/* $OpenBSD: linux_misc.c,v 1.55 2003/12/02 03:46:45 nordin Exp $ */ /* $NetBSD: linux_misc.c,v 1.27 1996/05/20 01:59:21 fvdl Exp $ */ /*- * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Linux compatibility module. Try to deal with various Linux system calls. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* linux_misc.c */ static void bsd_to_linux_statfs(struct statfs *, struct linux_statfs *); int linux_select1(struct proc *, register_t *, int, fd_set *, fd_set *, fd_set *, struct timeval *); static int getdents_common(struct proc *, void *, register_t *, int); static void linux_to_bsd_mmap_args(struct sys_mmap_args *, const struct linux_sys_mmap2_args *); /* * The information on a terminated (or stopped) process needs * to be converted in order for Linux binaries to get a valid signal * number out of it. */ void bsd_to_linux_wstat(status) int *status; { if (WIFSIGNALED(*status)) *status = (*status & ~0177) | bsd_to_linux_sig[WTERMSIG(*status)]; else if (WIFSTOPPED(*status)) *status = (*status & ~0xff00) | (bsd_to_linux_sig[WSTOPSIG(*status)] << 8); } /* * waitpid(2). Passed on to the OpenBSD call, surrounded by code to * reserve some space for a OpenBSD-style wait status, and converting * it to what Linux wants. */ int linux_sys_waitpid(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_waitpid_args /* { syscallarg(int) pid; syscallarg(int *) status; syscallarg(int) options; } */ *uap = v; struct sys_wait4_args w4a; int error, *status, tstat; caddr_t sg; if (SCARG(uap, status) != NULL) { sg = stackgap_init(p->p_emul); status = (int *) stackgap_alloc(&sg, sizeof status); } else status = NULL; SCARG(&w4a, pid) = SCARG(uap, pid); SCARG(&w4a, status) = status; SCARG(&w4a, options) = SCARG(uap, options); SCARG(&w4a, rusage) = NULL; if ((error = sys_wait4(p, &w4a, retval))) return error; p->p_siglist &= ~sigmask(SIGCHLD); if (status != NULL) { if ((error = copyin(status, &tstat, sizeof tstat))) return error; bsd_to_linux_wstat(&tstat); return copyout(&tstat, SCARG(uap, status), sizeof tstat); } return 0; } /* * This is very much the same as waitpid() */ int linux_sys_wait4(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_wait4_args /* { syscallarg(int) pid; syscallarg(int *) status; syscallarg(int) options; syscallarg(struct rusage *) rusage; } */ *uap = v; struct sys_wait4_args w4a; int error, *status, tstat, linux_options, options; caddr_t sg; if (SCARG(uap, status) != NULL) { sg = stackgap_init(p->p_emul); status = (int *) stackgap_alloc(&sg, sizeof status); } else status = NULL; linux_options = SCARG(uap, options); options = 0; if (linux_options & ~(LINUX_WAIT4_WNOHANG|LINUX_WAIT4_WUNTRACED|LINUX_WAIT4_WCLONE)) return (EINVAL); if (linux_options & LINUX_WAIT4_WNOHANG) options |= WNOHANG; if (linux_options & LINUX_WAIT4_WUNTRACED) options |= WUNTRACED; if (linux_options & LINUX_WAIT4_WCLONE) options |= WALTSIG; SCARG(&w4a, pid) = SCARG(uap, pid); SCARG(&w4a, status) = status; SCARG(&w4a, options) = options; SCARG(&w4a, rusage) = SCARG(uap, rusage); if ((error = sys_wait4(p, &w4a, retval))) return error; p->p_siglist &= ~sigmask(SIGCHLD); if (status != NULL) { if ((error = copyin(status, &tstat, sizeof tstat))) return error; bsd_to_linux_wstat(&tstat); return copyout(&tstat, SCARG(uap, status), sizeof tstat); } return 0; } int linux_sys_setresgid16(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_setresgid16_args /* { syscallarg(u_int16_t) rgid; syscallarg(u_int16_t) egid; syscallarg(u_int16_t) sgid; } */ *uap = v; struct sys_setresgid_args nuap; u_int16_t rgid, egid, sgid; rgid = SCARG(uap, rgid); SCARG(&nuap, rgid) = (rgid == (u_int16_t)-1) ? (gid_t)-1 : rgid; egid = SCARG(uap, egid); SCARG(&nuap, egid) = (egid == (u_int16_t)-1) ? (gid_t)-1 : egid; sgid = SCARG(uap, sgid); SCARG(&nuap, sgid) = (sgid == (u_int16_t)-1) ? (gid_t)-1 : sgid; return sys_setresgid(p, &nuap, retval); } int linux_sys_getresgid16(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_getresgid16_args /* { syscallarg(u_int16_t *) rgid; syscallarg(u_int16_t *) egid; syscallarg(u_int16_t *) sgid; } */ *uap = v; struct sys_getresgid_args nuap; SCARG(&nuap, rgid) = (gid_t *)SCARG(uap, rgid); SCARG(&nuap, egid) = (gid_t *)SCARG(uap, egid); SCARG(&nuap, sgid) = (gid_t *)SCARG(uap, sgid); return sys_getresgid(p, &nuap, retval); } int linux_sys_setresuid16(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_setresuid16_args /* { syscallarg(u_int16_t) ruid; syscallarg(u_int16_t) euid; syscallarg(u_int16_t) suid; } */ *uap = v; struct sys_setresuid_args nuap; u_int16_t ruid, euid, suid; ruid = SCARG(uap, ruid); SCARG(&nuap, ruid) = (ruid == (u_int16_t)-1) ? (uid_t)-1 : ruid; euid = SCARG(uap, euid); SCARG(&nuap, euid) = (euid == (u_int16_t)-1) ? (uid_t)-1 : euid; suid = SCARG(uap, suid); SCARG(&nuap, suid) = (suid == (u_int16_t)-1) ? (uid_t)-1 : suid; return sys_setresuid(p, &nuap, retval); } int linux_sys_getresuid16(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_getresuid16_args /* { syscallarg(u_int16_t *) ruid; syscallarg(u_int16_t *) euid; syscallarg(u_int16_t *) suid; } */ *uap = v; struct sys_getresuid_args nuap; SCARG(&nuap, ruid) = (uid_t *)SCARG(uap, ruid); SCARG(&nuap, euid) = (uid_t *)SCARG(uap, euid); SCARG(&nuap, suid) = (uid_t *)SCARG(uap, suid); return sys_getresuid(p, &nuap, retval); } /* * This is the old brk(2) call. I don't think anything in the Linux * world uses this anymore */ int linux_sys_break(p, v, retval) struct proc *p; void *v; register_t *retval; { #if 0 struct linux_sys_brk_args /* { syscallarg(char *) nsize; } */ *uap = v; #endif return ENOSYS; } /* * Linux brk(2). The check if the new address is >= the old one is * done in the kernel in Linux. OpenBSD does it in the library. */ int linux_sys_brk(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_brk_args /* { syscallarg(char *) nsize; } */ *uap = v; char *nbrk = SCARG(uap, nsize); struct sys_obreak_args oba; struct vmspace *vm = p->p_vmspace; struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata; SCARG(&oba, nsize) = nbrk; if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(p, &oba, retval) == 0) ed->p_break = (char*)nbrk; else nbrk = ed->p_break; retval[0] = (register_t)nbrk; return 0; } /* * I wonder why Linux has gettimeofday() _and_ time().. Still, we * need to deal with it. */ int linux_sys_time(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_time_args /* { linux_time_t *t; } */ *uap = v; struct timeval atv; linux_time_t tt; int error; microtime(&atv); tt = atv.tv_sec; if (SCARG(uap, t) && (error = copyout(&tt, SCARG(uap, t), sizeof tt))) return error; retval[0] = tt; return 0; } /* * Convert BSD statfs structure to Linux statfs structure. * The Linux structure has less fields, and it also wants * the length of a name in a dir entry in a field, which * we fake (probably the wrong way). */ static void bsd_to_linux_statfs(bsp, lsp) struct statfs *bsp; struct linux_statfs *lsp; { /* * Convert BSD filesystem names to Linux filesystem type numbers * where possible. Linux statfs uses a value of -1 to indicate * an unsupported field. */ if (!strcmp(bsp->f_fstypename, MOUNT_FFS) || !strcmp(bsp->f_fstypename, MOUNT_MFS)) lsp->l_ftype = 0x11954; else if (!strcmp(bsp->f_fstypename, MOUNT_NFS)) lsp->l_ftype = 0x6969; else if (!strcmp(bsp->f_fstypename, MOUNT_MSDOS)) lsp->l_ftype = 0x4d44; else if (!strcmp(bsp->f_fstypename, MOUNT_PROCFS)) lsp->l_ftype = 0x9fa0; else if (!strcmp(bsp->f_fstypename, MOUNT_EXT2FS)) lsp->l_ftype = 0xef53; else if (!strcmp(bsp->f_fstypename, MOUNT_CD9660)) lsp->l_ftype = 0x9660; else if (!strcmp(bsp->f_fstypename, MOUNT_NCPFS)) lsp->l_ftype = 0x6969; else lsp->l_ftype = -1; lsp->l_fbsize = bsp->f_bsize; lsp->l_fblocks = bsp->f_blocks; lsp->l_fbfree = bsp->f_bfree; lsp->l_fbavail = bsp->f_bavail; lsp->l_ffiles = bsp->f_files; lsp->l_fffree = bsp->f_ffree; lsp->l_ffsid.val[0] = bsp->f_fsid.val[0]; lsp->l_ffsid.val[1] = bsp->f_fsid.val[1]; lsp->l_fnamelen = MAXNAMLEN; /* XXX */ } /* * Implement the fs stat functions. Straightforward. */ int linux_sys_statfs(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_statfs_args /* { syscallarg(char *) path; syscallarg(struct linux_statfs *) sp; } */ *uap = v; struct statfs btmp, *bsp; struct linux_statfs ltmp; struct sys_statfs_args bsa; caddr_t sg; int error; sg = stackgap_init(p->p_emul); bsp = (struct statfs *) stackgap_alloc(&sg, sizeof (struct statfs)); LINUX_CHECK_ALT_EXIST(p, &sg, SCARG(uap, path)); SCARG(&bsa, path) = SCARG(uap, path); SCARG(&bsa, buf) = bsp; if ((error = sys_statfs(p, &bsa, retval))) return error; if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp))) return error; bsd_to_linux_statfs(&btmp, <mp); return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp); } int linux_sys_fstatfs(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_fstatfs_args /* { syscallarg(int) fd; syscallarg(struct linux_statfs *) sp; } */ *uap = v; struct statfs btmp, *bsp; struct linux_statfs ltmp; struct sys_fstatfs_args bsa; caddr_t sg; int error; sg = stackgap_init(p->p_emul); bsp = (struct statfs *) stackgap_alloc(&sg, sizeof (struct statfs)); SCARG(&bsa, fd) = SCARG(uap, fd); SCARG(&bsa, buf) = bsp; if ((error = sys_fstatfs(p, &bsa, retval))) return error; if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp))) return error; bsd_to_linux_statfs(&btmp, <mp); return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp); } /* * uname(). Just copy the info from the various strings stored in the * kernel, and put it in the Linux utsname structure. That structure * is almost the same as the OpenBSD one, only it has fields 65 characters * long, and an extra domainname field. */ int linux_sys_uname(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_uname_args /* { syscallarg(struct linux_utsname *) up; } */ *uap = v; extern char hostname[], machine[], domainname[]; struct linux_utsname luts; int len; char *cp; strncpy(luts.l_sysname, ostype, sizeof(luts.l_sysname) - 1); luts.l_sysname[sizeof(luts.l_sysname) - 1] = '\0'; strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename) - 1); luts.l_nodename[sizeof(luts.l_nodename) - 1] = '\0'; strncpy(luts.l_release, osrelease, sizeof(luts.l_release) - 1); luts.l_release[sizeof(luts.l_release) - 1] = '\0'; strncpy(luts.l_version, version, sizeof(luts.l_version) - 1); luts.l_version[sizeof(luts.l_version) - 1] = '\0'; strncpy(luts.l_machine, machine, sizeof(luts.l_machine) - 1); luts.l_machine[sizeof(luts.l_machine) - 1] = '\0'; strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname) - 1); luts.l_domainname[sizeof(luts.l_domainname) - 1] = '\0'; /* This part taken from the the uname() in libc */ len = sizeof(luts.l_version); for (cp = luts.l_version; len--; ++cp) if (*cp == '\n' || *cp == '\t') *cp = (len > 1) ? ' ' : '\0'; return copyout(&luts, SCARG(uap, up), sizeof(luts)); } int linux_sys_olduname(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_uname_args /* { syscallarg(struct linux_oldutsname *) up; } */ *uap = v; extern char hostname[], machine[]; struct linux_oldutsname luts; int len; char *cp; strncpy(luts.l_sysname, ostype, sizeof(luts.l_sysname)); strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename)); strncpy(luts.l_release, osrelease, sizeof(luts.l_release)); strncpy(luts.l_version, version, sizeof(luts.l_version)); strncpy(luts.l_machine, machine, sizeof(luts.l_machine)); /* This part taken from the the uname() in libc */ len = sizeof(luts.l_version); for (cp = luts.l_version; len--; ++cp) if (*cp == '\n' || *cp == '\t') *cp = (len > 1) ? ' ' : '\0'; return copyout(&luts, SCARG(uap, up), sizeof(luts)); } int linux_sys_oldolduname(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_uname_args /* { syscallarg(struct linux_oldoldutsname *) up; } */ *uap = v; extern char hostname[], machine[]; struct linux_oldoldutsname luts; int len; char *cp; strncpy(luts.l_sysname, ostype, sizeof(luts.l_sysname)); strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename)); strncpy(luts.l_release, osrelease, sizeof(luts.l_release)); strncpy(luts.l_version, version, sizeof(luts.l_version)); strncpy(luts.l_machine, machine, sizeof(luts.l_machine)); /* This part taken from the the uname() in libc */ len = sizeof(luts.l_version); for (cp = luts.l_version; len--; ++cp) if (*cp == '\n' || *cp == '\t') *cp = (len > 1) ? ' ' : '\0'; return copyout(&luts, SCARG(uap, up), sizeof(luts)); } /* * Linux wants to pass everything to a syscall in registers. However, * mmap() has 6 of them. Oops: out of register error. They just pass * everything in a structure. */ int linux_sys_mmap(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_mmap_args /* { syscallarg(struct linux_mmap *) lmp; } */ *uap = v; struct linux_mmap lmap; struct linux_sys_mmap2_args nlmap; struct sys_mmap_args cma; int error; if ((error = copyin(SCARG(uap, lmp), &lmap, sizeof lmap))) return error; if (lmap.lm_pos & PAGE_MASK) return EINVAL; /* repackage into something sane */ SCARG(&nlmap,addr) = (unsigned long)lmap.lm_addr; SCARG(&nlmap,len) = lmap.lm_len; SCARG(&nlmap,prot) = lmap.lm_prot; SCARG(&nlmap,flags) = lmap.lm_flags; SCARG(&nlmap,fd) = lmap.lm_fd; SCARG(&nlmap,offset) = (unsigned)lmap.lm_pos; linux_to_bsd_mmap_args(&cma, &nlmap); SCARG(&cma, pos) = (off_t)SCARG(&nlmap, offset); return sys_mmap(p, &cma, retval); } /* * Guts of most architectures' mmap64() implementations. This shares * its list of arguments with linux_sys_mmap(). * * The difference in linux_sys_mmap2() is that "offset" is actually * (offset / pagesize), not an absolute byte count. This translation * to pagesize offsets is done inside glibc between the mmap64() call * point, and the actual syscall. */ int linux_sys_mmap2(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_mmap2_args /* { syscallarg(unsigned long) addr; syscallarg(size_t) len; syscallarg(int) prot; syscallarg(int) flags; syscallarg(int) fd; syscallarg(linux_off_t) offset; } */ *uap = v; struct sys_mmap_args cma; linux_to_bsd_mmap_args(&cma, uap); SCARG(&cma, pos) = ((off_t)SCARG(uap, offset)) << PAGE_SHIFT; return sys_mmap(p, &cma, retval); } static void linux_to_bsd_mmap_args(cma, uap) struct sys_mmap_args *cma; const struct linux_sys_mmap2_args *uap; { int flags = MAP_TRYFIXED, fl = SCARG(uap, flags); flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED); flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE); flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED); flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON); /* XXX XAX ERH: Any other flags here? There are more defined... */ SCARG(cma, addr) = (void *)SCARG(uap, addr); SCARG(cma, len) = SCARG(uap, len); SCARG(cma, prot) = SCARG(uap, prot); if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */ SCARG(cma, prot) |= VM_PROT_READ; SCARG(cma, flags) = flags; SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd); SCARG(cma, pad) = 0; } int linux_sys_mremap(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_mremap_args /* { syscallarg(void *) old_address; syscallarg(size_t) old_size; syscallarg(size_t) new_size; syscallarg(u_long) flags; } */ *uap = v; struct sys_munmap_args mua; size_t old_size, new_size; int error; old_size = round_page(SCARG(uap, old_size)); new_size = round_page(SCARG(uap, new_size)); /* * Growing mapped region. */ if (new_size > old_size) { /* * XXX Implement me. What we probably want to do is * XXX dig out the guts of the old mapping, mmap that * XXX object again with the new size, then munmap * XXX the old mapping. */ *retval = 0; return (ENOMEM); } /* * Shrinking mapped region. */ if (new_size < old_size) { SCARG(&mua, addr) = (caddr_t)SCARG(uap, old_address) + new_size; SCARG(&mua, len) = old_size - new_size; error = sys_munmap(p, &mua, retval); *retval = error ? 0 : (register_t)SCARG(uap, old_address); return (error); } /* * No change. */ *retval = (register_t)SCARG(uap, old_address); return (0); } /* * This code is partly stolen from src/lib/libc/gen/times.c * XXX - CLK_TCK isn't declared in /sys, just in , done here */ #define CLK_TCK 100 #define CONVTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) int linux_sys_times(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_times_args /* { syscallarg(struct times *) tms; } */ *uap = v; struct timeval t; struct linux_tms ltms; struct rusage ru; int error, s; calcru(p, &ru.ru_utime, &ru.ru_stime, NULL); ltms.ltms_utime = CONVTCK(ru.ru_utime); ltms.ltms_stime = CONVTCK(ru.ru_stime); ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime); ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime); if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms))) return error; s = splclock(); timersub(&time, &boottime, &t); splx(s); retval[0] = ((linux_clock_t)(CONVTCK(t))); return 0; } /* * OpenBSD passes fd[0] in retval[0], and fd[1] in retval[1]. * Linux directly passes the pointer. */ int linux_sys_pipe(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_pipe_args /* { syscallarg(int *) pfds; } */ *uap = v; int error; int pfds[2]; #ifdef __i386__ int reg_edx = retval[1]; #endif /* __i386__ */ if ((error = sys_opipe(p, 0, retval))) { #ifdef __i386__ retval[1] = reg_edx; #endif /* __i386__ */ return error; } /* Assumes register_t is an int */ pfds[0] = retval[0]; pfds[1] = retval[1]; if ((error = copyout(pfds, SCARG(uap, pfds), 2 * sizeof (int)))) { #ifdef __i386__ retval[1] = reg_edx; #endif /* __i386__ */ fdrelease(p, retval[0]); fdrelease(p, retval[1]); return error; } retval[0] = 0; #ifdef __i386__ retval[1] = reg_edx; #endif /* __i386__ */ return 0; } /* * Alarm. This is a libc call which uses setitimer(2) in OpenBSD. * Fiddle with the timers to make it work. */ int linux_sys_alarm(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_alarm_args /* { syscallarg(unsigned int) secs; } */ *uap = v; int s; struct itimerval *itp, it; int timo; itp = &p->p_realtimer; s = splclock(); /* * Clear any pending timer alarms. */ timeout_del(&p->p_realit_to); timerclear(&itp->it_interval); if (timerisset(&itp->it_value) && timercmp(&itp->it_value, &time, >)) timersub(&itp->it_value, &time, &itp->it_value); /* * Return how many seconds were left (rounded up) */ retval[0] = itp->it_value.tv_sec; if (itp->it_value.tv_usec) retval[0]++; /* * alarm(0) just resets the timer. */ if (SCARG(uap, secs) == 0) { timerclear(&itp->it_value); splx(s); return 0; } /* * Check the new alarm time for sanity, and set it. */ timerclear(&it.it_interval); it.it_value.tv_sec = SCARG(uap, secs); it.it_value.tv_usec = 0; if (itimerfix(&it.it_value) || itimerfix(&it.it_interval)) { splx(s); return (EINVAL); } if (timerisset(&it.it_value)) { timo = tvtohz(&it.it_value); if (timo <= 0) timo = 1; timeradd(&it.it_value, &time, &it.it_value); timeout_add(&p->p_realit_to, timo); } p->p_realtimer = it; splx(s); return 0; } /* * utime(). Do conversion to things that utimes() understands, * and pass it on. */ int linux_sys_utime(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_utime_args /* { syscallarg(char *) path; syscallarg(struct linux_utimbuf *)times; } */ *uap = v; caddr_t sg; int error; struct sys_utimes_args ua; struct timeval tv[2], *tvp; struct linux_utimbuf lut; sg = stackgap_init(p->p_emul); tvp = (struct timeval *) stackgap_alloc(&sg, sizeof(tv)); LINUX_CHECK_ALT_EXIST(p, &sg, SCARG(uap, path)); SCARG(&ua, path) = SCARG(uap, path); if (SCARG(uap, times) != NULL) { if ((error = copyin(SCARG(uap, times), &lut, sizeof lut))) return error; tv[0].tv_usec = tv[1].tv_usec = 0; tv[0].tv_sec = lut.l_actime; tv[1].tv_sec = lut.l_modtime; if ((error = copyout(tv, tvp, sizeof tv))) return error; SCARG(&ua, tptr) = tvp; } else SCARG(&ua, tptr) = NULL; return sys_utimes(p, &ua, retval); } /* * The old Linux readdir was only able to read one entry at a time, * even though it had a 'count' argument. In fact, the emulation * of the old call was better than the original, because it did handle * the count arg properly. Don't bother with it anymore now, and use * it to distinguish between old and new. The difference is that the * newer one actually does multiple entries, and the reclen field * really is the reclen, not the namelength. */ int linux_sys_readdir(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_readdir_args /* { syscallarg(int) fd; syscallarg(struct linux_dirent *) dent; syscallarg(unsigned int) count; } */ *uap = v; SCARG(uap, count) = 1; return linux_sys_getdents(p, uap, retval); } /* * Linux 'readdir' call. This code is mostly taken from the * SunOS getdents call (see compat/sunos/sunos_misc.c), though * an attempt has been made to keep it a little cleaner (failing * miserably, because of the cruft needed if count 1 is passed). * * The d_off field should contain the offset of the next valid entry, * but in Linux it has the offset of the entry itself. We emulate * that bug here. * * Read in BSD-style entries, convert them, and copy them out. * * Note that this doesn't handle union-mounted filesystems. */ int linux_readdir_callback(void *, struct dirent *, off_t); struct linux_readdir_callback_args { caddr_t outp; int resid; int oldcall; int is64bit; }; int linux_readdir_callback(arg, bdp, cookie) void *arg; struct dirent *bdp; off_t cookie; { struct linux_dirent64 idb64; struct linux_dirent idb; struct linux_readdir_callback_args *cb = arg; int linux_reclen; int error; if (cb->oldcall == 2) return (ENOMEM); linux_reclen = (cb->is64bit) ? LINUX_RECLEN(&idb64, bdp->d_namlen) : LINUX_RECLEN(&idb, bdp->d_namlen); if (cb->resid < linux_reclen) return (ENOMEM); if (cb->is64bit) { idb64.d_ino = (linux_ino64_t)bdp->d_fileno; idb64.d_off = (linux_off64_t)cookie; idb64.d_reclen = (u_short)linux_reclen; idb64.d_type = bdp->d_type; strlcpy(idb64.d_name, bdp->d_name, sizeof(idb64.d_name)); error = copyout((caddr_t)&idb64, cb->outp, linux_reclen); } else { idb.d_ino = (linux_ino_t)bdp->d_fileno; if (cb->oldcall) { /* * The old readdir() call misuses the offset * and reclen fields. */ idb.d_off = (linux_off_t)linux_reclen; idb.d_reclen = (u_short)bdp->d_namlen; } else { idb.d_off = (linux_off_t)cookie; idb.d_reclen = (u_short)linux_reclen; } strlcpy(idb.d_name, bdp->d_name, sizeof(idb.d_name)); error = copyout((caddr_t)&idb, cb->outp, linux_reclen); } if (error) return (error); /* advance output past Linux-shaped entry */ cb->outp += linux_reclen; cb->resid -= linux_reclen; if (cb->oldcall == 1) ++cb->oldcall; return (0); } int linux_sys_getdents64(p, v, retval) struct proc *p; void *v; register_t *retval; { return getdents_common(p, v, retval, 1); } int linux_sys_getdents(p, v, retval) struct proc *p; void *v; register_t *retval; { return getdents_common(p, v, retval, 0); } static int getdents_common(p, v, retval, is64bit) struct proc *p; void *v; register_t *retval; int is64bit; { struct linux_sys_getdents_args /* { syscallarg(int) fd; syscallarg(void *) dirent; syscallarg(unsigned) count; } */ *uap = v; struct linux_readdir_callback_args args; struct file *fp; int error; int nbytes = SCARG(uap, count); if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0) return (error); if (nbytes == 1) { /* emulating old, broken behaviour */ /* readdir(2) case. Always struct dirent. */ if (is64bit) { FRELE(fp); return (EINVAL); } nbytes = sizeof(struct linux_dirent); args.oldcall = 1; } else { args.oldcall = 0; } args.resid = nbytes; args.outp = (caddr_t)SCARG(uap, dirent); args.is64bit = is64bit; if ((error = readdir_with_callback(fp, &fp->f_offset, nbytes, linux_readdir_callback, &args)) != 0) goto exit; *retval = nbytes - args.resid; exit: FRELE(fp); return (error); } /* * Not sure why the arguments to this older version of select() were put * into a structure, because there are 5, and that can all be handled * in registers on the i386 like Linux wants to. */ int linux_sys_oldselect(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_oldselect_args /* { syscallarg(struct linux_select *) lsp; } */ *uap = v; struct linux_select ls; int error; if ((error = copyin(SCARG(uap, lsp), &ls, sizeof(ls)))) return error; return linux_select1(p, retval, ls.nfds, ls.readfds, ls.writefds, ls.exceptfds, ls.timeout); } /* * Even when just using registers to pass arguments to syscalls you can * have 5 of them on the i386. So this newer version of select() does * this. */ int linux_sys_select(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_select_args /* { syscallarg(int) nfds; syscallarg(fd_set *) readfds; syscallarg(fd_set *) writefds; syscallarg(fd_set *) exceptfds; syscallarg(struct timeval *) timeout; } */ *uap = v; return linux_select1(p, retval, SCARG(uap, nfds), SCARG(uap, readfds), SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout)); } /* * Common code for the old and new versions of select(). A couple of * things are important: * 1) return the amount of time left in the 'timeout' parameter * 2) select never returns ERESTART on Linux, always return EINTR */ int linux_select1(p, retval, nfds, readfds, writefds, exceptfds, timeout) struct proc *p; register_t *retval; int nfds; fd_set *readfds, *writefds, *exceptfds; struct timeval *timeout; { struct sys_select_args bsa; struct timeval tv0, tv1, utv, *tvp; caddr_t sg; int error; SCARG(&bsa, nd) = nfds; SCARG(&bsa, in) = readfds; SCARG(&bsa, ou) = writefds; SCARG(&bsa, ex) = exceptfds; SCARG(&bsa, tv) = timeout; /* * Store current time for computation of the amount of * time left. */ if (timeout) { if ((error = copyin(timeout, &utv, sizeof(utv)))) return error; if (itimerfix(&utv)) { /* * The timeval was invalid. Convert it to something * valid that will act as it does under Linux. */ sg = stackgap_init(p->p_emul); tvp = stackgap_alloc(&sg, sizeof(utv)); utv.tv_sec += utv.tv_usec / 1000000; utv.tv_usec %= 1000000; if (utv.tv_usec < 0) { utv.tv_sec -= 1; utv.tv_usec += 1000000; } if (utv.tv_sec < 0) timerclear(&utv); if ((error = copyout(&utv, tvp, sizeof(utv)))) return error; SCARG(&bsa, tv) = tvp; } microtime(&tv0); } error = sys_select(p, &bsa, retval); if (error) { /* * See fs/select.c in the Linux kernel. Without this, * Maelstrom doesn't work. */ if (error == ERESTART) error = EINTR; return error; } if (timeout) { if (*retval) { /* * Compute how much time was left of the timeout, * by subtracting the current time and the time * before we started the call, and subtracting * that result from the user-supplied value. */ microtime(&tv1); timersub(&tv1, &tv0, &tv1); timersub(&utv, &tv1, &utv); if (utv.tv_sec < 0) timerclear(&utv); } else timerclear(&utv); if ((error = copyout(&utv, timeout, sizeof(utv)))) return error; } return 0; } /* * Get the process group of a certain process. Look it up * and return the value. */ int linux_sys_getpgid(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_getpgid_args /* { syscallarg(int) pid; } */ *uap = v; struct proc *targp; if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) { if ((targp = pfind(SCARG(uap, pid))) == 0) return ESRCH; } else targp = p; retval[0] = targp->p_pgid; return 0; } /* * Set the 'personality' (emulation mode) for the current process. Only * accept the Linux personality here (0). This call is needed because * the Linux ELF crt0 issues it in an ugly kludge to make sure that * ELF binaries run in Linux mode, not SVR4 mode. */ int linux_sys_personality(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_personality_args /* { syscallarg(int) per; } */ *uap = v; if (SCARG(uap, per) != 0) return EINVAL; retval[0] = 0; return 0; } /* * The calls are here because of type conversions. */ int linux_sys_setreuid16(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_setreuid16_args /* { syscallarg(int) ruid; syscallarg(int) euid; } */ *uap = v; struct sys_setreuid_args bsa; SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ? (uid_t)-1 : SCARG(uap, ruid); SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ? (uid_t)-1 : SCARG(uap, euid); return sys_setreuid(p, &bsa, retval); } int linux_sys_setregid16(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_setregid16_args /* { syscallarg(int) rgid; syscallarg(int) egid; } */ *uap = v; struct sys_setregid_args bsa; SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ? (uid_t)-1 : SCARG(uap, rgid); SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ? (uid_t)-1 : SCARG(uap, egid); return sys_setregid(p, &bsa, retval); } int linux_sys_getsid(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_getsid_args /* { syscallarg(int) pid; } */ *uap = v; struct proc *p1; pid_t pid; pid = (pid_t)SCARG(uap, pid); if (pid == 0) { retval[0] = (int)p->p_session; /* XXX Oh well */ return 0; } p1 = pfind((int)pid); if (p1 == NULL) return ESRCH; retval[0] = (int)p1->p_session; return 0; } int linux_sys___sysctl(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys___sysctl_args /* { syscallarg(struct linux___sysctl *) lsp; } */ *uap = v; struct linux___sysctl ls; struct sys___sysctl_args bsa; int error; if ((error = copyin(SCARG(uap, lsp), &ls, sizeof ls))) return error; SCARG(&bsa, name) = ls.name; SCARG(&bsa, namelen) = ls.namelen; SCARG(&bsa, old) = ls.old; SCARG(&bsa, oldlenp) = ls.oldlenp; SCARG(&bsa, new) = ls.new; SCARG(&bsa, newlen) = ls.newlen; return sys___sysctl(p, &bsa, retval); } /* * We have nonexistent fsuid equal to uid. * If modification is requested, refuse. */ int linux_sys_setfsuid(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_setfsuid_args /* { syscallarg(uid_t) uid; } */ *uap = v; uid_t uid; uid = SCARG(uap, uid); if (p->p_cred->p_ruid != uid) return sys_nosys(p, v, retval); else return (0); } int linux_sys_getfsuid(p, v, retval) struct proc *p; void *v; register_t *retval; { return sys_getuid(p, v, retval); } int linux_sys_nice(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_nice_args /* { syscallarg(int) incr; } */ *uap = v; struct sys_setpriority_args bsa; SCARG(&bsa, which) = PRIO_PROCESS; SCARG(&bsa, who) = 0; SCARG(&bsa, prio) = SCARG(uap, incr); return sys_setpriority(p, &bsa, retval); } int linux_sys_stime(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_time_args /* { linux_time_t *t; } */ *uap = v; struct timeval atv; linux_time_t tt; int error; if ((error = suser(p, 0)) != 0) return (error); if ((error = copyin(SCARG(uap, t), &tt, sizeof(tt))) != 0) return (error); atv.tv_sec = tt; atv.tv_usec = 0; error = settime(&atv); return (error); } int linux_sys_getpid(p, v, retval) struct proc *p; void *v; register_t *retval; { *retval = p->p_pid; return (0); } int linux_sys_getuid(p, v, retval) struct proc *p; void *v; register_t *retval; { *retval = p->p_cred->p_ruid; return (0); } int linux_sys_getgid(p, v, retval) struct proc *p; void *v; register_t *retval; { *retval = p->p_cred->p_rgid; return (0); } /* * sysinfo() */ /* ARGSUSED */ int linux_sys_sysinfo(p, v, retval) struct proc *p; void *v; register_t *retval; { struct linux_sys_sysinfo_args /* { syscallarg(struct linux_sysinfo *) sysinfo; } */ *uap = v; struct linux_sysinfo si; struct loadavg *la; extern int bufpages; si.uptime = time.tv_sec - boottime.tv_sec; la = &averunnable; si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; si.totalram = ctob(physmem); si.freeram = uvmexp.free * uvmexp.pagesize; si.sharedram = 0;/* XXX */ si.bufferram = bufpages * PAGE_SIZE; si.totalswap = uvmexp.swpages * PAGE_SIZE; si.freeswap = (uvmexp.swpages - uvmexp.swpginuse) * PAGE_SIZE; si.procs = nprocs; /* The following are only present in newer Linux kernels. */ si.totalbig = 0; si.freebig = 0; si.mem_unit = 1; return (copyout(&si, SCARG(uap, sysinfo), sizeof(si))); }