act) { case DVACT_SUSPEND: /* * Nothing should use the scoop from this point on. * No timeouts, no interrupts (even though interrupts * are still enabled). scoop_timeout() respects the * sc_suspended flag. */ if (sc->sc_dev.dv_unit == 0) { sc->sc_suspended = 1; scoop_suspend(); } break; case DVACT_RESUME: if (sc->sc_dev.dv_unit == 0) { scoop_resume(); sc->sc_suspended = 0; } break; } return 0; }