/* $OpenBSD: linux_ipc.c,v 1.15 2011/10/27 07:56:28 robert Exp $ */ /* $NetBSD: linux_ipc.c,v 1.10 1996/04/05 00:01:44 christos Exp $ */ /* * Copyright (c) 1995 Frank van der Linden * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project * by Frank van der Linden * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Stuff to deal with the SysV ipc/shm/semaphore interface in Linux. * The main difference is, that Linux handles it all via one * system call, which has the usual maximum amount of 5 arguments. * This results in a kludge for calls that take 6 of them. * * The SYSVXXXX options have to be enabled to get the appropriate * functions to work. */ #ifdef SYSVSEM int linux_semop(struct proc *, void *, register_t *); int linux_semget(struct proc *, void *, register_t *); int linux_semctl(struct proc *, void *, register_t *); void bsd_to_linux_semid_ds(struct semid_ds *, struct linux_semid_ds *); void linux_to_bsd_semid_ds(struct linux_semid_ds *, struct semid_ds *); #endif #ifdef SYSVMSG int linux_msgsnd(struct proc *, void *, register_t *); int linux_msgrcv(struct proc *, void *, register_t *); int linux_msgget(struct proc *, void *, register_t *); int linux_msgctl(struct proc *, void *, register_t *); void linux_to_bsd_msqid_ds(struct linux_msqid_ds *, struct msqid_ds *); void bsd_to_linux_msqid_ds(struct msqid_ds *, struct linux_msqid_ds *); #endif #ifdef SYSVSHM int linux_shmat(struct proc *, void *, register_t *); int linux_shmdt(struct proc *, void *, register_t *); int linux_shmget(struct proc *, void *, register_t *); int linux_shmctl(struct proc *, void *, register_t *); void linux_to_bsd_shmid_ds(struct linux_shmid_ds *, struct shmid_ds *); void bsd_to_linux_shmid_ds(struct shmid_ds *, struct linux_shmid_ds *); #endif #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) void linux_to_bsd_ipc_perm(struct linux_ipc_perm *, struct ipc_perm *); void bsd_to_linux_ipc_perm(struct ipc_perm *, struct linux_ipc_perm *); #endif int linux_sys_ipc(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_ipc_args /* { syscallarg(int) what; syscallarg(int) a1; syscallarg(int) a2; syscallarg(int) a3; syscallarg(caddr_t) ptr; } */ *uap = v; switch (SCARG(uap, what)) { #ifdef SYSVSEM case LINUX_SYS_semop: return linux_semop(p, uap, retval); case LINUX_SYS_semget: return linux_semget(p, uap, retval); case LINUX_SYS_semctl: return linux_semctl(p, uap, retval); #endif #ifdef SYSVMSG case LINUX_SYS_msgsnd: return linux_msgsnd(p, uap, retval); case LINUX_SYS_msgrcv: return linux_msgrcv(p, uap, retval); case LINUX_SYS_msgget: return linux_msgget(p, uap, retval); case LINUX_SYS_msgctl: return linux_msgctl(p, uap, retval); #endif #ifdef SYSVSHM case LINUX_SYS_shmat: return linux_shmat(p, uap, retval); case LINUX_SYS_shmdt: return linux_shmdt(p, uap, retval); case LINUX_SYS_shmget: return linux_shmget(p, uap, retval); case LINUX_SYS_shmctl: return linux_shmctl(p, uap, retval); #endif default: return ENOSYS; } } #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) /* * Convert between Linux and OpenBSD ipc_perm structures. Only the * order of the fields is different. */ void linux_to_bsd_ipc_perm(lpp, bpp) struct linux_ipc_perm *lpp; struct ipc_perm *bpp; { bpp->key = lpp->l_key; bpp->uid = lpp->l_uid; bpp->gid = lpp->l_gid; bpp->cuid = lpp->l_cuid; bpp->cgid = lpp->l_cgid; bpp->mode = lpp->l_mode; bpp->seq = lpp->l_seq; } void bsd_to_linux_ipc_perm(bpp, lpp) struct ipc_perm *bpp; struct linux_ipc_perm *lpp; { lpp->l_key = bpp->key; lpp->l_uid = bpp->uid; lpp->l_gid = bpp->gid; lpp->l_cuid = bpp->cuid; lpp->l_cgid = bpp->cgid; lpp->l_mode = bpp->mode; lpp->l_seq = bpp->seq; } #endif #ifdef SYSVSEM /* * Semaphore operations. Most constants and structures are the same on * both systems. Only semctl() needs some extra work. */ /* * Convert between Linux and OpenBSD semid_ds structures. */ void bsd_to_linux_semid_ds(bs, ls) struct semid_ds *bs; struct linux_semid_ds *ls; { bsd_to_linux_ipc_perm(&bs->sem_perm, &ls->l_sem_perm); ls->l_sem_otime = bs->sem_otime; ls->l_sem_ctime = bs->sem_ctime; ls->l_sem_nsems = bs->sem_nsems; ls->l_sem_base = bs->sem_base; } void linux_to_bsd_semid_ds(ls, bs) struct linux_semid_ds *ls; struct semid_ds *bs; { linux_to_bsd_ipc_perm(&ls->l_sem_perm, &bs->sem_perm); bs->sem_otime = ls->l_sem_otime; bs->sem_ctime = ls->l_sem_ctime; bs->sem_nsems = ls->l_sem_nsems; bs->sem_base = ls->l_sem_base; } int linux_semop(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_ipc_args /* { syscallarg(int) what; syscallarg(int) a1; syscallarg(int) a2; syscallarg(int) a3; syscallarg(caddr_t) ptr; } */ *uap = v; struct sys_semop_args bsa; SCARG(&bsa, semid) = SCARG(uap, a1); SCARG(&bsa, sops) = (struct sembuf *)SCARG(uap, ptr); SCARG(&bsa, nsops) = SCARG(uap, a2); return sys_semop(p, &bsa, retval); } int linux_semget(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_ipc_args /* { syscallarg(int) what; syscallarg(int) a1; syscallarg(int) a2; syscallarg(int) a3; syscallarg(caddr_t) ptr; } */ *uap = v; struct sys_semget_args bsa; SCARG(&bsa, key) = (key_t)SCARG(uap, a1); SCARG(&bsa, nsems) = SCARG(uap, a2); SCARG(&bsa, semflg) = SCARG(uap, a3); return sys_semget(p, &bsa, retval); } /* * Most of this can be handled by directly passing the arguments on, * buf IPC_* require a lot of copy{in,out} because of the extra indirection * (we are passed a pointer to a union cointaining a pointer to a semid_ds * structure. */ int linux_semctl(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_ipc_args /* { syscallarg(int) what; syscallarg(int) a1; syscallarg(int) a2; syscallarg(int) a3; syscallarg(caddr_t) ptr; } */ *uap = v; caddr_t sg, unptr, dsp, ldsp; int error, cmd; struct sys___semctl_args bsa; struct linux_semid_ds lm; struct semid_ds bm; SCARG(&bsa, semid) = SCARG(uap, a1); SCARG(&bsa, semnum) = SCARG(uap, a2); SCARG(&bsa, cmd) = SCARG(uap, a3); SCARG(&bsa, arg) = (union semun *)SCARG(uap, ptr); switch(SCARG(uap, a3)) { case LINUX_GETVAL: cmd = GETVAL; break; case LINUX_GETPID: cmd = GETPID; break; case LINUX_GETNCNT: cmd = GETNCNT; break; case LINUX_GETZCNT: cmd = GETZCNT; break; case LINUX_SETVAL: cmd = SETVAL; break; case LINUX_IPC_RMID: cmd = IPC_RMID; break; case LINUX_IPC_SET: if ((error = copyin(SCARG(uap, ptr), &ldsp, sizeof ldsp))) return error; if ((error = copyin(ldsp, (caddr_t)&lm, sizeof lm))) return error; linux_to_bsd_semid_ds(&lm, &bm); sg = stackgap_init(p->p_emul); unptr = stackgap_alloc(&sg, sizeof (union semun)); dsp = stackgap_alloc(&sg, sizeof (struct semid_ds)); if ((error = copyout((caddr_t)&bm, dsp, sizeof bm))) return error; if ((error = copyout((caddr_t)&dsp, unptr, sizeof dsp))) return error; SCARG(&bsa, arg) = (union semun *)unptr; return sys___semctl(p, &bsa, retval); case LINUX_IPC_STAT: sg = stackgap_init(p->p_emul); unptr = stackgap_alloc(&sg, sizeof (union semun)); dsp = stackgap_alloc(&sg, sizeof (struct semid_ds)); if ((error = copyout((caddr_t)&dsp, unptr, sizeof dsp))) return error; SCARG(&bsa, arg) = (union semun *)unptr; if ((error = sys___semctl(p, &bsa, retval))) return error; if ((error = copyin(dsp, (caddr_t)&bm, sizeof bm))) return error; bsd_to_linux_semid_ds(&bm, &lm); if ((error = copyin(SCARG(uap, ptr), &ldsp, sizeof ldsp))) return error; return copyout((caddr_t)&lm, ldsp, sizeof lm); default: return EINVAL; } SCARG(&bsa, cmd) = cmd; return sys___semctl(p, &bsa, retval); } #endif /* SYSVSEM */ #ifdef SYSVMSG void linux_to_bsd_msqid_ds(lmp, bmp) struct linux_msqid_ds *lmp; struct msqid_ds *bmp; { linux_to_bsd_ipc_perm(&lmp->l_msg_perm, &bmp->msg_perm); bmp->msg_first = lmp->l_msg_first; bmp->msg_last = lmp->l_msg_last; bmp->msg_cbytes = lmp->l_msg_cbytes; bmp->msg_qnum = lmp->l_msg_qnum; bmp->msg_qbytes = lmp->l_msg_qbytes; bmp->msg_lspid = lmp->l_msg_lspid; bmp->msg_lrpid = lmp->l_msg_lrpid; bmp->msg_stime = lmp->l_msg_stime; bmp->msg_rtime = lmp->l_msg_rtime; bmp->msg_ctime = lmp->l_msg_ctime; } void bsd_to_linux_msqid_ds(bmp, lmp) struct msqid_ds *bmp; struct linux_msqid_ds *lmp; { bsd_to_linux_ipc_perm(&bmp->msg_perm, &lmp->l_msg_perm); lmp->l_msg_first = bmp->msg_first; lmp->l_msg_last = bmp->msg_last; lmp->l_msg_cbytes = bmp->msg_cbytes; lmp->l_msg_qnum = bmp->msg_qnum; lmp->l_msg_qbytes = bmp->msg_qbytes; lmp->l_msg_lspid = bmp->msg_lspid; lmp->l_msg_lrpid = bmp->msg_lrpid; lmp->l_msg_stime = bmp->msg_stime; lmp->l_msg_rtime = bmp->msg_rtime; lmp->l_msg_ctime = bmp->msg_ctime; } int linux_msgsnd(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_ipc_args /* { syscallarg(int) what; syscallarg(int) a1; syscallarg(int) a2; syscallarg(int) a3; syscallarg(caddr_t) ptr; } */ *uap = v; struct sys_msgsnd_args bma; SCARG(&bma, msqid) = SCARG(uap, a1); SCARG(&bma, msgp) = SCARG(uap, ptr); SCARG(&bma, msgsz) = SCARG(uap, a2); SCARG(&bma, msgflg) = SCARG(uap, a3); return sys_msgsnd(p, &bma, retval); } int linux_msgrcv(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_ipc_args /* { syscallarg(int) what; syscallarg(int) a1; syscallarg(int) a2; syscallarg(int) a3; syscallarg(caddr_t) ptr; } */ *uap = v; struct sys_msgrcv_args bma; struct linux_msgrcv_msgarg kluge; int error; if ((error = copyin(SCARG(uap, ptr), &kluge, sizeof kluge))) return error; SCARG(&bma, msqid) = SCARG(uap, a1); SCARG(&bma, msgp) = kluge.msg; SCARG(&bma, msgsz) = SCARG(uap, a2); SCARG(&bma, msgtyp) = kluge.type; SCARG(&bma, msgflg) = SCARG(uap, a3); return sys_msgrcv(p, &bma, retval); } int linux_msgget(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_ipc_args /* { syscallarg(int) what; syscallarg(int) a1; syscallarg(int) a2; syscallarg(int) a3; syscallarg(caddr_t) ptr; } */ *uap = v; struct sys_msgget_args bma; SCARG(&bma, key) = (key_t)SCARG(uap, a1); SCARG(&bma, msgflg) = SCARG(uap, a2); return sys_msgget(p, &bma, retval); } int linux_msgctl(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_ipc_args /* { syscallarg(int) what; syscallarg(int) a1; syscallarg(int) a2; syscallarg(int) a3; syscallarg(caddr_t) ptr; } */ *uap = v; struct sys_msgctl_args bma; caddr_t umsgptr, sg; struct linux_msqid_ds lm; struct msqid_ds bm; int error; SCARG(&bma, msqid) = SCARG(uap, a1); SCARG(&bma, cmd) = SCARG(uap, a2); switch (SCARG(uap, a2)) { case LINUX_IPC_RMID: return sys_msgctl(p, &bma, retval); case LINUX_IPC_SET: if ((error = copyin(SCARG(uap, ptr), (caddr_t)&lm, sizeof lm))) return error; linux_to_bsd_msqid_ds(&lm, &bm); sg = stackgap_init(p->p_emul); umsgptr = stackgap_alloc(&sg, sizeof bm); if ((error = copyout((caddr_t)&bm, umsgptr, sizeof bm))) return error; SCARG(&bma, buf) = (struct msqid_ds *)umsgptr; return sys_msgctl(p, &bma, retval); case LINUX_IPC_STAT: sg = stackgap_init(p->p_emul); umsgptr = stackgap_alloc(&sg, sizeof (struct msqid_ds)); SCARG(&bma, buf) = (struct msqid_ds *)umsgptr; if ((error = sys_msgctl(p, &bma, retval))) return error; if ((error = copyin(umsgptr, (caddr_t)&bm, sizeof bm))) return error; bsd_to_linux_msqid_ds(&bm, &lm); return copyout((caddr_t)&lm, SCARG(uap, ptr), sizeof lm); } return EINVAL; } #endif /* SYSVMSG */ #ifdef SYSVSHM /* * shmat(2). Very straightforward, except that Linux passes a pointer * in which the return value is to be passed. This is subsequently * handled by libc, apparently. */ int linux_shmat(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_ipc_args /* { syscallarg(int) what; syscallarg(int) a1; syscallarg(int) a2; syscallarg(int) a3; syscallarg(caddr_t) ptr; } */ *uap = v; struct sys_shmat_args bsa; int error; SCARG(&bsa, shmid) = SCARG(uap, a1); SCARG(&bsa, shmaddr) = SCARG(uap, ptr); SCARG(&bsa, shmflg) = SCARG(uap, a2); if ((error = sys_shmat(p, &bsa, retval))) return error; if ((error = copyout(&retval[0], (caddr_t) SCARG(uap, a3), sizeof retval[0]))) return error; retval[0] = 0; return 0; } /* * shmdt(): this could have been mapped directly, if it wasn't for * the extra indirection by the linux_ipc system call. */ int linux_shmdt(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_ipc_args /* { syscallarg(int) what; syscallarg(int) a1; syscallarg(int) a2; syscallarg(int) a3; syscallarg(caddr_t) ptr; } */ *uap = v; struct sys_shmdt_args bsa; SCARG(&bsa, shmaddr) = SCARG(uap, ptr); return sys_shmdt(p, &bsa, retval); } /* * Same story as shmdt. */ int linux_shmget(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_ipc_args /* { syscallarg(int) what; syscallarg(int) a1; syscallarg(int) a2; syscallarg(int) a3; syscallarg(caddr_t) ptr; } */ *uap = v; struct sys_shmget_args bsa; SCARG(&bsa, key) = SCARG(uap, a1); SCARG(&bsa, size) = SCARG(uap, a2); SCARG(&bsa, shmflg) = SCARG(uap, a3); return sys_shmget(p, &bsa, retval); } /* * Convert between Linux and OpenBSD shmid_ds structures. * The order of the fields is once again the difference, and * we also need a place to store the internal data pointer * in, which is unfortunately stored in this structure. * * We abuse a Linux internal field for that. */ void linux_to_bsd_shmid_ds(lsp, bsp) struct linux_shmid_ds *lsp; struct shmid_ds *bsp; { linux_to_bsd_ipc_perm(&lsp->l_shm_perm, &bsp->shm_perm); bsp->shm_segsz = lsp->l_shm_segsz; bsp->shm_lpid = lsp->l_shm_lpid; bsp->shm_cpid = lsp->l_shm_cpid; bsp->shm_nattch = lsp->l_shm_nattch; bsp->shm_atime = lsp->l_shm_atime; bsp->shm_dtime = lsp->l_shm_dtime; bsp->shm_ctime = lsp->l_shm_ctime; bsp->shm_internal = lsp->l_private2; /* XXX Oh well. */ } void bsd_to_linux_shmid_ds(bsp, lsp) struct shmid_ds *bsp; struct linux_shmid_ds *lsp; { bsd_to_linux_ipc_perm(&bsp->shm_perm, &lsp->l_shm_perm); lsp->l_shm_segsz = bsp->shm_segsz; lsp->l_shm_lpid = bsp->shm_lpid; lsp->l_shm_cpid = bsp->shm_cpid; lsp->l_shm_nattch = bsp->shm_nattch; lsp->l_shm_atime = bsp->shm_atime; lsp->l_shm_dtime = bsp->shm_dtime; lsp->l_shm_ctime = bsp->shm_ctime; lsp->l_private2 = bsp->shm_internal; /* XXX */ } /* * shmctl. Not implemented (for now): IPC_INFO, SHM_INFO, SHM_STAT * SHM_LOCK and SHM_UNLOCK are passed on, but currently not implemented * by OpenBSD itself. * * The usual structure conversion and massaging is done. */ int linux_shmctl(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_ipc_args /* { syscallarg(int) what; syscallarg(int) a1; syscallarg(int) a2; syscallarg(int) a3; syscallarg(caddr_t) ptr; } */ *uap = v; int error; caddr_t sg; struct sys_shmctl_args bsa; struct shmid_ds *bsp, bs; struct linux_shmid_ds lseg; switch (SCARG(uap, a2)) { case LINUX_IPC_STAT: sg = stackgap_init(p->p_emul); bsp = stackgap_alloc(&sg, sizeof (struct shmid_ds)); SCARG(&bsa, shmid) = SCARG(uap, a1); SCARG(&bsa, cmd) = IPC_STAT; SCARG(&bsa, buf) = bsp; if ((error = sys_shmctl(p, &bsa, retval))) return error; if ((error = copyin((caddr_t) bsp, (caddr_t) &bs, sizeof bs))) return error; bsd_to_linux_shmid_ds(&bs, &lseg); return copyout((caddr_t) &lseg, SCARG(uap, ptr), sizeof lseg); case LINUX_IPC_SET: if ((error = copyin(SCARG(uap, ptr), (caddr_t) &lseg, sizeof lseg))) return error; linux_to_bsd_shmid_ds(&lseg, &bs); sg = stackgap_init(p->p_emul); bsp = stackgap_alloc(&sg, sizeof (struct shmid_ds)); if ((error = copyout((caddr_t) &bs, (caddr_t) bsp, sizeof bs))) return error; SCARG(&bsa, shmid) = SCARG(uap, a1); SCARG(&bsa, cmd) = IPC_SET; SCARG(&bsa, buf) = bsp; return sys_shmctl(p, &bsa, retval); case LINUX_IPC_RMID: case LINUX_SHM_LOCK: case LINUX_SHM_UNLOCK: SCARG(&bsa, shmid) = SCARG(uap, a1); switch (SCARG(uap, a2)) { case LINUX_IPC_RMID: SCARG(&bsa, cmd) = IPC_RMID; break; case LINUX_SHM_LOCK: SCARG(&bsa, cmd) = SHM_LOCK; break; case LINUX_SHM_UNLOCK: SCARG(&bsa, cmd) = SHM_UNLOCK; break; } SCARG(&bsa, buf) = NULL; return sys_shmctl(p, &bsa, retval); case LINUX_IPC_INFO: case LINUX_SHM_STAT: case LINUX_SHM_INFO: default: return EINVAL; } } #endif /* SYSVSHM */ int linux_sys_pipe2(struct proc *p, void *v, register_t *retval) { struct linux_sys_pipe2_args *uap = v; struct sys_pipe_args pargs; /* * We don't really support pipe2, but glibc falls back to pipe * if we signal that. */ if (SCARG(uap, flags) != 0) return ENOSYS; /* If no flag is set then this is a plain pipe call. */ SCARG(&pargs, fdp) = SCARG(uap, fdp); return sys_pipe(p, &pargs, retval); }